Applications of Smart Technology as a Sustainable Strategy in Modern Swine Farming
Abstract
:1. Introduction
2. Importance of Smart Swine Farming
3. Key Technologies Applied in Smart Swine Farming
3.1. Uses of Sensors Technology on Smart Swine Farming
3.2. Smart Technology on Monitoring the Health of Pigs
3.2.1. Pig Cough Monitoring
3.2.2. Temperature Detection
3.3. Smart Technology on Swine Farm Management Practice
3.3.1. Auto Identification of Pigs
3.3.2. Automatic Weight Detection
3.3.3. Remotely Monitoring Behavior (Feeding) and Welfare of Pigs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, S.; Kalwa, U.; Kong, T.; Guo, B.; Gauger, P.; Peters, D.; Yoon, K. Behavioral Monitoring Tool for Pig Farmers: Ear Tag Sensors, Machine Intelligence, and Technology Adoption Roadmap. Animals 2021, 11, 2665. [Google Scholar] [CrossRef]
- Benjamin, M.; Yik, S. Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekagul, A.; Tangcharoensathien, V.; Liverani, M.; Mills, A.; Rushton, J.; Yeung, S. Understanding antibiotic use for pig farming in Thailand: A qualitative study. Antimicrob. Resist. Infect. Control 2021, 10, 3. [Google Scholar] [CrossRef]
- Bailey, D.; Trotter, M.; Tobin, C.; Thomas, M. Opportunities to Apply Precision Livestock Management on Rangelands. Agric. Spat. Anal. Model. 2021, 5, 1–13. [Google Scholar] [CrossRef]
- Hashem, N.M.; Hassanein, E.M.; Hocquette, J.-F.; Gonzalez-Bulnes, A.; Ahmed, F.A.; Attia, Y.A.; Asiry, K.A. Agro-Livestock Farming System Sustainability during the COVID-19 Era: A Cross-Sectional Study on the Role of Information and Communication Technologies. Sustainability 2021, 13, 6521. [Google Scholar] [CrossRef]
- Hocquette, J.J.F.; Capel, C.; David, V.; Guemene, D.; Bidanel, J.; Ponsart, C.; Gastinel, P.; Le Bail, P.; Monget, P.; Mormède, P.; et al. Objectives and applications of phenotyping network set-up for livestock. J. Anim. Sci. 2012, 83, 517–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the Potential of Precision Livestock Farming Technologies to Help Address Farm Animal Welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Neethirajan, S. Recent Advances in Wearable Sensors for Animal Health Management. Sens. Bio-Sensing Resh. 2017, 12, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Mayakrishnan, V.; Kim, T.; Lim, D.; Park, S. Livestock Production in Korea: Recent Trend and Future Prospects of ICT Technology. FFTC Agric. Policy Platf. 2019. Available online: https://ap.fftc.org.tw/article/1616 (accessed on 1 December 2021).
- Racewicz, P.; Ludwiczak, A.; Skrzypczak, E.; Składanowska, B.J.; Biesiada, H.; Nowak, T.; Nowaczewski, S.; Zaborowicz, M.; Stanisz, M.; Ślósarz, P. Welfare Health and Productivity in Commercial Pig Herds. Animals 2021, 11, 1176. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture: Livestock in Balance; FAO: Rome, Italy, 2009; Volume 180, pp. 492–496. [Google Scholar]
- Emadi, M.H.; Rahmanian, M. Commentary on Challenges to Taking a Food Systems Approach within the Food and Agriculture Organization (FAO). In Food Security and Land Use Change under Conditions of Climatic Variability; Springer: Berlin/Heidelberg, Germany, 2020; pp. 19–31. [Google Scholar]
- Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Trendov, N.M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas; FAO: Rome, Italy, 2019; p. 26. [Google Scholar]
- Van der Burg, S.; Bogaardt, M.J.; Wolfert, S. Ethics of Smart Farming: Current Questions and Directions for Responsible Innovation Towards the Future. NJAS Wagening J. Life Sci. 2019, 90, 100289. [Google Scholar] [CrossRef]
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3–4, 100009. [Google Scholar] [CrossRef]
