Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental-Design Procedure
- A complete evaluation and synthesis of the results of the four experiments with respect to biochar quality as a bio-stimulant and soil improver was conducted.
- All types of biochars used in the land applications were qualitatively and physico-chemically characterized and compared to International Biochar Initiative standards and European guidelines in order to confirm the safety of their use.
- Finally, a risk-assessment analysis of tomato consumption using the outcomes of the four experiments was carried out in order to explore possible unfavorable effects on human health.
2.2. Origin and Production of Biochar Amendments
2.3. Field-Experiment Description
- The first step (first experiment) aimed to find the optimal dose of biochar addition to soil, using the basic feedstock (SS) used in the applications under controlled (greenhouse) conditions.
- The second step (second experiment) aimed to confirm the optimal dose of biochar addition to soil found in the previous step, under field conditions, and also to assess the efficiency of an alternative biochar (OMW-3-phase).
- In the final steps (third and fourth experiments), biochars of different origin (OMW-2-phase, sawdust, and compost) were added in order to evaluate their efficiency as bio-stimulants and soil improvers.
2.4. Physico-Chemical Properties of Samples
2.5. Methodology of Human-Health Risk Assessment
3. Results and Discussion
3.1. Physical and Chemical Characterization of the Different Types of Biochars
3.2. Metal Uptake by Plants and Soils
3.3. Effects of Biochar on Crop Yield
3.4. Effects of Biochar on Soil Improvement
3.5. Health-Risk Assessment of Heavy-Metal Exposure through Ingestion
4. Conclusions
- Biochar can be characterized as a plant-growth stimulator; however, this action is strongly related to the origin of the raw material. Fruit productivity greatly increased. The total mass of tomatoes produced from biochar-amended soils was significantly higher (up to 180%) compared to the non-amended soils. The sawdust-derived biochar did not present results as positive in terms of the total productivity as the SS, 2-phase-OMWs, 3-phase-OMW, and compost biochars.
- All types of biochars showed lower heavy-metal contents than the maximum thresholds set in international standards. Although some heavy metals in the different types of biochar exceeded the maximum thresholds of the EBC, they were not leachable, and hence, a low bioavailability to crops can be assumed. The leachable part of all heavy metals was below the detection limit or close to zero.
- The uptake and accumulation of heavy metals in the crop tissues was very low, rendering the biochar an appropriate product for land application and agricultural use. Similarly, the accumulation of heavy metals in the soil was very low because they often migrated to deeper soil layers.
- Our findings provide evidence that the biochars had a positive impact on nutrient sequestration in the soil and improved its structure. In addition, biochar may move to lower soil horizons, increasing the content of soil nutrients at deeper levels.
- The hazard index was estimated to be between 8.25 × 10−3 and 4.23 × 10−2 for all treatments, and the cancer risk for Cr(VI), considering a worst-case scenario, was found to be between 6.56 × 10−6 and 5.2 × 10−5 for the different treatments. The risk-assessment analysis indicated that no harmful effects on human health would occur as a result of the consumption of tomatoes cultivated in biochar-amended soils. The impact of different biochars on the risk of potential chronic exposure due to tomato consumption was found to be negligible.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; De Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of biochar derived from wood and high nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of biochar from food and wood waste as green admixture for cement mortar. Sci. Total Environ. 2018, 619, 419–435. [Google Scholar] [CrossRef]
- Qin, J.; Qian, S.; Chen, Q.; Chen, L.; Yan, L.; Shen, G. Cow manure-derived biochar: Its catalytic properties and influential factors. J. Hazard. Mater. 2019, 371, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Bhatia, D.; Dhiman, J.; Samuel, J.; Prasad, R.; Singh, J. A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. J. Clean. Prod. 2020, 269, 122259. [Google Scholar] [CrossRef]
