Design of Metaheuristic Optimization Algorithms for Deep Learning Model for Secure IoT Environment
<p>Top common passwords used in IoT devices [<a href="#B5-sustainability-15-02204" class="html-bibr">5</a>].</p> "> Figure 2
<p>Increases in DDoS attacks over the years [<a href="#B6-sustainability-15-02204" class="html-bibr">6</a>].</p> "> Figure 3
<p>Recurrent Neural Network Architecture [<a href="#B14-sustainability-15-02204" class="html-bibr">14</a>].</p> "> Figure 4
<p>Generic Flowchart of Metaheuristic Algorithm.</p> "> Figure 5
<p>Flowchart for proposed SAEHO Algorithm.</p> "> Figure 6
<p>Self-Upgraded Cat and Mouse Optimization Algorithm.</p> "> Figure 7
<p>IoT Security Attack Detection Framework-I.</p> "> Figure 8
<p>IoT Security Attack Detection Framework-II.</p> "> Figure 9
<p>Attack instances in Dataset 1 and Dataset 2.</p> "> Figure 10
<p>Performance of SAEHO + Hybrid Classifier and SU-CMO + Hybrid Classifier for Dataset 1.</p> "> Figure 11
<p>Performance of SAEHO + Hybrid Classifier and SU-CMO + Hybrid Classifier for Dataset 2.</p> ">
Abstract
:1. Introduction
- In the first approach, two different types of deep learning models, namely, CNN and DBN, are combined to create a hybrid classifier. This classifier is then used in the problem of identifying intrusions into the IoT system. In order to perfect the model, the proposed SAEHO is utilized for its training.
- In the second approach, SU-CMO is put to use in order to train the hybrid classifier deep learning model that is made up of GRU and Bi-LSTM.
2. Related Work
3. Proposed Metaheuristic Algorithms
3.1. Proposed Seagull Adapted Elephant Herding Optimization (SAEHO) Algorithm
- The population is organized into a number of clans, and each clan has a predetermined ratio of males to females.
- There are always a certain number of male elephants that choose to be alone and live apart from their clans.
- The leader of each elephant clan is a female elephant, known as the matriarch of their clans.
3.2. Self-Upgraded Cat and Mouse Optimizer (SU-CMO) Algorithm
4. IoT Security Attacks Detection Framework
5. Results and Discussion
5.1. Experiment Setup
5.2. Performance Analysis
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [Google Scholar] [CrossRef]
- Ahmad, R.; Alsmadi, I. Machine learning approaches to IoT security: A systematic literature review [Formula presented]. Internet Things 2021, 14, 2021. [Google Scholar] [CrossRef]
- What is Machine Learning? | IBM. Available online: https://www.ibm.com/cloud/learn/machine-learning (accessed on 1 August 2022).
- Threat Landscape Trends—Q1 2020|Broadcom Software Blogs. Available online: https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/threat-landscape-q1-2020 (accessed on 1 August 2022).
- Cisco Annual Internet Report—Cisco Annual Internet Report (2018–2023) White Paper—Cisco. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 1 August 2022).