- Micle, D.; Deiac, F.; Olar, A.; Drența, R.F.; Florean, C.; Coman, I.G.; Arion, F.H. Research on Innovative Business Plan. Smart Cattle Farming Using Artificial Intelligent Robotic Process Automation. Agriculture 2021, 11, 430. [Google Scholar] [CrossRef]
- Pan, L.; Xu, M.; Xi, L.; Hao, Y. Research of Livestock Farming IoT System Based on RESTful Web Services. In Proceedings of the 5th International Conference on Computer Science Network Technology, Changchun, China, 10–11 December 2016; pp. 113–116. [Google Scholar]
- Vranken, E.; Berckmans, D. Precision Livestock Farming for Pigs. Anim. Front. 2017, 7, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Lyons, C.; Bruce, J.; Fowler, V.; English, P. A comparison of Productivity and Welfare of Growing Pigs in Four Intensive Systems. Livest. Prod. Sci. 1995, 43, 265–274. [Google Scholar] [CrossRef]
- Long, S.; He, T.; Kim, S.W.; Shang, Q.; Kiros, T.; Mahfuz, S.U.; Wang, C.; Piao, X. Live Yeast or Live Yeast Combined with Zinc Oxide Enhanced Growth Performance, Antioxidative Capacity, Immunoglobulins and Gut Health in Nursery Pigs. Animals 2021, 11, 1626. [Google Scholar] [CrossRef] [PubMed]
- Velarde, A.; Fàbrega, E.; Blanco, P.I.; Dalmau, A. Animal Welfare Towards Sustainability in Pork Meat Production. Meat Sci. 2015, 109, 13–17. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Mun, H.S.; Islam, M.M.; Yoe, H.; Yang, C.J. Monitoring Activity for Recognition of Illness in Experimentally Infected Weaned Piglets Using Received Signal Strength Indication ZigBee-based Wireless Acceleration Sensor. Asian-Austral. J. Anim. Sci. 2016, 29, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.H.; Huang, R.L.; Huo, L.M.; Li, J.X.; Chen, H. Design and Experiment on Monitoring Device for Layers Individual Production Performance Parameters. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–164. [Google Scholar]
- Sahin, C.; Bolat, E.D. Development of Remote Control and Monitoring of Web-based Distributed OPC system. Comput. Stand. Interfaces 2009, 31, 984–993. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal Welfare Management in a Digital World. Animals 2020, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Ariff, M.H.; Ismarani, I.; Shamsuddin, N. RFID Based Systematic Livestock Health Management System. In Proceedings of the 2014 IEEE Conference on Systems Process Control (ICSPC), Kuala Lumpur, Malaysia, 12–14 December 2014; pp. 111–116. [Google Scholar]
- Maselyne, J.; Saeys, W.; De Ketelaere, B.; Mertens, K.; Vangeyte, J.; Hessel, E.F.; Millet, S.; Van Nuffel, A. Validation of a High Frequency Radio Frequency Identification (HF RFID) System for Registering Feeding Patterns of Growing-Finishing Pigs. Comput. Electron. Agric. 2014, 102, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Hristov, H.; Dimitrov, K.; Penev, T. Use of Infrared Thermography to Monitor the Physiological Condition of Dairy Cows. In Proceedings of the 2021 12th National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 27–28 May 2021; pp. 1–4. [Google Scholar]
- Rocha, L.M.; Devillers, N.; Maldague, X.; Kabemba, F.Z.; Fleuret, J.; Guay, F.; Faucitano, L. Validation of Anatomical Sites for the Measurement of Infrared Body Surface Temperature Variation in Response to Handling and Transport. Animals 2019, 9, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racewicz, P.; Sobek, J.; Majewski, M.; Rozanska-Zawieja, J. The Use of Thermal Imaging Measurements in Dairy Cow Herds. Anim. Sci. Genet. 2018, 14, 55–69. [Google Scholar] [CrossRef]