- Vamvuka, D.; Esser, K.; Komnitsas, K. Investigating the suitability of grape husks biochar, municipal solid wastes compost and mixtures of them for agricultural applications to Mediterranean soils. Resources 2020, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.E.; Builes, S.; Heredia Salgado, M.A.; Tarelho, L.A.C.; Arroyave, C.; Aristizabal, A.; Chavez, E. Adsorption of cadmium using biochars produced from agro-residues. J. Phys. Chem. C 2020, 124, 14592–14602. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Dai, J.; Liang, J.; Yu, J.; Ren, X.; Yi, H.; Cheng, M.; et al. Biological technologies for the remediation of co-contaminated soil. Crit. Rev. Biotechnol. 2017, 37, 1062–1076. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, X.; Gu, Y.; Liu, S.; Liu, Y.; Hu, X.; Li, J.; Zhou, Y.; Liu, S.; He, Y. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere 2020, 250, 126268. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Shen, X.; Meng, H.; Shen, Y.; Ding, J.; Zhou, H.; Cong, H.; Li, L. A comprehensive assessment on bioavailability, leaching characteristics and potential risk of polycyclic aromatic hydrocarbons in biochars produced by a continuous pyrolysis system. Chemosphere 2022, 287, 132116. [Google Scholar] [CrossRef]
- Liang, J.F.; Li, Q.W.; Gao, J.Q.; Feng, J.G.; Zhang, X.Y.; Hao, Y.J.; Yu, F.H. Biochar compost addition benefits Phragmites australis growth and soil property in coastal wet ands. Sci. Total Environ. 2021, 769, 145166. [Google Scholar] [CrossRef] [PubMed]
- Kalu, S.; Kulmala, L.; Zrim, J.; Peltokangas, K.; Tammeorg, P.; Rasa, K.; Kitzler, B.; Pihlatie, M.; Karhu, K. Potential of Biochar to Reduce Greenhouse Gas Emissions and Increase Nitrogen Use Efficiency in Boreal Arable Soils in the Long-Term. Front. Environ. Sci. 2022, 10, 914766. [Google Scholar] [CrossRef]
- Siedt, M.; Schaffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef] [Green Version]
- Godlewska, P.; Ok, Y.S.; Oleszczuk, P. The Dark Side of Black Gold: Ecotoxicological aspects of biochar and biochar-amended soils. J. Hazard. Mater. 2021, 403, 123833. [Google Scholar] [CrossRef]
- Wang, J.; Odinga, E.S.; Zhang, W.; Zhou, X.; Yang, B.; Waigi, M.G.; Gao, Y.Z. Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. Environ. Int. 2019, 130, 104899. [Google Scholar] [CrossRef]
- Marmiroli, M.; Caldara, M.; Pantalone, S.; Malcevschi, A.; Maestri, E.; Keller, A.A.; Marmiroli, N. Building a risk matrix for the safety assessment of wood derived biochars. Sci. Total Environ. 2022, 839, 156265. [Google Scholar] [CrossRef]
- Huang, H.; Reddy, N.G.; Huang, X.L.; Chen, P.N.; Wang, P.Y.; Zhang, Y.T.; Huang, Y.X.; Lin, P.; Garg, A. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci. Rep. 2021, 11, 7419. [Google Scholar] [CrossRef]
- Wu, C.; Liu, X.; Wu, X.; Dong, F.; Xu, J.; Zheng, Y. Sorption, degradation and bioavailability of oxyfluorfen in biochar-amended soils. Sci. Total Environ. 2019, 658, 87–94. [Google Scholar] [CrossRef]
- Brtnicky, M.; Datta, R.; Holatko, J.; Bielska, L.; Gusiatin, Z.M.; Kucerik, J.; Hammerschmiedt, T.; Danish, S.; Radziemska, M.; Mravcova, L.; et al. A critical review of the possible adverse effects of biochar in the soil environment. Sci. Total Environ. 2021, 796, 148756. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Wang, M.; Li, Y.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Naidu, R.; Liu, Y.; et al. Land application of sewage sludge biochar: Assessments of soil-plant-human health risks from potentially toxic metals. Sci. Total Environ. 2021, 756, 144137. [Google Scholar] [CrossRef] [PubMed]
- Chen, P. The Determination and Migration of PAHs in Biochar-Based Fertilizer Used in Soil-Plant System; Shanghai Jiao Tong University: Shanghai, China, 2016. [Google Scholar]
- Lin, Q.; Tan, X.; Almatrafi, E.; Yang, Y.; Wang, W.; Luo, H.; Qin, F.; Zhou, C.; Zeng, G.; Zhang, C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci. Total Environ. 2022, 826, 153956. [Google Scholar] [CrossRef] [PubMed]
- EBC. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; European Biochar Foundation (EBC): Arbaz, Switzerland, 2012–2022; Available online: http://european-biochar.org (accessed on 10 January 2022).
