Evaluation of the Sustainable Development of Macau, Based on the BP Neural Network
<p>Study area. Source: The authors.</p> "> Figure 2
<p>Structure of the BP neural network. Source: The authors.</p> "> Figure 3
<p>Linear transfer function diagram (<b>left</b>: log sigmoid function prediction result interval (0,1) <b>right</b>: tan sigmoid function prediction result interval (−1,1)).</p> "> Figure 4
<p>Line chart of Macau’s sustainable development score from 2011 to 2018 (ANN result). Source: The authors.</p> "> Figure 5
<p>Economic and ecological environment score year-line chart. Source: The authors.</p> ">
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainable Urban Development
2.2. Evaluation of the Sustainable Development
2.3. Sustainable Development of Macao
3. Methodology
3.1. Research Theory
3.2. Evaluation System
3.3. Transfer Function Type
4. Results
4.1. The Construction of the Sustainable Development Indicator System
4.2. Results and Analysis of the Artificial Neural Network
4.2.1. Standardized Processing of the Original Data
4.2.2. The Construction of the BP Neural Network
4.2.3. Neural Network Model Fitting
4.3. Sustainable Development of Macau
4.4. Correlation Analysis of Macau’s Economic and Ecological Environment Development
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mumford, L. The City History—Its Origins, Its Transformations and Its Prospects, 1st ed.; China Architecture & Building Press: Beijing, China, 2005. [Google Scholar]
- Pukowiec-Kurda, K. The urban ecosystem services index as a new indicator for sustainable urban planning and human well-being in cities. Ecol. Indic. 2022, 144, 109532. [Google Scholar] [CrossRef]
- Rios, F.C.; Panic, S.; Grau, D.; Khanna, V.; Zapitelli, J.; Bilec, M. Exploring circular economies in the built environment from a complex systems perspective: A systematic review and conceptual model at the city scale. Sustain. Cities Soc. 2022, 80, 103411. [Google Scholar] [CrossRef]
- Stoenoiu, C.E. Sustainable development—A path to a better future. Sustainability 2022, 14, 9192. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Cheng, X.; Mu, R.; Zuo, J. Coordinated development of energy, economy and environment subsystems—A case study. Ecol. Indic. 2014, 46, 514–523. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, Z.; Ren, J.; Zhou, Y.; Lin, R.; Bao, S.; Zhang, L.; Lu, S.; Lee, C.K.M.; Liu, J. Navigating Chinese cities to achieve sustainable development goals by 2030. Innovation 2022, 3, 100288. [Google Scholar] [CrossRef]
- Toni, A.; Sirviö, H. Contradictions of spatial governance: Bioeconomy and the management of state space in Finland. Antipode 2019, 51, 395–418. [Google Scholar]
- Ieong, M.U. Macau 20 Years after the Handover: Changes and Challenges under “One Country”, Two Systems, 1st ed.; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Chen, X. Analysis on the path and strategy of Macao’s gambling tourism diversification from Las Vegas. Mark. Econ. Price 2012, 48–51. [Google Scholar] [CrossRef]
- Dong, X. Learning from Las Vegas–Research on the development strategy of Macao casino architecture. Chin. Overseas Archi. 2019, 72–74. [Google Scholar] [CrossRef]
- Mi, F. Pocket Monaco, the “land of local tyrants” on the blue coast. Tour. Overview 2017, 13, 22–29. [Google Scholar]
- Lee, K.W. Las Vegas in Singapore: Violence, Progress and the Crisis of Nationalist Modernity; NUS Press Pte Ltd: Singapore, 2019. [Google Scholar]
- Portes, A.; Armony, A.C. The Global Edge: Miami in the Twenty-First Century; University of California Press: Oakland, CA, USA, 2018. [Google Scholar]
- Teng, Y.P.; Yang, S.; Huang, Y. Research on space optimization of historic blocks on jiangnan from the perspective of place construction. Appl. Math. Nonlinear Sci. 2021, 6, 201–220. [Google Scholar] [CrossRef]
- Zhao, L.; Zha, Y.; Zhuang, Y.; Liang, L. Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions. Eur. J Oper. Res. 2019, 275, 1083–1095. [Google Scholar] [CrossRef]
- Maranghi, S.; Parisi, M.L.; Facchini, A.; Rubino, A.; Kordas, O.; Basosi, R. Integrating urban metabolism and life cycle assessment to analyse urban sustainability. Ecol. Indic. 2020, 112, 106074. [Google Scholar] [CrossRef]
- Voinea, C.L.; Roijakkers, N.; Ooms, W. Be authentic, follow through, and think holistically: Editorial thoughts on the virtuous circle that is sustainable innovation. In Sustainable Innovatio, 1st ed.; Routledge: London, UK; New York, NY, USA, 2021; pp. 3–16. [Google Scholar]
- Almond, R.E.A.; Grooten, M.; Petersen, T. Living Planet Report 2020-Bending the Curve of Biodiversity Loss; World Wildlife Fund: Gland, Switzerland, 2020. [Google Scholar]
- Mumford, L. The City in History: A Powerful Incisive and Influential Look at the Development of the Urban Form Through the Ages; Ni, W.Y., Song, J.L., Eds.; China Architecture & Building Press: Beijing, China, 1989. [Google Scholar]
- Meadows, D.; Randers, J.; Meadows, D. Limits to Growth; The Commercial Press: Beijing, China, 1984. [Google Scholar]
- Zhang, W.M. Study on the Comprehensive Evaluation of Beijing Sustainable Urban Development. Doctoral Thesis, Beijing University of Technology, Beijing, China, 2002. Available online: https://www.ckcest.cn/default/es3/detail/1003/dw_thesis_copy/653226f41fa43d43b3bba3423b2e7407 (accessed on 12 October 2022).