- Berckmans, D. Precision Livestock Farming Technologies for Welfare Management in Intensive Livestock Systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Oh, S.; Lee, J.; Park, D.; Chang, H.-H.; Kim, S. Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems. Sensors 2013, 13, 12929–12942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, S.; Silva, M.; Guarino, M.; Aerts, J.; Berckmans, D. Cough Sound Analysis to Identify Respiratory Infection in Pigs. Comput. Electron. Agric. 2008, 64, 318–325. [Google Scholar] [CrossRef]
- Zeng, Z.; Zeng, F.; Han, X.; Elkhouchlaa, H.; Yu, Q.; Lü, E. Real-Time Monitoring of Environmental Parameters in a Commercial Gestating Sow House Using a ZigBee-Based Wireless Sensor Network. Appl. Sci. 2021, 11, 972. [Google Scholar] [CrossRef]
- Alameer, A.; Kyriazakis, I.; Dalton, H.A.; Miller, A.L.; Bacardit, J. Automatic Recognition of Feeding and Foraging Behaviour in Pigs Using Deep Learning. Biosyst. Eng. 2020, 197, 91–104. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Sturm, B.; Edwards, S.; Jeppsson, K.-H.; Olsson, A.-C.; Müller, S.; Hensel, O. Deep Learning and Machine Vision Approaches for Posture Detection of Individual Pigs. Sensors 2019, 19, 3738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Tuyttens, F.; Berckmans, D. Automatic Monitoring of Pig Locomotion Using Image Analysis. Livest. Sci. 2014, 159, 141–148. [Google Scholar] [CrossRef]
- Riekert, M.; Klein, A.; Adrion, F.; Hoffmann, C.; Gallmann, E. Automatically Detecting Pig Position and Posture by 2D Camera Imaging and Deep Learning. Comput. Electron. Agric. 2020, 174, 105391. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Richter, U.; Hensel, O.; Edwards, S.; Sturm, B. Using Machine Vision for Investigation of Changes in Pig Group Lying Patterns. Comput. Electron. Agric. 2015, 119, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Death, R.B.; Jack, M.; Futro, A.; Talbot, D.; Zhu, Q.; Barclay, D.; Baxter, E.M. Automatic Early Warning of Tail Biting in Pigs: 3D Cameras Can Detect Lowered Tail Posture Before an Outbreak. PLoS ONE 2018, 13, e0194524. [Google Scholar] [CrossRef] [Green Version]
- Pezzuolo, A.; Milani, V.; Zhu, D.; Guo, H.; Guercini, S.; Marinello, F. On-Barn Pig Weight Estimation Based on Body Measurements by Structure-from-Motion (SfM). Sensors 2018, 18, 3603. [Google Scholar] [CrossRef] [Green Version]
- Stavrakakis, S.; Guy, J.H.; Syranidis, I.; Johnson, G.R.; Edwards, S.A. Pre-clinical and Clinical Walking kinematics in Female Breeding Pigs with Lameness: A Nested Case-control Cohort Study. Vet. J. 2015, 205, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Chapa, J.M.; Maschat, K.; Iwersen, M.; Baumgartner, J.; Drillich, M. Accelerometer Systems as Tools for Health and Welfare Assessment in Cattle and Pigs—A review. Behav. Processes 2020, 181, 104262. [Google Scholar] [CrossRef]
- Mungroo, N.; Neethirajan, S. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review. Biosensors 2014, 4, 472–493. [Google Scholar] [CrossRef] [Green Version]
- Sellier, N.; Guettier, E.; Staub, C. A review of Methods to Measure Animal Body Temperature in Precision Farming. Am. J. Agric. Sci. Technol. 2014, 2, 74–99. [Google Scholar] [CrossRef]
- Van Nuffel, A.; Zwertvaegher, I.; Van Weyenberg, S.; Pastell, M.; Thorup, V.M.; Bahr, C.; Sonck, B.; Saeys, W. Lameness Detection in Dairy Cows: Part 2. Use of Sensors to Automatically Register Changes in Locomotion or Behavior. Animals 2015, 5, 861–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sa, J.; Ju, M.; Han, S.; Kim, H.; Chung, Y.; Park, D. Detection of Low-weight Pigs by Using a Top-view Camera. In Proceedings of the Fourth International Conference on Information Science and Cloud Computing (ISCC2015), Guangzhou, China, 18–19 December 2015; p. 24. [Google Scholar]