- De Assis, M.V.O.; Carvalho, L.F.; Rodrigues, J.J.P.C.; Lloret, J.; Proença, M.L. Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Comput. Electr. Eng. 2020, 86, 106738. [Google Scholar] [CrossRef]
- Liang, F.; Yu, W.; Liu, X.; Griffith, D.; Golmie, N. Toward Edge-Based Deep Learning in Industrial Internet of Things. IEEE Internet Things J. 2020, 7, 4329–4341. [Google Scholar] [CrossRef]
- Kociołek, M.; Kozłowski, M.; Cardone, A. A Convolutional Neural Networks-Based Approach for Texture Directionality Detection. Sensors 2022, 22, 562. [Google Scholar] [CrossRef]
- Marenić, E.; Seychal, G.; Passieux, J.C. Data driven approach in multiphysics framework: Application to coupled electro-mechanical problems. Comput. Methods Appl. Mech. Eng. 2022, 395, 114959. [Google Scholar] [CrossRef]
- Sridhar, S.; Dhanasekaran, D.; Charlyn, G.; Latha, P. Content-Based Movie Recommendation System Using MBO with DBN. Intell. Autom. Soft Comput. 2023, 35, 3241–3257. [Google Scholar] [CrossRef]
- DiPietro, R.; Hager, G.D. Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted Intervention; Academic Press Inc.: Cambridge, MA, USA, 2020; pp. 503–519. [Google Scholar] [CrossRef]
- Reddy, D.K.; Behera, H.S.; Nayak, J.; Vijayakumar, P.; Naik, B.; Singh, P.K. Deep neural network based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities. Trans. Emerg. Telecommun. Technol. 2021, 32, e4121. [Google Scholar] [CrossRef]
- Gupta, T.K.; Raza, K. Optimization of ANN Architecture: A Review on Nature-Inspired Techniques. In Machine Learning in Bio-Signal Analysis and Diagnostic Imaging; Elsevier: Amsterdam, The Netherlands, 2019; pp. 159–182. [Google Scholar] [CrossRef]
- Roy, P.K.; Tripathy, A.K.; Weng, T.H.; Li, K.C. Securing social platform from misinformation using deep learning. Comput. Stand. Interfaces 2023, 84, 103674. [Google Scholar] [CrossRef]
- Cakir, S.; Toklu, S.; Yalcin, N. Rpl attack detection and prevention in the internet of things networks using a gru based deep learning. IEEE Access 2020, 8, 183678–183689. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.W.; Lee, S. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Alatas, B.; Bingöl, H.; Bingol, H. Comparative assessment of light-based intelligent search and optimization algorithms. Light Eng. 2020, 28, 86–93. [Google Scholar] [CrossRef]
- Akyol, S.; Alatas, B. Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 2017, 47, 417–462. [Google Scholar] [CrossRef]
- Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Akhtar, A. Evolution of Ant Colony Optimization Algorithm—A Brief Literature Review. arXiv 2019, arXiv:1908.08007. [Google Scholar] [CrossRef]
- Pinto, P.C.; Runkler, T.A.; Sousa, J.M.C. Wasp Swarm Algorithm for Dynamic MAX-SAT Problems. In Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, Part I (ICANNGA ’07), Warsaw, Poland, 11–14 April 2007; Springer: Berlin/Heidelberg, Germany; pp. 350–357. [Google Scholar] [CrossRef]
- Dhanya, D.; Arivudainambi, D. Dolphin partner optimization based secure and qualified virtual machine for resource allocation with streamline security analysis. Peer Peer Netw. Appl. 2019, 12, 1194–1213. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A. A brief review on antlion optimization algorithm. In Proceedings of the IEEE 2018 International Conference on Advances in Computing, Communication Control and Networking, ICACCCN, Greater Noida, India, 12–13 October 2018; pp. 236–240. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Masadeh, R.; Mahafzah, B.A.; Sharieh, A. Sea Lion Optimization algorithm. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Dehghani, M.; Hubálovský, Š.; Trojovský, P. Cat and mouse based optimizer: A new nature-inspired optimization algorithm. Sensors 2021, 21, 5214. [Google Scholar] [CrossRef] [PubMed]