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative: Canandaigua, NY, USA, 2015. [Google Scholar]
- Lilli, M.A.; Paranychianakis, N.V.; Lionoudakis, K.; Kritikaki, A.; Voutsadaki, S.; Saru, M.L.; Komnitsas, K.; Nikolaidis, N.P. The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation. Sustainability 2023, 15, 3879. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Carbon and Nitrogen Distribution in Aggregates from Cultivated and Native Grassland Soils. Division S-6—Soil & Water Management & Conservation. Soil Sci. Soc. Am. J. 1993, 57, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- U.S. EPA. Exposure Factors Handbook (EPA/600/R-09/052F); National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 2011.
- U.S. EPA. Risk Assessment Guidance for Superfund (EPA/540/R-92/003), Volume I: Human Health Evaluation Manual (HHEM) Supplemental Guidance; Office of Emergency and Remedial Response: Washington, DC, USA, 1991.
- U.S. EPA. Integrated Risk Information System (IRIS): Chromium (VI) (CASRN 18540-29-9); Toxicological Review of Hexavalent Chromium (CAS No 18540-29-9); U.S. EPA. Support of Summary Information on the Integrated Risk Information System (IRIS): Washington DC, USA, 1998.
- Tvermoes, B.E.; Banducci, A.M.; Devlin, K.D.; Kerger, B.D.; Abramson, M.M.; Bebenek, I.G.; Monnot, A.D. Screening level health risk assessment of selected metals in apple juice sold in the United States. Food Chem. Toxicol. 2014, 71, 42–50. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual Part A. EPA/540/1-89/002; Office of Health and Environmental Assessment: Washington, DC, USA, 1989.
- U.S. EPA. Characterizing Risk and Hazard, Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities (EPA530-R-05-006); Office of Solid Waste Management and Emergency Response: Washington, DC, USA, 2005.
- Lilli, M.A.; Syranidou, E.; Palliou, A.; Nikolaidis, N.P.; Karatzas, G.; Kalogerakis, N. Assessing the impact of geogenic chromium uptake by carrots (Daucus carota) grown in Asopos river basin. Environ. Res. 2017, 152, 96–101. [Google Scholar] [CrossRef]
- Dimitroula, H.; Syranidou, E.; Manousaki, E.; Nikolaidis, N.P.; Karatzas, G.P.; Kalogerakis, N. Mitigation measures for chromium-VI contaminated groundwater—The role of endophytic bacteria in rhizofiltration. J. Hazard. Mater. 2015, 281, 114–120. [Google Scholar] [CrossRef]
- U.S. EPA. Risk Assessment Guidance for Superfund (EPA/540/R-02/002), Volume III-Part A: Process for Conducting Probabilistic Risk Assessment; Office of Emergency and Remedial Response: Washington, DC, USA, 2001.
- Tu, P.; Zhang, G.; Wei, G.; Li, J.; Li, Y.; Deng, L.; Yuan, H. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresour. Bioprocess. 2022, 9, 131. [Google Scholar] [CrossRef]
- EU-Commission Regulation (EU) 2019/1009—EU Fertilising Products and Amending Regulations; EU-Commission Regulation: Brussels, Belgium, 2019.