- Lee, J.; Noh, B.; Jang, S.; Park, D.; Chung, Y.; Chang, H.H. Stress Detection and Classification of Laying Hens by Sound Analysis. Asian-Austral. J. Anim. Sci. 2015, 28, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, T.; Valdes, R.G.; Wang, J. A Wearable Fingernail Chemical Sensing Platform: pH Sensing at Your Fingertips. Talanta 2016, 150, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Rutten, C.; Velthuis, A.; Steeneveld, W.; Hogeveen, H. Can sensor Technology Benefit Mastitis Control. In Proceedings of the British Mastitis Conference (2013), Worcester, UK, 13 November 2013; pp. 23–34. [Google Scholar]
- Mungroo, N.A.; Oliveira, G.; Neethirajan, S. SERS Based Point-of-Care Detection of Food-borne Pathogens. Microch. Acta 2016, 183, 697–707. [Google Scholar] [CrossRef]
- Neethirajan, S.; Weng, X.; Chen, L. Biosensor for Detection of Subclinical Ketosis. U.S. Patent No. 9,316,591, 9 February 2015. [Google Scholar]
- Weng, X.; Chen, L.; Neethirajan, S.; Duffield, T. Development of Quantum Dots-based Biosensor Towards on-farm Detection of Subclinical ketosis. Biosens. Bioelectron. 2015, 72, 140–147. [Google Scholar] [CrossRef]
- Presto, A.M.; Nihlstrand, J.; Neil, M.; Lundeheim, N.; Andersson, H.K.; Wallenbeck, A. Chicory and Red Clover Silage in Diets to Finishing Pigs-influence on Performance, Time Budgets and Social Interactions. Org. Agric. 2019, 9, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.; Jones, D.D.; Eigenberg, R.A. Modeling Feeding Behavior of Swine to Detect Illness. In Proceedings of the 2016 CIGR-AgEng Conference, Aarhus, Denmark, 26–29 June 2016; Volume 10, p. 1271. [Google Scholar]
- Fernandez, J.; Fàbrega, E.; Soler, J.; Tibau, J.; Ruiz, J.L.; Puigvert, X.; Manteca, X. Feeding Strategy in Group-housed Growing Pigs of Four Different Breeds. Appl. Anim. Behaviour Sci. 2011, 134, 109–120. [Google Scholar] [CrossRef]
- Andersen, H.M.L.; Dybkjær, L.; Herskin, M.S. Growing Pigs’ Drinking Behaviour: Number of Visits, Duration, Water Intake and Diurnal Variation. Animal 2014, 8, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Maselyne, J.; Saeys, W.; Van Nuffel, A. Review: Quantifying Animal Feeding Behaviour with a Focus on Pigs. Physio. Behav. 2015, 138, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Neethirajan, S. The role of Sensors, Big Data and Machine Learning in Modern Animal Farming. Sens. Bio-Sensing Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Berckmans, D. General Introduction to Precision Livestock Farming. J. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; He, Y.; Wang, K. Cough Sound Analysis to Assess Air Quality in Commercial Weaner Barns. Comput. Electron. Agric. 2019, 160, 8–13. [Google Scholar] [CrossRef]
- Exadaktylos, V.; Silva, M.; Aerts, J.M.; Taylor, C.J.; Berckmans, D. Real-time Recognition of Sick Pig Cough Sounds. Comput. Electron. Agric. 2008, 63, 207–214. [Google Scholar] [CrossRef]
- Yin, Y.; Tu, D.; Shen, W.; Bao, J. Recognition of Sick Pig Cough Sounds Based on Convolutional Neural Network in Field Situations. Inform. Proc. Agric. 2021, 8, 369–379. [Google Scholar] [CrossRef]
- Berckmans, D.; Hemeryck, M.; Berckmans, D.; Vranken, E.; van Waterschoot, T. Animal sound Talks! Real-time Sound Analysis for Health Monitoring in Livestock. In Proceedings of the International Symposium on Animal Environment and Welfare, Chongqing, China, 23–26 October 2015; pp. 215–222. [Google Scholar]
- Van Hirtum, A.; Berckmans, D. Objective Cough-Sound Recognition as a Biomarker for Aerial Factors. Trans. ASAE 2004, 47, 351–356. [Google Scholar] [CrossRef]
