A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning
<p>The annual change trend of global active power.</p> "> Figure 2
<p>The global active power in June 2008.</p> "> Figure 3
<p>The schematic diagram of sliding window.</p> "> Figure 4
<p>Hybrid forecasting framework of the household electric power.</p> "> Figure 5
<p>The process of one-dimensional convolution and pooling.</p> "> Figure 6
<p>The architecture of LSTM unit.</p> "> Figure 7
<p>The framework of LSC–CNN–LSTM model.</p> "> Figure 8
<p>The complete data in January 2010.</p> "> Figure 9
<p>The division of dataset.</p> "> Figure 10
<p>MSE of training set after normalization.</p> "> Figure 11
<p>Three-day power consumption prediction of different models.</p> "> Figure 12
<p>Three-day power consumption prediction under different models after LSC. (<b>a</b>) Cluster 1, (<b>b</b>) Cluster 2 and (<b>c</b>) Cluster 3.</p> "> Figure 12 Cont.
<p>Three-day power consumption prediction under different models after LSC. (<b>a</b>) Cluster 1, (<b>b</b>) Cluster 2 and (<b>c</b>) Cluster 3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Data Preprocessing
2.2.1. Matrix Completion
2.2.2. Data Normalization
2.2.3. Samples Generation
2.3. Construction of the Hybrid Model
3. A Deep Learning Framework by Combining LSC, CNN and LSTM
3.1. Landmark-Based Spectral Clustering
Algorithm 1 LSC |
input: : samples set, : number of clusters, : number of landmarks. |
output: clusters after the clustering process. |
1. Generate landmarks using k-means clustering or a random selection from . |
2. Construct the sparse affinity matrix between data points and landmarks according to Equation (8) and normalize it by . |
3. Calculate the first top eigenvectors of matrix and form a matrix by stacking them column by column. |
4. Compute matrix through Equation (11). |
5. Regard each row of matrix as a new data point and cluster them with k-means clustering or other algorithms to obtain the final result. |
3.2. Bootstrap Aggregating
3.3. Convolutional Neural Network
3.4. Long Short-Term Memory
3.5. Integration of LSC, CNN and LSTM
4. Results and Discussion
4.1. Experimental Preparation and Settings
4.2. Results Comparison without Clustering
4.3. Results Comparison with Clustering
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nesticò, A.; Maselli, G. Declining discount rate estimate in the long-term economic evaluation of environmental projects. J. Environ. Account. Manag. 2020, 8, 93–110. [Google Scholar] [CrossRef]
- AlKhars, M.; Miah, F.; Qudrat-Ullah, H.; Kayal, A. A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries. Sustainability 2020, 12, 3845. [Google Scholar] [CrossRef]
- Son, N.; Yang, S.; Na, J. Deep neural network and long short-term memory for electric power load forecasting. Appl. Sci. 2020, 10, 6489. [Google Scholar] [CrossRef]
- Lin, Y.; Luo, H.; Wang, D.; Guo, H.; Zhu, K. An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting. Energies 2017, 10, 1186. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting-A novel pooling deep RNN. IEEE Trans. Smart Grid 2018, 9, 5271–5280. [Google Scholar] [CrossRef]
- Cai, M.; Pipattanasomporn, M.; Rahman, S. Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Appl. Energy 2019, 236, 1078–1088. [Google Scholar] [CrossRef]
- Liu, H. The forecast of household power load based on genetic algorithm optimizing BP neural network. J. Phys. Conf. Ser. 2021, 1871, 12110. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Li, D.; Tan, Z.; Zhou, J. Short term electricity load forecasting using a hybrid model. Energy 2018, 158, 774–781. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Z.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.; Baik, S. A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 2020, 8, 143759–143768. [Google Scholar] [CrossRef]