- Li, O. Theoretical obstacles, and institutional arrangements in the process of urbanization. Rev. Eco. Res. 2001, 61, 9–16. [Google Scholar]
- Mander, Ü.; Jagomägi, J.; Külvik, M. Network of compensative areas as an ecological infrastructure of territories. Connectivity in landscape ecology. In Proceedings of the International Association for Landscape Ecology, Munster, Germany, 20 July 1987. [Google Scholar]
- Brian, R. Keeble BSc MBBS MRCGP. The Brundtland report: ‘Our common future’. Md. War 1987, 4, 17–25. [Google Scholar]
- Sheng, M.Z. Study on the Indicator System and Comprehensive Evaluation of Hangzhou Sustainable Urban Development. Master’s Thesis, Zhejiang University, Hangzhou, China, 2002. Available online: https://www.docin.com/p-1440578853.html (accessed on 12 October 2022).
- Yi, N. Sustainable development of cities. Urban. Probl. 1997, 4, 63. [Google Scholar]
- Huang, Y.; Wu, W.; Yang, S. Sustainable development of green building based on intuitionistic fuzzy analytic hierarchy process. Appl. Ecol. Environ. Res. 2019, 17, 1093–1108. [Google Scholar] [CrossRef]
- Campbell, S. Green Cities, Growing Cities, Just Cities?: Urban Planning and the Contradictions of Sustainable Development. J. Am. Plan. Assoc. 1996, 62, 296–312. [Google Scholar] [CrossRef]
- Honachefsky, W.B. Ecologically Based Municipal Land Use Planning, 1st ed.; Routledge: New York, NY, USA, 2000. [Google Scholar]
- Ma, S.J.; Wang, R.S. The social-economic-natural complex ecosystem. Acta Ecol. Sin. 1984, 4, 1–9. [Google Scholar]
- Tursen, H.; Wang, H.; Wang, L.; Peng, Y. Comprehensive evaluation of urban sustainable development. J. China Popul. Resour. Environ. 1997, 2, 46–50. [Google Scholar]
- Liu, S.; Liu, B. Study on the evaluation index system of sustainable development of urban human settlements. Urban Plan. Forum 1995, 5, 35–37. [Google Scholar]
- Xu, X.; Zhang, J. Comprehensive evaluation of Guangzhou’s urban sustainable development. J. Geogr. Sci. 2001, 1, 54–63. [Google Scholar]
- Zeng, J.; Xu, Y.; Chen, S. Review of sustainable development research. JTRD 2015, 12, 242–243. [Google Scholar]
- Boesiger, W.; Girsberger, H. Le Corbusier 1938-1946. In Le Corbusier Complete Works; Niu, Y.F., Cheng, C., Eds.; China Architecture & Building Press: Beijing, China, 2005; Volume 4. [Google Scholar]
- Saarinen, E. City: Its Development, Decline, and Future; Gu, Q.Y., Ed.; China Architecture & Building Press: Beijing, China, 1986. [Google Scholar]
- McHarg, I. Design with Nature; Yin, J.W., Ed.; China Architecture & Building Press: Beijing, China, 1992. [Google Scholar]
- Benedict, M.A.; McMahon, E.T. Green infrastructure: Smart conservation for the 21st century. RRJ 2002, 20, 12–17. [Google Scholar]
- Howard, E. Garden Cities of To-morrow; Jin, J.Y., Ed.; Commercial Press: Beijing, China, 2000. [Google Scholar]
- Bealety, T. Green Urbanism—Learning from European Cities; Island Press: Washington, DC, USA, 2000. [Google Scholar]
- Mendizabal, M.; Heidrich, O.; Feliu, E.; García-Blanco, G.; Mendizabal, A. Stimulating urban transition and transformation to achieve sustainable and resilient cities. Renew. Sustain. Energ. Rev. 2018, 94, 410–418. [Google Scholar] [CrossRef]
- Yu, K.; Li, D.; Yuan, H.; Fu, W.; Qiao, Q.; Wang, S. “Sponge city”: Theory and practice. City Plan. Rev. 2015, 39, 26–36. [Google Scholar]
- Bibri, S.E.; Krogstie, J. ICT of the new wave of computing for sustainable urban forms: Their big data and context-aware augmented typologies and design concepts. Sustain. Cities Soc. 2017, 32, 449–474. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Song, H.; Li, R.; Hao, J. Toward the construction of a circular economy eco-city: An emergy-based sustainability evaluation of Rizhao city in China. Cities Soc. 2021, 71, 102956. [Google Scholar] [CrossRef]
- Yang, D.; Mao, Q.; Long, Y. Towards a Sustainable City: An Interpretation of International Experience—From Concept to Paradigm. URB Plan. Forum 2010, 1, 39–57. [Google Scholar]
- Kostiantyn, N.; Kateryna, K.; Yurii, K.; Pavlo, K.; Cezar, M. World cities in terms of the sustainable development concept. Geogr. Sustain. 2021, 2, 304–311. [Google Scholar]