- Hartinger, J.; Külbs, D.; Volkers, P.; Cussler, K. Suitability of Temperature-Sensitive Transponders to Measure Body Temperature During Animal Experiments Required for Regulatory Tests. Altex-Altern. Tierexp. 2003, 20, 65–70. [Google Scholar]
- Costa, N.; Stelletta, C.; Cannizzo, C.; Gianesella, M.; Lo Fiego, P.; Morgante, M. The use of Thermography on the Slaughter-Line for the Assessment of Pork and Raw Ham Quality. Ital. J. Anim. Sci. 2007, 6, 704–706. [Google Scholar] [CrossRef]
- Soerensen, D.D.; Pedersen, L.J. Infrared Skin Temperature Measurements for Monitoring Health in pigs: A review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar] [CrossRef] [Green Version]
- Simoes, V.G.; Lyazrhi, F.; Picard-Hagen, N.; Gayrard, V.; Martineau, G.P.; Waret-Szkuta, A. Variations in the Vulvar Temperature of Sows During Proestrus and Estrus as Determined by Infrared Thermography and its Relation to Ovulation. Theriogenology 2014, 82, 1080–1085. [Google Scholar] [CrossRef]
- Langendijk, P.; van den Brand, H.; Soede, N.M.; Kemp, B. Effect of Boar Contact on Follicular Development and on Estrus Expression After Weaning in Primiparous Sows. Theriogenology 2000, 54, 1295–1303. [Google Scholar] [CrossRef]
- Sykes, D.; Couvillion, J.; Cromiak, A.; Bowers, S.; Schenck, E.; Crenshaw, M. The Use of Digital Infrated Thermal Imaging to Detect Estrus in Gilts. Theriogenology 2012, 78, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Lunstra, D.D.; Coulter, G.H. Relationship Between Scrotal Infrared Temperature Patterns and Natural-Mating Fertility in Beef Bulls. J. Anim. Sci. 1997, 75, 767–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastelic, J.; Coulter, G.; Cook, R. Scrotal Surface, Subcutaneous, Intratesticular and Intraepididymal Temperatures in Bulls. Theriogenology 1995, 44, 147–152. [Google Scholar] [CrossRef]
- Cilulko, J.; Janiszewski, P.; Bogdaszewski, M.; Szczygielska, E. Infrared Thermal Imaging in Studies of Wild Animals. Eur. J. Wildl. Res. 2013, 59, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Hilsberg, S.; Goltenboth, R.; Eulenberger, K. Infrared Thermography of Zoo Animals, First Experience in its Use for Pregnancy Diagnosis. Verh Ber Erkrg Zootiere 1997, 38, 187–190. [Google Scholar]
- HUSE. The Welfare of Animals in the Pig Industry. The Humane Society of the United States (HSUS). WBI Stud. Repos. 2010. Available online: https://www.wellbeingintlstudiesrepository.org/hsus_reps_impacts_on_animals/28/ (accessed on 1 December 2021).
- Botreau, R.; Veissier, I.; Butterworth, A.; Bracke, M.B.M.; Keeling, L.J. Definition of Criteria for Overall Assessment of Animal Welfare. J. Anim. Welf. 2007, 16, 225–228. [Google Scholar]
- Fukatsu, T.; Nanseki, T. Farm Operation Monitoring System with Wearable Sensor Devices Including RFID. In Deploying RFID: Challenges, Solutions, and Open Issues; INTECH Open Access Publisher: London, UK, 2011. [Google Scholar]
- Wurtz, K.; Camerlink, I.; D’Eath, R.B.; Fernández, A.P.; Norton, T.; Steibel, J.; Siegford, J. Recording Behaviour of Indoor-Housed Farm Animals Automatically Using Machine Vision Technology: A systematic review. PLoS ONE 2019, 14, e0226669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, R.; Suh, H.; Kortstee, H. Smart Farming in Pig Production and Greenhouse Horticulture: An Inventory in the Netherlands; Wageningen University & Research: Wageningen, The Netherlands, 2017; pp. 2017–2097. [Google Scholar]
- Brown-Brandi, T.M.; Maselyne, J.; Adrion, F.; Kapun, A.; Hessel, E.; Saeys, W.; Van Nuffel, A.; Gallmann, E. Comparing Three Different Passive RFID Systems for Behaviour Monitoring in Grow-Finish Pigs. In Proceedings of the Precision Livestock Farming ’17, Nantes, France, 12–14 September 2017; pp. 622–629. [Google Scholar]