- Barman, M.; Choudhury, N. Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept. Energy 2019, 174, 886–896. [Google Scholar] [CrossRef]
- Jin, Y.; Guo, H.; Wang, J.; Song, A. A hybrid system based on LSTM for short-term power load forecasting. Energies 2020, 13, 6241. [Google Scholar] [CrossRef]
- Alhussein, M.; Aurangzeb, K.; Haider, S. Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 2020, 8, 180544–180557. [Google Scholar] [CrossRef]
- Khan, Z.; Hussain, T.; Ullah, A.; Rho, S.; Lee, M.; Baik, S. Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework. Sensors 2020, 20, 1399. [Google Scholar] [CrossRef] [Green Version]
- Jogunola, O.; Adebisi, B.; Hoang, K.; Tsado, Y.; Popoola, S.; Hammoudeh, M.; Nawaz, R. CBLSTM-AE: A hybrid deep learning framework for predicting energy consumption. Energies 2022, 15, 810. [Google Scholar] [CrossRef]
- Matrenin, P.; Safaraliev, M.; Dmitriev, S.; Kokin, S.; Ghulomzoda, A.; Mitrofanov, S. Medium-term load forecasting in isolated power systems based on ensemble machine learning models. Energy Rep. 2021, 8, 612–618. [Google Scholar] [CrossRef]
- Pirbazari, A.; Sharma, E.; Chakravorty, A.; Elmenreich, W.; Rong, C. An ensemble approach for multi-step ahead energy forecasting of household communities. IEEE Access 2021, 9, 36218–36240. [Google Scholar] [CrossRef]
- Han, L.; Peng, Y.; Li, Y.; Yong, B.; Zhou, Q.; Shu, L. Enhanced deep networks for short-term and medium-term load forecasting. IEEE Access 2019, 7, 4045–4055. [Google Scholar] [CrossRef]
- Navid, S.; Ameer, N.; Mohammadali, K.; Mazdak, N. Medium-term regional electricity load forecasting through machine learning and deep learning. Designs 2021, 5, 27. [Google Scholar]
- Tan, Z.; Zhang, J.; He, Y.; Zhang, Y.; Xiong, G.; Liu, Y. Short-term load forecasting based on integration of SVR and stacking. IEEE Access 2020, 8, 227719–227728. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Li, H.; Su, L. Hybrid forecasting approach based on GRNN neural network and SVR machine for electricity demand forecasting. Energies 2017, 10, 44. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Tian, J.; Huang, T. Hierarchical parameter optimization based support vector regression for power load forecasting. Sustain. Cities Soc. 2021, 71, 102937. [Google Scholar] [CrossRef]
- Daut, M.; Hassan, M.; Abdullah, H.; Rahman, H.; Abdullah, M.; Hussin, F. Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review. Renew. Sustain. Energy Rev. 2017, 70, 1108–1118. [Google Scholar] [CrossRef]
- Al Mamun, A.; Sohel, M.; Mohammad, N.; Sunny, M.; Dipta, D.; Hossain, E. A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access 2020, 8, 134911–134939. [Google Scholar] [CrossRef]
- Tang, X.; Dai, Y.; Liu, Q.; Dang, X.; Xu, J. Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting. IEEE Access 2019, 7, 160660–160670. [Google Scholar] [CrossRef]
- Heidari, A.; Khovalyg, D. Short-term energy use prediction of solar-assisted water heating system: Application case of combined attention-based LSTM and time-series decomposition. Sol. Energy 2020, 207, 626–639. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.; Jia, Y.; Hill, D.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2019, 10, 841–851. [Google Scholar] [CrossRef]
- Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-term load forecasting with deep residual networks. IEEE Trans. Smart Grid 2019, 10, 3943–3952. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, N.; Chen, X. A short-term residential load forecasting model based on LSTM recurrent neural network considering weather features. Energies 2021, 14, 2737. [Google Scholar] [CrossRef]
- Hou, T.; Fang, R.; Tang, J.; Ge, G.; Yang, D.; Liu, J.; Zhang, W. A novel short-term residential electric load forecasting method based on adaptive load aggregation and deep learning algorithms. Energies 2021, 14, 7820. [Google Scholar] [CrossRef]
- Hora, S.K.; Poongodan, R.; de Prado, R.P.; Wozniak, M.; Divakarachari, P.B. Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Appl. Sci. 2021, 11, 11263. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, Z.; Chen, Y.; Chen, Y. Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting. Energies 2020, 13, 532. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Fang, J.; Xu, Y.; Shi, Q. Application of variational mode decomposition and deep Learning in short-term power load forecasting. J. Phys. Conf. Ser. 2021, 1883, 12128. [Google Scholar] [CrossRef]
- Gul, M.; Urfa, G.; Paul, A.; Moon, J.; Rho, S.; Hwang, E. Mid-term electricity load prediction using CNN and Bi-LSTM. J. Supercomput. 2021, 77, 10942–10958. [Google Scholar] [CrossRef]
- Petrosanu, D.; Pirjan, A. Electricity consumption forecasting based on a bidirectional long-short-term memory artificial neural network. Sustainability 2020, 13, 104. [Google Scholar] [CrossRef]
- Wu, K.; Wu, J.; Feng, L.; Yang, B.; Liang, R.; Yang, S.; Zhao, R. An attention-based CNN-LSTM-BiLSTM model for short-term electric load forecasting in integrated energy system. Int. Trans. Electr. Energy Syst. 2020, 31, e12637. [Google Scholar] [CrossRef]
- Aurangzeb, K.; Alhussein, M.; Javaid, K.; Haider, S. A pyramid-CNN based deep learning model for power load forecasting of similar-profile energy customers based on clustering. IEEE Access 2021, 9, 14992–15003. [Google Scholar] [CrossRef]
- Shi, J.; Yang, L. A climate classification of China through k-nearest-neighbor and sparse subspace representation. J. Clim. 2020, 33, 243–262. [Google Scholar] [CrossRef]
- Bian, H.; Zhong, Y.; Sun, J.; Shi, F. Study on power consumption load forecast based on k-means clustering and FCM-BP model. Energy Rep. 2020, 6, 693–700. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Ding, S.; Zhang, X. Power consumption predicting and anomaly detection based on transformer and k-means. Front. Energy Res. 2021, 9, 779587. [Google Scholar] [CrossRef]
- Han, F.; Pu, T.; Li, M.; Taylor, G. Short-term forecasting of individual residential load based on deep learning and k-means clustering. CSEE J. Power Energy Syst. 2021, 7, 261–269. [Google Scholar]
- Gomez-Omella, M.; Esnaola-Gonzalez, I.; Ferreiro, S.; Sierra, B. K-nearest patterns for electrical demand forecasting in residential and small commercial buildings. Energy Build. 2021, 253, 111396. [Google Scholar] [CrossRef]
- Wang, L.; Shi, J. A comprehensive application of machine learning techniques for short-term solar radiation prediction. Appl. Sci. 2021, 11, 5808. [Google Scholar] [CrossRef]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Cai, D.; Chen, X. Large scale spectral clustering via landmark-based sparse representation. IEEE Trans. Cybern. 2015, 45, 1669–1680. [Google Scholar]
Type | Parameter | Value | Output Size |
---|---|---|---|
Conv1D-1 | Kernels | 32 | 22 × 32 |
Kernel_size | 3 | ||
Activation function | relu | ||
Conv1D-2 | Kernels | 32 | 20 × 32 |
Kernel_size | 3 | ||
Activation function | relu | ||
MaxPooling1D | Pooling_size | 2 | 10 × 32 |
Flatten | - | - | 320 |
RepeatVector | - | - | 1 × 320 |