- Deng, X.; Liang, L.; Wu, F.; Wang, Z.; He, S. A review of the balance of regional development in China from the perspective of development geography. J. Geogr. Sci. 2022, 32, 3–22. [Google Scholar] [CrossRef]
- Han, Z.; Jiao, S.; Zhang, X.; Xie, F.; Ran, J.; Jin, R.; Xu, S. Seeking sustainable development policies at the municipal level based on the triad of city, economy and environment: Evidence from Hunan province, China. J. Environ. Manag. 2021, 290, 112554. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Q.; Deng, X. Study on the strategic planning of green building development in China. Constr. Sci. Tech. 2008, 6, 20–22. [Google Scholar]
- Feleki, E.; Vlachokostas, C.; Moussiopoulos, N. Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustain. Cities Soc. 2018, 43, 563–577. [Google Scholar] [CrossRef]
- Tiwari, G.; Chauhan, S.S.; Varma, R. Challenges of localizing sustainable development goals in small cities: Research to action. IATSS Res. 2021, 45, 3–11. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, Y.; Li, J. Review of international trends in urban sustainable development research. Econ. Geogr. 2016, 36, 15. [Google Scholar]
- China Environmental Science Press. China’s Agenda 21: White Paper on China’s Population, Environment and Development in the 21st Century; China Environmental Science Press: Beijing, China, 1994. [Google Scholar]
- United Nations Division for Sustainable Development. Indicators of Sustainable Development: Guidelines and Methodology; United Nations: New York, NY, USA, 1995. [Google Scholar]
- Stuart, L. Transforming our world: The 2030 agenda for sustainable development A/RES/70/1: Theme: Statement, ‘Do not leave indigenous Australians behind’. In Proceedings of the Session of the Permanent Forum of Indigenous Issues (PFII): Tenth Anniversary of the United Nations Declaration on the Rights of Indigenous Peoples: Measures taken to implement the Declaration, New York, NY, USA, 24 April–5 May 2017. [Google Scholar]
- Hassani, H.; Huang, X.; MacFeely, S.; Entezarian, M.R. Big data and the United Nations sustainable development goals (UN SDGs) at a glance. Big Data Cogn. Comput. 2021, 5, 28. [Google Scholar] [CrossRef]
- Biekša, K.; Valiulė, V.; Šimanskienė, L.; Silvestri, R. Assessment of sustainable economic development in the EU countries with reference to the SDGs and environmental footprint indices. Sustainability 2022, 14, 11265. [Google Scholar] [CrossRef]
- Lafortune, G.; Zoeteman, K.; Fuller, G.; Mulder, R.; Dagevos, J.; Schmidt-Traub, G. The 2019 SDG Index and Dashboards Report forEuropean Cities (Prototype Version); Sustainable Development Solutions Network: New York, NY, USA; The Brabant Center forSustainable Development (Telos): Tilburg, The Netherlands, 2019. [Google Scholar]
- Singh, H.P.; Singh, A.; Alam, F.; Agrawal, V. Impact of sustainable development goals on economic growth in Saudi Arabia: Role of education and training. Sustainability 2022, 14, 14119. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Zhang, J. “Classification-coordination-collaboration” is the global path to accelerate the realization of SDGs. China Sustain. Trib. 2019, Z2, 21–22. [Google Scholar]
- Wang, T.; Zhang, J.; Liu, B. Study on evaluation index system of national sustainable development agenda innovation demonstration area. Chin. J. Popul. Resour. Environ. 2020, 30, 17–26. [Google Scholar]
- Wang, P.; Gao, F.; Huang, C. Research on the progress of SDGs oriented urban sustainable development evaluation index system. Rem. Sen. Tech. Appl. 2018, 33, 784–792. [Google Scholar]
- Peng, M.F. A brief analysis of the green development path of the Guangdong-Hong Kong-Macao Greater Bay Area. J. Nanjing Party Inst. CPC. 2019, 2, 85–91. [Google Scholar]
- Dai, A. Macao’s GDP trap and new dynamic mechanism-thoughts on the establishment of Macao’s green accounting system. Peo. Trib. 2011, 17, 244–245. [Google Scholar]
- Wu, J.; Yan, Y. The economic characteristics and sustainable development of the “Macao Model” after the return. J. Ecol. Geogr. 2014, 34, 1–7. [Google Scholar]
- Chen, P.; Huang, J. Macao’s resilient city construction. Glo. Cities Res. 2021, 2, 148–158. [Google Scholar]