- Sagu, A.; Gill, N.S.; Gulia, P. Hybrid Deep Neural Network Model for Detection of Security Attacks in IoT Enabled Environment. Int. J. Adv. Comput. Sci.Appl. 2022, 13, 2022. [Google Scholar] [CrossRef]
- Elhosseini, M.A.; el Sehiemy, R.A.; Rashwan, Y.I.; Gao, X.Z. On the performance improvement of elephant herding optimization algorithm. Knowl. Based Syst. 2019, 166, 58–70. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Sagu, A.; Gill, N.S.; Gulia, P.; Chatterjee, J.M.; Priyadarshini, I. A Hybrid Deep Learning Model with Self-Improved Optimization Algorithm for Detection of Security Attacks in IoT Environment. Future Internet 2022, 14, 301. [Google Scholar] [CrossRef]
- Anand, P.; Singh, Y.; Selwal, A.; Singh, P.K.; Felseghi, R.A.; Raboaca, M.S. IoVT: Internet of Vulnerable Things? Threat Architecture, Attack Surfaces, and Vulnerabilities in Internet of Things and Its Applications towards Smart Grids. Energies 2020, 13, 4813. [Google Scholar] [CrossRef]
- Malhotra, P.; Singh, Y.; Anand, P.; Bangotra, D.K.; Singh, P.K.; Hong, W.-C. Internet of Things: Evolution, Concerns and Security Challenges. Sensors 2021, 21, 1809. [Google Scholar] [CrossRef]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Reda, H.T.; Anwar, A.; Mahmood, A. Comprehensive survey and taxonomies of false data injection attacks in smart grids: Attack models, targets, and impacts. Renew. Sustain. Energy Rev. 2022, 163, 112423. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Nasiri, S.; Reinicke, T. Intelligent knowledge-based system to improve injection molding process. J. Ind. Inf. Integr. 2022, 25, 100275. [Google Scholar] [CrossRef]
- Beno, M.M.; Valarmathi, I.R.; Swamy, S.M.; Rajakumar, B.R. Threshold prediction for segmenting tumour from brain MRI scans. Int. J. Imaging Syst. Technol. 2014, 24, 129–137. [Google Scholar] [CrossRef]
- Mohan, Y.; Chee, S.S.; Xin DK, P.; Foong, L.P. Artificial Neural Network for Classification of Depressive and Normal in EEG. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016. [Google Scholar]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Lan, T.; Hu, H.; Jiang, C.; Yang, G.; Zhao, Z. A comparative study of decision tree, random forest, and convolutional neural network for spread-F identification. Adv. Space Res. 2020, 65, 2052–2061. [Google Scholar] [CrossRef]
Algorithm | Inspiration | Year | Features | Challenges |
---|---|---|---|---|
ACO [22] | Ant Colony | 2006 | Ability to scale, maintain stability, and adapt to changing circumstances | Parameter initializations through trial-and-error |
WSA [23] | Wasp | 2007 | Excels in solving dynamic SAT problems. | Better heuristics can lead to a more effective local search |
DPO [24] | Dolphin | 2009 | Achieving a significant value in the initial few steps and breaking through local minimum | It can be compared and perhaps combined with others. |
Ant Lion Optimizer (ALO) [25] | Ant Lion | 2015 | The algorithm has few adaptable parameters; therefore, it can solve varied situations. | There are different optimization problems that can be solved in different fields. |
WOA [18] | Whale | 2016 | The algorithm can solve issues with unknown search spaces. | Binary and multi-objective versions are possible. |
SSA [26] | Salpa | 2017 | Among the existing optimization algorithms, methods have merits based on simulations, results, findings, analyses, discussions, and conclusions. | It is recommended to tackle both single- and multi-objective issues in a variety of disciplines. |
Grey Wolf Optimization (GWO) [27] | Wolf | 2019 | The findings demonstrated a significant level of local optima avoidance | The goals of this algorithm need to be multi-objective. |