- Yang, S.; Feng, W.; Wang, S.; Chen, L.; Zheng, X.; Li, X.; Dongmei Zhou, D. Farmland heavy metals can migrate to deep soil at a regional scale: A case study on a wastewater-irrigated area in China. Environ. Pollut. 2021, 281, 116977. [Google Scholar] [CrossRef]
- Bartzas, G.; Komnitsas, K. Environmental Risk Assessment in Agriculture: The Example of Pistacia vera L. Cultivation in Greece. Sustainability 2020, 12, 5735. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Gómez, N.; Rosas, J.G.; Singh, S.; Ross, A.B.; Sánchez, M.E.; Cara, J. Development of a gained stability index for describing biochar stability: Relation of high recalcitrance index (R50) with accelerated ageing tests. J. Anal. Appl. Pyrolysis 2016, 120, 37–44. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Nieto, A.; Méndez, A.; Askeland, M.P.J.; Gascó, G. Biochar from Biosolids Pyrolysis: A Review. Int. J. Environ. Res. Public Health 2018, 15, 956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO/WHO. Food Additives and Contaminants. Joint Codex Alimentarius Commission. FAO/WHO Food Standards Programme, ALINORM 01/12A. 2001. Available online: https://www.fao.org/input/download/report/27/Al0112Ae.pdf (accessed on 12 March 2001).
- Velli, P.; Manolikaki, I.; Diamadopoulos, E. Effect of biochar produced from sewage sludge on tomato (Solanum lycopersicum L.) growth, soil chemical properties and heavy metal concentrations. J. Environ. Manag. 2021, 297, 113325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Yu Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
Experiment No. | Greenhouse (G)/Field (F) Conditions | Type and Dose of Biochar Used | ||||||
---|---|---|---|---|---|---|---|---|
No Biochar Addition | SS | OMW-3-Phase | Compost | Sawdust | OMW-2-Phase | |||
0 t/ha | 10 t/ha | 25 t/ha | 25 t/ha | 25 t/ha | 25 t/ha | 25 t/ha | ||
1 | G | V | V | V | ||||
2 | F | V | V | V | V | |||
3 | G | V | V | V | V | |||
4 | F | V | V | V | V |
Type of Biochar | |||||
---|---|---|---|---|---|
Parameter | SS | OMW-3-Phase | Compost | Sawdust | OMW-2-Phase |
Yield (%) | 25 (0.03) | 21 (0.06) | 39 (0.04) | 18 (0.08) | 17 (0.06) |
pH | 6.81 | 9.86 | 9.19 | 5.66 (0.04) | 9.11 |
EC (mS/cm) | 3.35 (0.23) | 1.66 | 5.2 (0.95) | 4.36 (0.16) | 2.53 (0.10) |
Dry Matter/(TS%) | 92.01 (0.01) | 97.85 (0.02) | 99.9 (0.02) | 90.17 (0.01) | 98.19 (0.02) |
Moisture (%) | 7.98 (0.02) | 2.14 (0.03) | 0.14 (0.03) | 9.82 (0.02) | 1.80 (0.03) |
Volatile solids (%) | 67.50 (0.65) | 86.35 (1.20) | 15.7 (0.84) | 98.73 (1.13) | 92.24 (0.30) |