- Wu, M.; Wu, J.; Zang, C. A comprehensive evaluation of the eco-carrying capacity and green economy in the Guangdong-Hong Kong-Macao Greater Bay Area, China. J. Clean. Prod. 2021, 281, 124945. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Wang, H. Assessing ecological carrying capacity in the Guangdong-Hong Kong-Macao Greater Bay Area based on a three-dimensional ecological footprint model. Sustainability 2020, 12, 9705. [Google Scholar] [CrossRef]
- Shao, C.; Chen, S.; Gao, J.; He, Y.; Zhou, H. Design of China’s sustainable development evaluation index system based on SDGs. Chin. J. Popul. Resour. Environ. 2021, 31, 1–12. [Google Scholar]
- Dou, Z.; Sun, Y.; Wang, T.; Wan, H.; Fan, S. Exploring regional advanced manufacturing and its driving factors: A case study of the Guangdong–Hong Kong–Macau Greater Bay Area. Int. J. Environ. Res. Public Health 2021, 18, 5800. [Google Scholar] [CrossRef]
- Zhou, F.; Jin, L.; Dong, J. Review of convolutional neural network. Chin. J. Comput. 2017, 40, 1229–1251. [Google Scholar]
- Qiu, X. Neural Network and Deep Learning; China Machine Press: Beijing, China, 2020. [Google Scholar]
- Yu, J.; Zhang, J.; Wu, J.; Wang, X. Research on Evaluation and Strategy on Sustainable Supply of Key Mineral Resources, 1st ed.; Economic Daily Press: Beijing, China, 2015. [Google Scholar]
- Ruan, X.; Liu, l.; Zhang, Y.; Dai, Y. New Progress of Blind Processing Technology in Modern Wireless Communication Systems: Based on Intelligent Algorithms; Fudan University Press: Shanghai, China, 2015. [Google Scholar]
- Heydari, A.; Keynia, F.; Pour, S. Machinery cost prediction based on a new neural network method. JBASR 2013, 3, 484–491. [Google Scholar]
- Wen, X. The Application of MATLAB Neural Network; National Defence Industry Press: Beijing, China, 2015. [Google Scholar]
- Government of Macau Special Administrative Region Statistics and Census Service. Macau Statistical Yearbook: 2011–2018; Government of Macau Special Administrative Region Statistics and Census Service: Macau, China, 2007.
- Government of Macau Special Administrative Region Statistics and Census Service. Macau Environmental Statistics: 2011–2018; Government of Macau Special Administrative Region Statistics and Census Service: Macau, China, 2007.
- Chen, Z.N.; Yan, X.P.; Xu, H.Y. Comparative analysis of sustainable development evaluation of Hong Kang-Macau-Pearl River delta and Yangtze River Delta. CSAS 2007, 13, 2. [Google Scholar]
- Chen, Z.Y. Analysis of Macau’s sustainable development-taking the index system as the path. Administration 2010, 23, 47–68. [Google Scholar]
- Li, W.; Yi, P. Assessment of city sustainability–Coupling coordinated development among economy, society and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Liu, L.; Jin, S.F. Study on sustainable countermeasures in China—Using foreign experience for reference. Spec. Zone Econ. 2006, 1, 240–242. [Google Scholar]
- Pallemaerts, M.; Azmanova, A. The European Union and Sustainable Development: Internal and External Dimensions; Brussels University Press: Brussels, Belgium, 2006; p. 24. [Google Scholar]
- Andrew, T. Urban Regeneration in the UK; Routledge: London, UK; New York, NY, USA, 2020. [Google Scholar]
- Berg, A.; Antikainen, R.; Hartikainen, E.; Kauppi, S.; Kautto, P.; Lazarevic, D.; Piesik, S.; Saikku, L. Circular economy for sustainable development. In Reports of the Finnish Environment Institute; Finnish Environment Institute: Helsinki, Finland, 2018. [Google Scholar]
- Profiroiu, M.C.; Radulescu, C.V.; Burlacu, S.; Guţu, C. Changes and Trends in the Development of the World Economy. In Proceedings of the Competitivitatea Si Inovarea în Economia Cunoaşterii, Chisinau, Moldova, 25–26 September 2020. [Google Scholar]
- Teng, Y.P.; Yang, S.; Huang, Y. Structural features of the streetscape of Macau across four different spatial scales based on historical maps. PLoS ONE 2021, 16, e0258086. [Google Scholar] [CrossRef]
- Teng, Y.P.; Yang, S.; Huang, Y. Applying Knowledge Graph to Analyze the Historical Landscape Based on CiteSpace. Wirel. Commun. Mob. Comput. 2022, 2022, 3867541. [Google Scholar] [CrossRef]
- Macau SAR Government. The Urban Master Plan of MACAU Special Administrative Region (2020-2040); Bulletin of the Macau Special Administrative Region: Macau, China, 2022.