Sea Lion Optimization (SLnO) [28] | Sea Lion | 2019 | The optimization results are competitive with other metaheuristic methods. | Recommended to simulate the algorithm on the real problem. |
Butterfly Optimization Algorithm (BOA) [29] | Butterfly | 2019 | Simulation findings show that the algorithm performs well compared to competing algorithms. | modifying BOA and analyzing its outcomes after being applied to combinatorial issues would be an intriguing subject to look into. |
Cat and Mouse Based Optimizer (CMBO) [30] | Cat and Mice | 2021 | The performance of the CMBO demonstrated its superiority and more competitiveness in comparison to the other offered algorithms. | It is recommended to test the method with real-world problems when using binary and multi-objective versions of the algorithm. |
Symbols | Description |
---|---|
Sorted Population Matrix | |
Cm | Count of mice |
Cd | Count of cat |
D | Cat Population |
Dj | ith cat |
I | Iteration |
M | Mice population |
r | Random number within [0,1] |
sorted objective function-based vector | |
ith population of sorted population matrix |
Processor | 11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.40GHz 2.42 GHz |
---|---|
Installed RAM | 16.0 GB (15.7 GB usable) |
System type | 64-bit operating system, x64 based processor |
Operating System Edition | Windows 11 Home Single Language |
Model | WOA + Hybrid Classifier | GWO + Hybrid Classifier | SLnO + Hybrid Classifier | NN | SVM | DT | Proposed SAEHO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.842 | 0.833 | 0.837 | 0.838 | 0.844 | 0.836 | 0.905 |
MCC | 0.044 | −0.008 | 0.015 | 0.021 | 0.133 | 0.008 | 0.751 |
Rand Index | 0.917 | 0.912 | 0.915 | 0.915 | 0.918 | 0.914 | 0.977 |
F-Measure | 0.131 | 0.083 | 0.105 | 0.11 | 0.220 | 0.098 | 0.776 |
Model | WOA + Hybrid Classifier | GWO + Hybrid Classifier | SLnO + Hybrid Classifier | NN | SVM | DT | Proposed SAEHO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.835 | 0.838 | 0.838 | 0.825 | 0.837 | 0.825 | 0.908 |
MCC | 0.007 | 0.021 | 0.023 | −0.058 | 0.094 | −0.058 | 0.766 |
Rand Index | 0.914 | 0.915 | 0.915 | 0.908 | 0.914 | 0.908 | 0.978 |
F-Measure | 0.097 | 0.110 | 0.112 | 0.037 | 0.185 | 0.037 | 0.790 |
Model | WOA + Hybrid classifier | GWO + Hybrid Classifier | SLnO + Hybrid Classifier | NN | SVM | DT | Proposed SAEHO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.873 | 0.874 | 0.922 | 0.879 | 0.880 | 0.913 | 0.916 |
MCC | 0.082 | 0.088 | 0.124 | 0.017 | 0.153 | 0.171 | 0.720 |
Rand Index | 0.948 | 0.948 | 0.997 | 0.960 | 0.956 | 0.983 | 0.992 |
F-Measure | 0.168 | 0.173 | 0.211 | 0.111 | 0.242 | 0.252 | 0.750 |
Model | WOA + Hybrid Classifier | GWO + Hybrid Classifier | SLnO + Hybrid Classifier | NN | SVM | DT | Proposed SAEHO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.843 | 0.844 | 0.842 | 0.829 | 0.840 | 0.853 | 0.896 |
MCC | 0.052 | 0.058 | 0.044 | −0.032 | 0.113 | 0.111 | 0.700 |
Rand Index | 0.918 | 0.918 | 0.917 | 0.910 | 0.916 | 0.923 | 0.972 |
F-Measure | 0.138 | 0.143 | 0.131 | 0.061 | 0.202 | 0.192 | 0.730 |
Model | WOA + Hybrid Classifier | GWO + Hybrid Classifier | SLnO + Hybrid Classifier | NN | SVM | DT | Proposed SAEHO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.872 | 0.863 | 0.917 | 0.888 | 0.884 | 0.896 | 0.925 |
MCC | 0.074 | 0.021 | 0.095 | 0.071 | 0.173 | 0.068 | 0.771 |
Rand Index | 0.947 | 0.942 | 0.995 | 0.965 | 0.958 | 0.974 | 0.997 |
F-Measure | 0.161 | 0.113 | 0.185 | 0.160 | 0.260 | 0.158 | 0.796 |
Model | WOA + Hybrid Classifier | GWO + Hybrid Classifier | SLnO + Hybrid Classifier | NN | SVM | DT | Proposed SAEHO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.865 | 0.868 | 0.918 | 0.875 | 0.877 | 0.885 | 0.928 |