Ash (%) | 32.49 (0.13) | 13.64 (0.3) | 84.3 (0.45) | 1.26 (0.3) | 7.76 (0.3) |
Volatile matter (%) (TG) | 34 (0.01) | 58.01 (0.01) | 36.2 (0.01) | 75.4 (0.01) | 54 (0.01) |
Char (%) (TG) | 65 (0.01) | 41.98 (0.01) | 73.4 (0.01) | 24.6 (0.01) | 46 (0.01) |
Specific surface area (m2/g) | 130 (0.02) | 16 | - | 2.6 | 19 |
S (%) | 0.95 (0.02) | 0.09 (0.01) | 0.51 (0.03) | 0.0 | 0.03 |
K (g/kg) | 3.4 (0.02) | 45.7 (0.4) | 15.6 (0.08) | 2.41 (0.01) | 23.8 (3.7) |
Cr (mg/kg) | 68.4 (1.7) | 3.9 (0.04) | 44.5 (1.7) | <DL | 11.1 (1.8) |
Ni (mg/kg) | 53.5 (2.1) | 4.3 (0.1) | 39.6 (0.2) | <DL | 67.4 (2.5) |
Cd (mg/kg) | 2.4 (0.01) | <DL | <DL | <DL | <DL |
Pb (mg/kg) | 206 (4.2) | 1.2 (0.03) | 237.3 (2.2) | 4.9 (0.05) | 0.35 (0.0) |
Cu (mg/kg) | 263.6 (6.6) | 88.7 (0.8) | 217.6 (8.7) | 89.96 (1.1) | 52.9 (2.5) |
Zn (mg/kg) | 1647 (6.4) | 81.9 (2.1) | 820.4 (33.8) | 59.4 (1.3) | 66.2 (3.2) |
As (mg/kg) | <DL | <DL | <DL | <DL | <DL |
Hg (mg/kg) | 0.2 (0.01) | <DL | 0.3 (0.02) | <DL | <DL |
Co (mg/kg) | <DL | <DL | <DL | <DL | <DL |
Mo (mg/kg) | 16.4 (0.6) | <DL | 1.6 (0.1) | <DL | 0.38 (0.03) |
Se (mg/kg) | 3.8 (0.06) | <DL | <DL | <DL | <DL |
Cl (mg/kg) | <800 | 6551 (427) | 7956 (758) | <800 | 4136 (818) |
SO4 (mg/kg) | 33,597 (2257) | <600 | 21,662 (474) | 2738 (978) | <600 |
Phenols (mg/kg) | 4.4 (0.4) | 163.7 (26.3) | 21.3 (0.96) | 14.3 (0.65) | 104.1 (6.7) |
N-NO3 (mg/kg) | 44.1 (4.2) | 32.7 (4.8) | 20.1 (3.7) | 72.1 (5.5) | <10 |
N-NH4 (mg/kg) | 120.5 (6.9) | 4.58 (0.9) | 9.1 (0.9) | 80.1 (14.4) | 2.38 (0.53) |
Olsen-P (mg/kg) | 564.9 (143) | 132.8 (9.9) | 636.4 (82.2) | 115.3 (7.5) | 148.9 (4.1) |
TOC (%) | 20.0 (1.5) | 58.5 (3.04) | 13 (1.1) | 59.8 (3.98) | 64 (0.21) |
TN (%) | 2.5 (0.2) | 3.9 (0.5) | 1.3 (0.2) | 0.7 (0.04) | 2.9 (0.25) |
Standard | |||
---|---|---|---|
Limit Value (mg/kg Dry wt) | IBI (2015) [25] | EBC-AgroBio [24] | EBC-Agro [24] |
As | 13–100 | 13 | 13 |
Cd | 1.4–39 | 0.7 | 1.5 |
Cr | 93–1200 | 70 | 90 |
Co | 34–100 | - | - |
Cu | 143–6000 | 70 | 100 |
Pb | 121–300 | 45 | 120 |
Hg | 1–17 | 0.4 | 1 |
Mo | 5–75 | - | - |
Ni | 47–420 | 25 | 50 |
Se | 2–200 | - | - |
Zn | 416–7400 | 200 | 400 |
Control | SS Dose 1 | SS Dose 2 | OMW-3-Phase | Compost | Sawdust | OMW-2-Phase | |
---|---|---|---|---|---|---|---|
CDI (mg kg−1d−1) | |||||||
Al | 3.53 × 10−3 | 2.34 × 10−3 | 1.76 × 10−3 | 3.56 × 10−3 | 1.14 × 10−2 | 6.78 × 10−3 | 0.00 × 100 |
Cr | 1.47 × 10−5 | 6.11 × 10−6 | 1.85 × 10−5 | 5.03 × 10−6 | 2.39 × 10−5 | 1.97 × 10−5 | 3.99 × 10−5 |