- Dai, A.N. Macau’s GDP Trap and New Dynamic Mechanism—Thoughts on the Establishment of Macau’s Green Accounting System. CAJ 2011, 17, 244–245. [Google Scholar]
- Ormsbee, S. Land Landscapes: A Guide to Environmental Planning; China Architecture & Building Press: Beijing, China, 1992. [Google Scholar]
Rule of Indicators | Indicator Field | Indicator Layer | |
---|---|---|---|
Sustainable development level | Level of economic development | Economies of scale | GDP |
Annual GDP growth rate | |||
Economic benefits | GDP per capita | ||
GDP per square kilometer | |||
Economic structure | Secondary industry coefficient | ||
Tertiary industry coefficient | |||
Economic outgoing | Per capita flow of foreign direct investment | ||
Import/export as a share of GDP | |||
Level of social development | Population indicator | Natural population growth rate | |
The population density | |||
Quality of life | Number of hospital beds per 10,000 people | ||
Books per 10,000 people | |||
Median job income | |||
Urban infrastructure | Road length per capita | ||
Number of telephone subscribers per 10,000 people | |||
Cargo volume per capita | |||
Social stability and security level | Local unemployment rate | ||
Crime rate | |||
Resource and environmental support levels | Resource conditions | Per capita electricity consumption | |
Per capita water consumption | |||
Ecological environment | Solid waste emissions per capita | ||
Wastewater discharge per capita | |||
Per capita area of public green space | |||
Resource and environmental pressures | Resource | ||
Environmental stress |
The Target Layer | Rule Layer | Indicator Layer | Unit |
---|---|---|---|
A—Macau is acceptable Level of sustainable development | B1—social | C1—Natural growth rate of the population | One over one thousand |
C2—Urban population density | People per square kilometer | ||
C3—Number of hospital beds | Pieces | ||
C4—Books | Number | ||
C5—Median monthly job income | Patacas | ||
C6—Total length of road lanes | km | ||
C7—Per capita living area | square meters | ||
C8—Unemployment | % | ||
C9—Crime growth rate | % | ||
B2—economic | C10—Gross regional product (GDP) | One million patacas | |
C11—GDP growth | % | ||
C12—GDP per capita | patacas | ||
C13—Second industrialization coefficient | % | ||
C14—Third industrialization coefficient | % | ||
C15—Gaming as a share of the GDP | % | ||
C16—Foreign direct investment | One million patacas | ||
C17—Ratio of the total imports and exports of goods and services to the GDP | % | ||
B3—Ecological environment | C18—Water consumption per capita | Liters/day | |
C19—Power consumption | Million kilowatts per hour | ||
C20—Quantity of municipal solid waste disposal | Total (metric tons) | ||
C21—Average daily sewage treatment volume | Thousand cubic meters | ||
C22—Total amount of waste resources recovered | Metric tons (paper + plastic + metal + glass) | ||
C23—Green area per capita | square meters | ||
C24—Ratio of the environmental input to the total public expenditure | % | ||
C25—Good air rate | % |
Evaluation Indicators | Year | |||||||
---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
C1 | 7.3 | 9.6 | 7.9 | 8.7 | 7.9 | 7.5 | 6.8 | 5.9 |