- Hansen, M.F.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards On-Farm Pig Face Recognition Using Convolutional Neural Networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
- Sales, G.T.; Green, A.R.; Gates, R.S.; Brown-Brandl, T.M.; Eigenberg, R.A. Quantifying Detection Performance of a Passive Low-Frequency RFID System in an Environmental Preference Chamber for Laying Hens. Comput. Electron. Agric. 2015, 114, 261–268. [Google Scholar] [CrossRef]
- Adrion, F.; Kapun, A.; Holland, E.-M.; Staiger, M.; Löb, P.; Gallmann, E. Novel Approach to Determine the Influence of Pig and Cattle Ears on the Performance of Passive UHF-RFID Ear Tags. Comput. Electron. Agric. 2017, 140, 168–179. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic Weight Estimation of Individual Pigs Using Image Analysis. Comput. Electron. Agric. 2014, 107, 38–44. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Winter, P.; Walker, L. Walk-Through Weighing of Pigs Using Machine Vision and an Artificial Neural Network. Biosyst. Engin. 2008, 100, 117–125. [Google Scholar] [CrossRef]
- White, R.P.; Schofield, C.P.; Green, D.M.; Parsons, D.J.; Whittemore, C.T. The Effectiveness of a Visual Image Analysis (VIA) System for Monitoring the Performance of Growing/Finishing Pigs. Anim. Sci. 2004, 78, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Ham, Y.; Ban, T.; Jo, O. Analysis of Growth Performance in Swine Based on Machine Learning. IEEE Access 2019, 7, 161716–161724. [Google Scholar] [CrossRef]
- Shao, B.; Xin, H. A Real-Time Computer Vision Assessment And Control Of Thermal Comfort For Group-Housed Pigs. Comput. Electron. Agric. 2008, 62, 15–21. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Recognition of Feeding Behaviour of Pigs and Determination of Feeding Time of Each Pig by a Video-Based Deep Learning Method. Comput. Electron. Agric. 2020, 176, 105642. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Edwards, S.A.; Sturm, B. Implementation of Machine Vision for Detecting Behaviour of Cattle and Pigs. Livest. Sci. 2017, 202, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jin, L.; Park, D.; Chung, Y. Automatic Recognition of Aggressive Behavior in Pigs Using a Kinect Depth Sensor. Sensors 2016, 16, 631. [Google Scholar] [CrossRef] [Green Version]
- Nasirahmadi, A.; Hensel, O.; Edwards, S.A.; Sturm, B. Automatic Detection of Mounting Behaviours Among Pigs Using Image Analysis. Comput. Electron. Agric. 2016, 124, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S.; Miller, A.L.; Clapp, J.; Plötz, T.; Kyriazakis, I. Early Detection of Health and welfare Compromises Through Automated Detection of Behavioural Changes in Pigs. Vet. J. 2016, 217, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Jun, H.B.; Kim, H.J.; Kim, J.O. Development of Pulse Measurement Method for Health Monitoring of Dairy Cows. J. Korea. Cont. Assoc. 2013, 13, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.; Kim, H.; Lee, H.; Park, D.; Jeon, T.; Chang, H. A Cost-Effective Pigsty Monitoring System Based on a Video Sensor. Trans. Internet Inf. Syst. 2014, 8, 1481–1498. [Google Scholar]
- Khoramshahi, E.; Hietaoja, J.; Valros, A.; Yun, J.; Pastell, M. Real-Time Recognition of Sows in Video: A Supervised Approach. Inf. Proces. Agric. 2014, 1, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kim, S.; Ryu, J.; Ban, T. Fast Detection of Disease in Livestock Based on Deep Learning. J. Korea Inst. Inf. Commun. Eng. 2017, 21, 1009–1015. [Google Scholar]
- Lee, W.; Ryu, J.; Ban, T.; Kim, S.; Choi, H. Prediction of Water Usage in Pig Farm Bbased on Machine Learning. J. Korea Inst. Inf. Commun. Eng. 2017, 21, 1560–1566. [Google Scholar]