Mn | 3.05 × 10−4 | 2.75 × 10−4 | 3.26 × 10−4 | 3.42 × 10−4 | 3.08 × 10−4 | 2.29 × 10−4 | 5.59 × 10−4 |
Pb | 1.18 × 10−6 | 0.00 × 100 | 4.86 × 10−5 | 0.00 × 100 | 1.48 × 10−5 | 1.03 × 10−6 | 1.29 × 10−5 |
Cu | 1.98 × 10−4 | 1.72 × 10−4 | 2.00 × 10−4 | 1.83 × 10−4 | 2.07 × 10−4 | 1.63 × 10−4 | 3.57 × 10−4 |
Zn | 6.51 × 10−4 | 4.43 × 10−4 | 8.98 × 10−4 | 4.17 × 10−4 | 1.17 × 10−3 | 3.35 × 10−4 | 3.36 × 10−3 |
HQ | |||||||
Al | 3.53 × 10−3 | 2.34 × 10−3 | 1.76 × 10−3 | 3.56 × 10−3 | 1.14 × 10−2 | 6.78 × 10−3 | 0.00 × 100 |
Cr | 4.89 × 10−3 | 2.04 × 10−3 | 6.17 × 10−3 | 1.68 × 10−3 | 7.98 × 10−3 | 6.58 × 10−3 | 1.33 × 10−2 |
Mn | 2.18 × 10−3 | 1.97 × 10−3 | 2.33 × 10−3 | 2.44 × 10−3 | 2.20 × 10−3 | 1.64 × 10−3 | 3.99 × 10−3 |
Pb | 1.18 × 10−3 | 0.00 × 100 | 4.86 × 10−2 | 0.00 × 100 | 1.48 × 10−2 | 1.03 × 10−3 | 1.29 × 10−2 |
Cu | 4.96 × 10−4 | 4.30 × 10−4 | 5.00 × 10−4 | 4.58 × 10−4 | 5.18 × 10−4 | 4.08 × 10−4 | 8.92 × 10−4 |
Zn | 2.17 × 10−3 | 1.48 × 10−3 | 2.99 × 10−3 | 1.39 × 10−3 | 3.91 × 10−3 | 1.12 × 10−3 | 1.12 × 10−2 |
HI | 1.44 × 10−2 | 8.25 × 10−3 | 6.23 × 10−2 | 9.53 × 10−3 | 4.08 × 10−2 | 1.75 × 10−2 | 4.23 × 10−2 |
LADD (mg kg−1d−1) | 3.83 × 10−5 | 1.59 × 10−5 | 4.83 × 10−5 | 1.31 × 10−5 | 6.24 × 10−5 | 5.14 × 10−5 | 1.04 × 10−4 |
Cancer risk for Cr(VI) | 1.91 × 10−5 | 7.96 × 10−6 | 2.42 × 10−5 | 6.56 × 10−6 | 3.12 × 10−5 | 2.57 × 10−5 | 5.20 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lilli, M.A.; Paranychianakis, N.V.; Lionoudakis, K.; Saru, M.L.; Voutsadaki, S.; Kritikaki, A.; Komnitsas, K.; Nikolaidis, N.P. Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments. Sustainability 2023, 15, 9036. https://doi.org/10.3390/su15119036
Lilli MA, Paranychianakis NV, Lionoudakis K, Saru ML, Voutsadaki S, Kritikaki A, Komnitsas K, Nikolaidis NP. Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments. Sustainability. 2023; 15(11):9036. https://doi.org/10.3390/su15119036
Chicago/Turabian StyleLilli, Maria A., Nikolaos V. Paranychianakis, Konstantinos Lionoudakis, Maria L. Saru, Styliani Voutsadaki, Anna Kritikaki, Konstantinos Komnitsas, and Nikolaos P. Nikolaidis. 2023. "Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments" Sustainability 15, no. 11: 9036. https://doi.org/10.3390/su15119036
APA StyleLilli, M. A., Paranychianakis, N. V., Lionoudakis, K., Saru, M. L., Voutsadaki, S., Kritikaki, A., Komnitsas, K., & Nikolaidis, N. P. (2023). Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments. Sustainability, 15(11), 9036. https://doi.org/10.3390/su15119036