C2 | 18,381 | 18,993 | 19,535 | 20,518 | 21,148 | 21,393 | 20,479 | 20,777 |
C3 | 1222 | 1354 | 1366 | 1421 | 1494 | 1591 | 1596 | 1604 |
C4 | 2,003,949 | 1,946,457 | 2,158,707 | 1,908,109 | 2,094,188 | 2,118,728 | 2,242,195 | 2,222,880 |
C5 | 10,000 | 11,300 | 12,000 | 13,300 | 15,000 | 15,000 | 15,000 | 16,000 |
C6 | 416 | 417.4 | 421.3 | 424.1 | 427 | 427.4 | 427.5 | 448.9 |
C7 | 217 | 218 | 218 | 218 | 216 | 218 | 220 | 221 |
C8 | 2.6 | 2 | 1.8 | 1.7 | 1.8 | 1.9 | 2 | 1.8 |
C9 | 6.9 | 1.4 | 7.3 | 2.4 | −2.6 | 5.4 | −0.7 | 0.5 |
C10 | 293,745 | 343,416 | 413,471 | 443,298 | 368,728 | 358,200 | 404,199 | 440,316 |
C11 | 21.7 | 9.2 | 11.2 | −1.2 | −21.5 | −0.7 | 9.9 | 5.4 |
C12 | 534,734 | 603,495 | 697,502 | 713,514 | 564,635 | 561,858 | 627,625 | 673,481 |
C13 | 6.4 | 6.2 | 3.7 | 5.1 | 7.8 | 6.7 | 5.1 | 4.2 |
C14 | 93.6 | 93.8 | 96.3 | 94.8 | 92.2 | 93.4 | 94.9 | 95.8 |
C15 | 45.4 | 45.9 | 46.1 | 58.5 | 48 | 46.7 | 49.1 | 50.5 |
C16 | 119,263 | 151,278 | 195,770 | 218,867 | 232,447 | 250,564 | 266,729 | 292,831 |
C17 | 58.4 | 13.6 | 23.9 | 7.2 | −26.1 | −12 | 23.9 | 15.6 |
C18 | 351.7 | 353.4 | 353.8 | 359.5 | 359.8 | 367.3 | 371 | 373.3 |
C19 | 3857 | 4205 | 4291 | 4469 | 4781 | 5037 | 5170 | 5319 |
C20 | 329,992 | 365,680 | 396,738 | 457,420 | 495,331 | 502,595 | 510,702 | 522,548 |
C21 | 186 | 203 | 215 | 217 | 193 | 230 | 211 | 223 |
C22 | 542 | 916 | 1330 | 3989.3 | 3920.2 | 3988.4 | 3494.8 | 3608.3 |
C23 | 15.5 | 15 | 14.5 | 14 | 13.5 | 10.9 | 10.8 | 10.6 |
C24 | 1.8 | 1.9 | 0.9 | 1.7 | 2.1 | 2.5 | 2.5 | 2.1 |
C25 | 0.81 | 0.69 | 0.54 | 0.45 | 0.52 | 0.46 | 0.54 | 0.64 |
Evaluation Indicators | Year | |||||||
---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
C1 | 0.622 | 0.000 | 0.459 | 0.243 | 0.459 | 0.568 | 0.757 | 1.000 |
C2 | 1.000 | 0.797 | 0.617 | 0.291 | 0.081 | 0.000 | 0.303 | 0.205 |
C3 | 0.000 | 0.346 | 0.377 | 0.521 | 0.712 | 0.966 | 0.979 | 1.000 |
C4 | 0.287 | 0.115 | 0.750 | 0.000 | 0.557 | 0.630 | 1.000 | 0.942 |
C5 | 0.000 | 0.217 | 0.333 | 0.550 | 0.833 | 0.833 | 0.833 | 1.000 |
C6 | 0.000 | 0.043 | 0.161 | 0.246 | 0.334 | 0.347 | 0.350 | 1.000 |
C7 | 0.200 | 0.400 | 0.400 | 0.400 | 0.000 | 0.400 | 0.800 | 1.000 |
C8 | 0.000 | 0.667 | 0.889 | 1.000 | 0.889 | 0.778 | 0.667 | 0.889 |
C9 | 0.040 | 0.596 | 0.000 | 0.495 | 1.000 | 0.192 | 0.808 | 0.687 |
C10 | 0.000 | 0.332 | 0.801 | 1.000 | 0.501 | 0.431 | 0.739 | 0.980 |
C11 | 1.000 | 0.711 | 0.757 | 0.470 | 0.000 | 0.481 | 0.727 | 0.623 |
C12 | 0.000 | 0.385 | 0.910 | 1.000 | 0.167 | 0.152 | 0.520 | 0.776 |
C13 | 0.659 | 0.610 | 0.000 | 0.341 | 1.000 | 0.732 | 0.341 | 0.122 |
C14 | 0.659 | 0.610 | 0.000 | 0.366 | 1.000 | 0.707 | 0.341 | 0.122 |
C15 | 1.000 | 0.962 | 0.947 | 0.000 | 0.802 | 0.901 | 0.718 | 0.611 |
C16 | 0.000 | 0.184 | 0.441 | 0.574 | 0.652 | 0.756 | 0.850 | 1.000 |
C17 | 1.000 | 0.470 | 0.592 | 0.394 | 0.000 | 0.167 | 0.592 | 0.493 |
C18 | 1.000 | 0.921 | 0.903 | 0.639 | 0.625 | 0.278 | 0.106 | 0.000 |
C19 | 1.000 | 0.762 | 0.703 | 0.581 | 0.368 | 0.193 | 0.102 | 0.000 |
C20 | 1.000 | 0.815 | 0.653 | 0.338 | 0.141 | 0.104 | 0.062 | 0.000 |
C21 | 0.000 | 0.386 | 0.659 | 0.705 | 0.159 | 1.000 | 0.568 | 0.841 |
C22 | 0.000 | 0.108 | 0.229 | 1.000 | 0.980 | 1.000 | 0.857 | 0.889 |