- Vukmirovic, D.; Colovic, R.; Rakita, S.; Brlek, T.; Đuragic, O.; Sola-Oriol, D. Importance of Feed Structure (Particle Size) and Feed Form (Mash Vs. Pellets) In Pig Nutrition—A Review. Anim. Feed Sci. Technol. 2017, 233, 133–144. [Google Scholar] [CrossRef]
- Lao, F.; Brown-Brandl, T.; Stinn, J.P.; Liu, K.; Teng, G.; Xin, H. Automatic Recognition of Lactating Sow Behaviors through Depth Image Processing. Comput. Electron. Agric. 2016, 125, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.; Xin, H.; Brown-Brandl, T.M.; Ramirez, B.C. Development and Application of an Image Acquisition System for Characterizing Sow Behaviors in Farrowing Stalls. Comput. Electron. Agric. 2019, 163, 104866. [Google Scholar] [CrossRef]
- Lou, Z.; Hurnik, J.F. Peripartum Sows in Three Farrowing Crates: Posture Patterns and Behavioural Activities. Appl. Anim. Behav. Sci. 1998, 58, 77–86. [Google Scholar] [CrossRef]
- Yang, A.; Huang, H.; Zheng, B.; Li, S.; Gan, H.; Chen, C.; Yang, X.; Xue, Y. An Automatic Recognition Framework for Sow Daily Behaviours Based on Motion and Image Analyses. Biosyst. Engin. 2020, 192, 56–71. [Google Scholar] [CrossRef]
Smart Tool | Uses | Ref. |
---|---|---|
Radio Frequency Identification (RFID) | Identification of pigs, individual animal data, date of birth, mortality, pen number, farm number or group number, etc. | Buller et al. [26]; Ariff et al. [27]; Maselyne et al. [28]. |
Infrared thermal imaging | Temperature of individual pigs or whole herd, muscle injuries, infectious disease, ovulation etc. | Hristov et al. [29]; Rocha et al. [30]; Racewicz et al. [31]. |
Microphone/cough detector/sound detector | Detection of normal or abnormal sound for sickness, coughing sound, heat detection, group behavior of pigs | Berckmans, [32]; Chung et al. [33]; Ferrari et al. [34]. |
ZigBee technology | To detect environmental parameters: temperature, relative humidity, concentrations of carbon dioxide and ammonia in pig house | Zeng et al. [35]; Ahmed et al. [23]. |
Deep learning/image analysis | Auto locomotion, movement pattern, behavior, posture, tail biting, temperature, body weight, etc. | Alameer et al. [36]; Nasirahmadi et al., [37]; Kashiha et al. [38]. |
Two-dimensional (2D) cameras | Individual identification of pigs based on color, pigs’ locomotion, behavior, posture, house environment, etc. | Riekert et al. [39]; Nasirahmadi et al. [40]. |
Three-dimensional (3D) cameras | Feeding time, body weight, posture, lameness, injuries, group behavior, etc. | Death et al. [41]; Pezzuolo et al. [42]; Stavrakakis et al. [43]. |
Accelerometer | Pigs’ movement pattern including standing time, posture, monitoring, and welfare, etc. | Chapa et al. [44]; Benjamin and Yik, [2]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahfuz, S.; Mun, H.-S.; Dilawar, M.A.; Yang, C.-J. Applications of Smart Technology as a Sustainable Strategy in Modern Swine Farming. Sustainability 2022, 14, 2607. https://doi.org/10.3390/su14052607
Mahfuz S, Mun H-S, Dilawar MA, Yang C-J. Applications of Smart Technology as a Sustainable Strategy in Modern Swine Farming. Sustainability. 2022; 14(5):2607. https://doi.org/10.3390/su14052607
Chicago/Turabian StyleMahfuz, Shad, Hong-Seok Mun, Muhammad Ammar Dilawar, and Chul-Ju Yang. 2022. "Applications of Smart Technology as a Sustainable Strategy in Modern Swine Farming" Sustainability 14, no. 5: 2607. https://doi.org/10.3390/su14052607
APA StyleMahfuz, S., Mun, H. -S., Dilawar, M. A., & Yang, C. -J. (2022). Applications of Smart Technology as a Sustainable Strategy in Modern Swine Farming. Sustainability, 14(5), 2607. https://doi.org/10.3390/su14052607