LSTM | Number of neurons | 50 | 1 × 50 |
Activation function | relu | ||
Return_sequences | True | ||
Dense-1 | Number of neurons | 10 | 1 × 10 |
Activation function | relu | ||
Dense-2 | Number of neurons | 1 | 1 × 1 |
Parameter | Setting |
---|---|
Optimizer | Adam |
Loss function | Mean Square Error (MSE) |
Batch size | 40 |
Number of epochs | 80 |
Model | Cluster 1 | Cluster 2 | Cluster 3 | Average |
---|---|---|---|---|
FFNN | - | - | - | 0.1535 |
CNN | - | - | - | 0.1618 |
LSTM | - | - | - | 0.1564 |
CNN–LSTM | - | - | - | 0.1776 |
k-means–FFNN | 0.1811 | 0.1506 | 0.1852 | 0.1723 |
k-means–CNN | 0.1545 | 0.1472 | 0.1636 | 0.1551 |
k-means–LSTM | 0.1627 | 0.1490 | 0.1651 | 0.1589 |
k-means–CNN–LSTM | 0.0888 | 0.0995 | 0.0806 | 0.0896 |
LSC–FFNN | 0.1294 | 0.1816 | 0.1714 | 0.1608 |
LSC–CNN | 0.1165 | 0.1702 | 0.1589 | 0.1485 |
LSC–LSTM | 0.1223 | 0.1801 | 0.1623 | 0.1549 |
LSC–CNN–LSTM | 0.0392 | 0.1072 | 0.1040 | 0.0835 |
Model | Cluster 1 | Cluster 2 | Cluster 3 | Average |
---|---|---|---|---|
FFNN | - | - | - | 0.1065 |
CNN | - | - | - | 0.1197 |
LSTM | - | - | - | 0.1071 |
CNN–LSTM | - | - | - | 0.1216 |
k-means–FFNN | 0.1254 | 0.1003 | 0.1336 | 0.1198 |
k-means–CNN | 0.1100 | 0.0999 | 0.1206 | 0.1102 |
k-means–LSTM | 0.1126 | 0.1018 | 0.1168 | 0.1104 |
k-means–CNN–LSTM | 0.0513 | 0.0608 | 0.0479 | 0.0533 |
LSC–FFNN | 0.0855 | 0.1321 | 0.1131 | 0.1102 |
LSC–CNN | 0.0773 | 0.1249 | 0.1075 | 0.1032 |
LSC–LSTM | 0.0828 | 0.1272 | 0.1116 | 0.1072 |
LSC–CNN–LSTM | 0.0240 | 0.0625 | 0.0622 | 0.0496 |
Model | Cluster 1 | Cluster 2 | Cluster 3 | Average |
---|---|---|---|---|
FFNN | - | - | - | 0.7406 |
CNN | - | - | - | 0.7190 |
LSTM | - | - | - | 0.7341 |
CNN–LSTM | - | - | - | 0.6646 |
k-means–FFNN | 0.7996 | 0.7536 | 0.7755 | 0.7762 |
k-means–CNN | 0.8609 | 0.7672 | 0.8303 | 0.8195 |
k-means–LSTM | 0.8420 | 0.7627 | 0.8290 | 0.8112 |
k-means–CNN–LSTM | 0.9560 | 0.9008 | 0.9621 | 0.9396 |
LSC–FFNN | 0.7695 | 0.7752 | 0.7842 | 0.7763 |
LSC–CNN | 0.8217 | 0.8092 | 0.8188 | 0.8166 |
LSC–LSTM | 0.8087 | 0.7878 | 0.8140 | 0.8035 |
LSC–CNN–LSTM | 0.9813 | 0.9285 | 0.9304 | 0.9467 |
Model | Cluster 1 | Cluster 2 | Cluster 3 | Average |
---|---|---|---|---|
LSC–FFNN | 24.7004 | 36.1183 | 33.1139 | 31.3109 |
LSC–CNN | 26.4603 | 33.1796 | 27.7059 | 29.1153 |
LSC–LSTM | 28.0363 | 32.0900 | 32.4298 | 30.8520 |
LSC–CNN–LSTM | 7.3222 | 21.3219 | 23.9670 | 17.5370 |
Model | Cluster 1 | Cluster 2 | Cluster 3 | Average |
---|---|---|---|---|
LSC–FFNN | 18.2412 | 27.5652 | 21.3021 | 22.3695 |
LSC–CNN | 16.1984 | 26.1465 | 19.0166 | 20.4538 |
LSC–LSTM | 18.3121 | 23.4432 | 21.4003 | 21.0519 |
LSC–CNN–LSTM | 4.5688 | 12.4394 | 12.2364 | 9.7482 |
Model | Cluster 1 | Cluster 2 | Cluster 3 | Average |
---|---|---|---|---|
LSC–FFNN | 0.8424 | 0.7704 | 0.8610 | 0.8246 |
LSC–CNN | 0.8127 | 0.8043 | 0.9032 | 0.8401 |
LSC–LSTM | 0.7879 | 0.8206 | 0.8645 | 0.8243 |
LSC–CNN–LSTM | 0.9866 | 0.9255 | 0.9342 | 0.9488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Wang, Z. A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning. Sustainability 2022, 14, 9255. https://doi.org/10.3390/su14159255
Shi J, Wang Z. A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning. Sustainability. 2022; 14(15):9255. https://doi.org/10.3390/su14159255
Chicago/Turabian StyleShi, Jiarong, and Zhiteng Wang. 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning" Sustainability 14, no. 15: 9255. https://doi.org/10.3390/su14159255
APA StyleShi, J., & Wang, Z. (2022). A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning. Sustainability, 14(15), 9255. https://doi.org/10.3390/su14159255