C23 | 1.000 | 0.898 | 0.796 | 0.694 | 0.592 | 0.061 | 0.041 | 0.000 |
C24 | 0.563 | 0.625 | 0.000 | 0.500 | 0.750 | 1.000 | 1.000 | 0.750 |
C25 | 1.000 | 0.672 | 0.252 | 0.000 | 0.198 | 0.046 | 0.260 | 0.534 |
Model Parameters | Number of Neurons in the Input Layer | Number of Neurons in the Output Layer | Number of Hidden Layers | Number of Neurons in the Hidden Layer |
---|---|---|---|---|
Neural Network | 25 | 1 | 1 | 7 |
Indicators | The Serial Number of Neurons | ||||||
---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N4 | N5 | N6 | N7 | |
C1 | 0.040 | 0.042 | 0.018 | 0.026 | 0.002 | 0.092 | 0.065 |
C2 | 0.093 | 0.016 | 0.092 | 0.079 | 0.058 | 0.044 | 0.026 |
C3 | 0.075 | 0.023 | 0.006 | 0.077 | 0.067 | 0.072 | 0.064 |
C4 | 0.042 | 0.039 | 0.082 | 0.032 | 0.081 | 0.079 | 0.085 |
C5 | 0.051 | 0.064 | 0.095 | 0.044 | 0.006 | 0.087 | 0.063 |
C6 | 0.036 | 0.100 | 0.022 | 0.065 | 0.060 | 0.039 | 0.014 |
C7 | 0.003 | 0.042 | 0.018 | 0.073 | 0.037 | 0.084 | 0.073 |
C8 | 0.057 | 0.018 | 0.096 | 0.027 | 0.092 | 0.022 | 0.037 |
C9 | 0.009 | 0.064 | 0.018 | 0.005 | 0.072 | 0.035 | 0.066 |
C10 | 0.038 | 0.063 | 0.002 | 0.091 | 0.080 | 0.075 | 0.081 |
C11 | 0.038 | 0.062 | 0.058 | 0.053 | 0.028 | 0.025 | 0.045 |
C12 | 0.023 | 0.080 | 0.099 | 0.003 | 0.054 | 0.009 | 0.080 |
C13 | 0.099 | 0.007 | 0.094 | 0.002 | 0.068 | 0.078 | 0.053 |
C14 | 0.089 | 0.090 | 0.063 | 0.014 | 0.022 | 0.018 | 0.004 |
C15 | 0.011 | 0.062 | 0.094 | 0.035 | 0.041 | 0.098 | 0.095 |
C16 | 0.068 | 0.099 | 0.077 | 0.034 | 0.066 | 0.024 | 0.030 |
C17 | 0.068 | 0.053 | 0.041 | 0.060 | 0.075 | 0.058 | 0.055 |
C18 | 0.058 | 0.051 | 0.008 | 0.072 | 0.100 | 0.035 | 0.097 |
C19 | 0.035 | 0.089 | 0.045 | 0.041 | 0.022 | 0.013 | 0.031 |
C20 | 0.073 | 0.078 | 0.069 | 0.001 | 0.084 | 0.092 | 0.077 |
C21 | 0.004 | 0.038 | 0.070 | 0.073 | 0.022 | 0.027 | 0.067 |
C22 | 0.048 | 0.062 | 0.024 | 0.018 | 0.083 | 0.077 | 0.093 |
C23 | 0.011 | 0.018 | 0.010 | 0.049 | 0.019 | 0.090 | 0.010 |
C24 | 0.004 | 0.056 | 0.077 | 0.031 | 0.018 | 0.034 | 0.021 |
C25 | 0.051 | 0.091 | 0.063 | 0.010 | 0.039 | 0.005 | 0.050 |
Neuron Number | N1 | N2 | N3 | N4 | N5 | N6 | N7 |
---|---|---|---|---|---|---|---|
weight | 0.093 | 0.092 | 0.071 | 0.062 | 0.034 | 0.094 | 0.012 |
Dimension Layer | Dimension Layer Weight | Indicator Layer | Indicator Layer Weight |
---|---|---|---|
B1—social | 0.334 | C1—Natural growth rate of the population | 0.035 |
C2—Urban population density | 0.049 | ||
C3—Number of hospital beds | 0.042 | ||
C4—Books | 0.046 | ||
C5—Median monthly job income | 0.051 | ||
C6—Total length of road lanes | 0.042 | ||
C7—Per capita living area | 0.035 | ||
C8—Unemployment | 0.037 | ||
C9—Crime growth rate | 0.026 | ||
B2—economic | 0.361 | C10—Gross regional product (GDP) | 0.045 |
C11—GDP growth | 0.035 | ||
C12—GDP per capita | 0.035 | ||
C13—Second industrialization coefficient | 0.047 | ||
C14—Third industrialization coefficient | 0.042 | ||
C15—Gaming as a share of the GDP | 0.047 | ||
C16—Foreign direct investment | 0.048 | ||
C17—Ratio of the total imports and exports of goods and services to the GDP | 0.046 | ||
B3—Ecological environment | 0.305 | C18—Water consumption per capita | 0.040 |
