Annual Mangrove Vegetation Cover Changes (2014–2020) in Indian Sundarbans National Park Using Landsat 8 and Google Earth Engine
<p>Geographical location of the Sundarbans across India and Bangladesh and the study area (dark color). This study uses part of the Indian Sundarbans that is subjected to cyclonic activities.</p> "> Figure 2
<p>Mean NDVI maps of the study area for each year of the study period.</p> "> Figure 3
<p>Results of statistical analysis (parameter: minimum, maximum, mean, and standard deviation) of the NDVI calculation for each year of the study period in the whole study area.</p> "> Figure 4
<p>NDVI maps of the study area for each year of the study period (visually enhanced to show changes more clearly).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Sets and Sources
2.3. Image Analysis and Interpretation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef] [Green Version]
- Awty-Carroll, K.; Bunting, P.; Hardy, A.; Bell, G. Using Continuous Change Detection and Classification of Landsat Data to Investigate Long-Term Mangrove Dynamics in the Sundarbans Region. Remote Sens. 2019, 11, 2833. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.K.; Kumar, L.; Roy, C. Mapping Long-Term Changes in Mangrove Species Composition and Distribution in the Sundarbans. Forests 2016, 7, 305. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Y.S.; Mukul, S.A. Publication performance and trends in mangrove forest: A bibliometric analysis. Sustainability 2021, 13, 12532. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Chamberlain, D.A.; Phinn, S.R.; Possingham, H.P. Mangrove Forest Cover and Phenology with Landsat Dense Time Series in Central Queensland, Australia. Remote Sens. 2021, 13, 3032. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Global Change Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Biswas, P.L.; Biswas, S.R. Mangrove Forests: Ecology, Management, and Threats. In Life on Land, Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2019; pp. 635–648. [Google Scholar] [CrossRef]
- Spalding, M.D.; Leal, M. (Eds.) The State of the World’s Mangroves; Global Mangrove Alliance: Arlington County, VA, USA, 2021. [Google Scholar]
- Mukul, S.A.; Alamgir, M.; Sohel, M.S.I.; Pert, P.L.; Turton, S.M.; Herbohn, J.; Khan, M.S.I.; Ali Reza, A.H.M.; Munim, S.A.; Laurance, W.F. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 2019, 663, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Mukul, S.A.; Huq, S.; Herbohn, J.; Seddon, N.; Laurance, W.F. Saving the Sundarbans from development. Science 2020, 368, 1198. [Google Scholar] [CrossRef]
- Danda, A.A.; Sriskanthan, G.; Ghosh, A.; Bandyopadhyay, J.; Hazra, S. Indian Sundarbans Delta: A Vision; World Wide Fund (WWF) for Nature-India: New Delhi, India, 2011. [Google Scholar]
- Bhargava, R.; Friess, D.A. Previous shoreline dynamics determine future susceptibility to cyclone damage in the Sundarbans mangrove forest. Front. Mar. Sci. 2022, 9, 814577. [Google Scholar] [CrossRef]
- Halder, N.K.; Merchant, A.; Misbahuzzaman, K.; Wagner, S.; Mukul, S.A. Why some trees are more vulnerable during catastrophic cyclone events in the Sundarbans mangrove forest of Bangladesh? For. Ecol. Manag. 2021, 490, 119117. [Google Scholar] [CrossRef]
- Azad, M.S.; Kamruzzaman, M.; Osawa, A. The influences of cyclone on abundance, species diversity and floristic composition in mangrove ecosystem in the Sundarbans, Bangladesh. Regional Stud. Mar. Sci. 2019, 28, 100621. [Google Scholar] [CrossRef]
- Ward, R.D.; Friess, D.A.; Day, R.H.; MacKenzie, R.A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sust. 2016, 2, e01211. [Google Scholar] [CrossRef] [Green Version]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ahmed, M.R.; Zhang, Q.; Li, Y.; Li, Y. Monitoring of 35-Year Mangrove Wetland Change Dynamics and Agents in the Sundarbans Using Temporal Consistency Checking. Remote Sens 2023, 15, 625. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; MOORE, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Google Earth Engine. Earth Engine Catalog. USGS Landsat 8 Level 2, Collection 1, Tier 1. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2#description (accessed on 29 September 2021).
- United States Geological Survey. Landsat Collection 1 Surface Reflectance. 2021. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-1-surface-reflectance (accessed on 22 September 2021).
- United States Geological Survey. Landsat Missions. Landsat 8. 2021. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 30 September 2021).
- United States Geological Survey. Landsat Normalized Difference Vegetation Index. 2021. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-normalized-difference-vegetation-index?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 20 September 2021).
- United States Geological Survey. NDVI, the Foundation for Remote Sensing Phenology. 2021. Available online: https://www.usgs.gov/core-science-systems/eros/phenology/science/ndvi-foundation-remote-sensing-phenology?qt-science_center_objects=0#qt-science_center_objects (accessed on 23 September 2021).
- Macarof, P.; Statescu, F. Comparison of NDBI and NDVI as Indicators of Surface Urban Heat Island Effect in Landsat 8 Imagery: A Case Study of Iasi. Present Environ. Sust. Dev. 2017, 11, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Dutta, D.; Das, P.K.; Paul, S.; Sharma, J.R.; Dadhwal, V.K. Assessment of ecological disturbance in the mangrove forest of Sundarbans caused by cyclones using MODIS time-series data (2001–2011). Nat. Hazards 2015, 79, 775–790. [Google Scholar] [CrossRef]
- Small, C.; Sousa, D. Spatiotemporal Characterization of Mangrove Phenology and Disturbance Response: The Bangladesh Sundarban. Remote Sens. 2019, 11, 2063. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsch, G.; Mukul, S.A.; Srivastava, S.K. Annual Mangrove Vegetation Cover Changes (2014–2020) in Indian Sundarbans National Park Using Landsat 8 and Google Earth Engine. Sustainability 2023, 15, 5592. https://doi.org/10.3390/su15065592
Karsch G, Mukul SA, Srivastava SK. Annual Mangrove Vegetation Cover Changes (2014–2020) in Indian Sundarbans National Park Using Landsat 8 and Google Earth Engine. Sustainability. 2023; 15(6):5592. https://doi.org/10.3390/su15065592
Chicago/Turabian StyleKarsch, Gwendolyn, Sharif A. Mukul, and Sanjeev Kumar Srivastava. 2023. "Annual Mangrove Vegetation Cover Changes (2014–2020) in Indian Sundarbans National Park Using Landsat 8 and Google Earth Engine" Sustainability 15, no. 6: 5592. https://doi.org/10.3390/su15065592
APA StyleKarsch, G., Mukul, S. A., & Srivastava, S. K. (2023). Annual Mangrove Vegetation Cover Changes (2014–2020) in Indian Sundarbans National Park Using Landsat 8 and Google Earth Engine. Sustainability, 15(6), 5592. https://doi.org/10.3390/su15065592