MCC | 0.037 | 0.051 | 0.103 | −0.008 | 0.134 | 0.001 | 0.786 |
Rand Index | 0.944 | 0.945 | 0.995 | 0.958 | 0.954 | 0.968 | 0.998 |
F-Measure | 0.127 | 0.140 | 0.192 | 0.087 | 0.225 | 0.097 | 0.810 |
Metric | AO + Hybrid Classifier | ALO + Hybrid Classifier | CMBO + Hybrid Classifier | NN | RNN | GRU | SU-CMO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.799 | 0.815 | 0.606 | 0.818 | 0.588 | 0.501 | 0.848 |
F-measure | 0.758 | 0.799 | 0.362 | 0.831 | 0.692 | 0.550 | 0.840 |
MCC | 0.601 | 0.634 | 0.353 | 0.641 | 0.248 | 0.016 | 0.701 |
Rand index | 0.889 | 0.898 | 0.778 | 0.908 | 0.767 | 0.707 | 0.921 |
Metric | AO + Hybrid Classifier | ALO + Hybrid Classifier | CMBO + Hybrid Classifier | NN | RNN | GRU | SU-CMO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.598 | 0.655 | 0.612 | 0.688 | 0.632 | 0.500 | 0.772 |
F-measure | 0.284 | 0.468 | 0.392 | 0.741 | 0.700 | 0.538 | 0.851 |
MCC | 0.254 | 0.383 | 0.334 | 0.408 | 0.329 | 0.006 | 0.551 |
Rand index | 0.756 | 0.801 | 0.791 | 0.829 | 0.795 | 0.702 | 0.878 |
Metric | AO + Hybrid Classifier | ALO + Hybrid Classifier | CMBO + Hybrid Classifier | NN | RNN | GRU | SU-CMO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.678 | 0.616 | 0.661 | 0.786 | 0.625 | 0.637 | 0.837 |
F-measure | 0.648 | 0.703 | 0.527 | 0.798 | 0.689 | 0.684 | 0.823 |
MCC | 0.361 | 0.294 | 0.402 | 0.573 | 0.279 | 0.291 | 0.681 |
Rand index | 0.823 | 0.785 | 0.816 | 0.886 | 0.790 | 0.798 | 0.915 |
Metric | AO + Hybrid Classifier | ALO + Hybrid Classifier | CMBO + Hybrid Classifier | NN | RNN | GRU | SU-CMO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.567 | 0.812 | 0.761 | 0.790 | 0.692 | 0.662 | 0.817 |
F-measure | 0.681 | 0.814 | 0.774 | 0.786 | 0.727 | 0.641 | 0.806 |
MCC | 0.186 | 0.612 | 0.518 | 0.580 | 0.390 | 0.327 | 0.640 |
Rand index | 0.753 | 0.898 | 0.869 | 0.891 | 0.833 | 0.813 | 0.904 |
Metric | AO + Hybrid Classifier | ALO + Hybrid Classifier | CMBO + Hybrid Classifier | NN | RNN | GRU | SU-CMO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.589 | 0.678 | 0.579 | 0.708 | 0.629 | 0.541 | 0.823 |
F-measure | 0.688 | 0.524 | 0.651 | 0.724 | 0.657 | 0.632 | 0.823 |
MCC | 0.220 | 0.406 | 0.187 | 0.419 | 0.258 | 0.091 | 0.681 |
Rand index | 0.760 | 0.816 | 0.766 | 0.841 | 0.791 | 0.735 | 0.915 |
Metric | AO + Hybrid Classifier | ALO + Hybrid Classifier | CMBO + Hybrid Classifier | NN | RNN | GRU | SU-CMO + Hybrid Classifier |
---|---|---|---|---|---|---|---|
Accuracy | 0.791 | 0.675 | 0.595 | 0.767 | 0.638 | 0.680 | 0.844 |
F-measure | 0.771 | 0.542 | 0.326 | 0.787 | 0.674 | 0.686 | 0.841 |
MCC | 0.573 | 0.421 | 0.301 | 0.546 | 0.285 | 0.369 | 0.700 |
Rand index | 0.89 | 0.821 | 0.771 | 0.875 | 0.798 | 0.829 | 0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagu, A.; Gill, N.S.; Gulia, P.; Singh, P.K.; Hong, W.-C. Design of Metaheuristic Optimization Algorithms for Deep Learning Model for Secure IoT Environment. Sustainability 2023, 15, 2204. https://doi.org/10.3390/su15032204
Sagu A, Gill NS, Gulia P, Singh PK, Hong W-C. Design of Metaheuristic Optimization Algorithms for Deep Learning Model for Secure IoT Environment. Sustainability. 2023; 15(3):2204. https://doi.org/10.3390/su15032204
Chicago/Turabian StyleSagu, Amit, Nasib Singh Gill, Preeti Gulia, Pradeep Kumar Singh, and Wei-Chiang Hong. 2023. "Design of Metaheuristic Optimization Algorithms for Deep Learning Model for Secure IoT Environment" Sustainability 15, no. 3: 2204. https://doi.org/10.3390/su15032204
APA StyleSagu, A., Gill, N. S., Gulia, P., Singh, P. K., & Hong, W.-C. (2023). Design of Metaheuristic Optimization Algorithms for Deep Learning Model for Secure IoT Environment. Sustainability, 15(3), 2204. https://doi.org/10.3390/su15032204