C19—Power consumption | 0.034 | ||
C20—Quantity of municipal solid waste disposal | 0.055 | ||
C21—Average daily sewage treatment volume | 0.030 | ||
C22—Total amount of waste resources recovered | 0.042 | ||
C23—Green area per capita | 0.027 | ||
C24—Ratio of the environmental input to the total public expenditure | 0.030 | ||
C25—Good air rate | 0.036 |
Measurement Indicators | Year | |||||||
---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
C1 | 0.022 | 0.000 | 0.016 | 0.009 | 0.016 | 0.020 | 0.026 | 0.035 |
C2 | 0.049 | 0.039 | 0.030 | 0.014 | 0.004 | 0.000 | 0.015 | 0.010 |
C3 | 0.000 | 0.015 | 0.016 | 0.022 | 0.030 | 0.041 | 0.041 | 0.042 |
C4 | 0.013 | 0.005 | 0.035 | 0.000 | 0.026 | 0.029 | 0.046 | 0.043 |
C5 | 0.000 | 0.011 | 0.017 | 0.028 | 0.043 | 0.043 | 0.043 | 0.051 |
C6 | 0.000 | 0.002 | 0.007 | 0.010 | 0.014 | 0.015 | 0.015 | 0.042 |
C7 | 0.007 | 0.014 | 0.014 | 0.014 | 0.000 | 0.014 | 0.028 | 0.035 |
C8 | 0.000 | 0.025 | 0.033 | 0.037 | 0.033 | 0.029 | 0.025 | 0.033 |
C9 | 0.001 | 0.015 | 0.000 | 0.013 | 0.026 | 0.005 | 0.021 | 0.018 |
C10 | 0.000 | 0.015 | 0.036 | 0.045 | 0.023 | 0.019 | 0.033 | 0.044 |
C11 | 0.035 | 0.025 | 0.026 | 0.016 | 0.000 | 0.017 | 0.025 | 0.022 |
C12 | 0.000 | 0.013 | 0.032 | 0.035 | 0.006 | 0.005 | 0.018 | 0.027 |
C13 | 0.031 | 0.029 | 0.000 | 0.016 | 0.047 | 0.034 | 0.016 | 0.006 |
C14 | 0.028 | 0.026 | 0.000 | 0.015 | 0.042 | 0.030 | 0.014 | 0.005 |
C15 | 0.047 | 0.045 | 0.044 | 0.000 | 0.038 | 0.042 | 0.034 | 0.029 |
C16 | 0.000 | 0.009 | 0.021 | 0.028 | 0.031 | 0.036 | 0.041 | 0.048 |
C17 | 0.046 | 0.022 | 0.027 | 0.018 | 0.000 | 0.008 | 0.027 | 0.023 |
C18 | 0.040 | 0.037 | 0.036 | 0.026 | 0.025 | 0.011 | 0.004 | 0.000 |
C19 | 0.034 | 0.026 | 0.024 | 0.020 | 0.013 | 0.007 | 0.003 | 0.000 |
C20 | 0.055 | 0.045 | 0.036 | 0.019 | 0.008 | 0.006 | 0.003 | 0.000 |
C21 | 0.000 | 0.012 | 0.020 | 0.021 | 0.005 | 0.030 | 0.017 | 0.025 |
C22 | 0.000 | 0.005 | 0.010 | 0.042 | 0.041 | 0.042 | 0.036 | 0.037 |
C23 | 0.027 | 0.024 | 0.021 | 0.019 | 0.016 | 0.002 | 0.001 | 0.000 |
C24 | 0.017 | 0.019 | 0.000 | 0.015 | 0.023 | 0.030 | 0.030 | 0.023 |
C25 | 0.036 | 0.024 | 0.009 | 0.000 | 0.007 | 0.002 | 0.009 | 0.019 |
score | 0.487 | 0.500 | 0.510 | 0.481 | 0.514 | 0.515 | 0.573 | 0.617 |
Dimension 1 | Dimension 2 | r | p |
---|---|---|---|
Economic | Ecological environment | −0.832 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Teng, Y.; Yang, S. Evaluation of the Sustainable Development of Macau, Based on the BP Neural Network. Sustainability 2023, 15, 879. https://doi.org/10.3390/su15010879
Huang Y, Teng Y, Yang S. Evaluation of the Sustainable Development of Macau, Based on the BP Neural Network. Sustainability. 2023; 15(1):879. https://doi.org/10.3390/su15010879
Chicago/Turabian StyleHuang, Yue, Youping Teng, and Shuai Yang. 2023. "Evaluation of the Sustainable Development of Macau, Based on the BP Neural Network" Sustainability 15, no. 1: 879. https://doi.org/10.3390/su15010879
APA StyleHuang, Y., Teng, Y., & Yang, S. (2023). Evaluation of the Sustainable Development of Macau, Based on the BP Neural Network. Sustainability, 15(1), 879. https://doi.org/10.3390/su15010879