Performance of Push–Pull Technology in Low-Fertility Soils under Conventional and Conservation Agriculture Farming Systems in Malawi
<p>Graphical representation of the four agroecological regions covering the experimental sites in Chitala, Chitedze, and Mbawa research stations.</p> "> Figure 2
<p>Monthly total rainfall (mm) for the study sites in the 2016–2017, 2017–2018, and 2018–2019 growing seasons in Mbawa, Chitedze, and Chitala, Malawi.</p> "> Figure 3
<p>Schematic description of the plot layout. CA: Conservation agriculture; CP: Conventional practice.</p> "> Figure 4
<p>Predictive occurrence of <span class="html-italic">Striga</span> infestation in Malawi.</p> "> Figure 5
<p>Receiver operating characteristic with the area under curve (AUC) graphs of the ensemble model outputs of predicting (<b>A</b>) Silverleaf and (<b>B</b>) Greenleaf <span class="html-italic">Desmodium</span>.</p> "> Figure 6
<p>The relative importance of bioclimatic variables for predicting the climate suitability of (<b>A</b>) Silverleaf and (<b>B</b>) Greenleaf <span class="html-italic">Desmodium</span> based on the jack-knife test.</p> "> Figure 7
<p>Response curves for the selected bioclimatic variables to predict suitable habitats for Silverleaf <span class="html-italic">Desmodium</span> in Malawi. The star (*) means multiplication.</p> "> Figure 8
<p>Response curves for the selected bioclimatic variables to predict suitable habitats for Greenleaf <span class="html-italic">Desmodium</span> in Malawi. The star (*) means multiplication.</p> "> Figure 9
<p>Predicted climate suitability of (<b>A</b>) Silverleaf and (<b>B</b>) Greenleaf <span class="html-italic">Desmodium</span> in Malawi.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Characterisation
2.2. Design, Treatments, and Field Layout
2.3. Land Preparation
2.4. Planting and Crop Management
2.5. Weed Management
2.6. Data Collection
2.6.1. Maize Yield
2.6.2. Striga Infestation and Stemborer Damage
2.6.3. Striga and Desmodium Mapping
2.7. Focus Group Discussion
2.8. Data Analysis
3. Results
3.1. Effect on Grain Yields and Number of Cobs
3.2. Effect of Push–Pull Technology on Grain Yields at Chitedze, Mbawa, and Chitala Research Stations
3.3. Effect of Push–Pull Technology on the Number of Maize Cobs at Chitedze, Mbawa and Chitala Research Stations
3.4. Effect on the Damage Level: Number of Stemborer Exit Holes
3.5. Striga Severity and Number of Plants Affected by Striga
3.6. Effects of Growing Seasons and Treatments on Maize Plant Height (cm) at Chitedze Research Station between the 2016–2017 and 2017–2018 Seasons
3.7. Striga Mapping
3.8. Desmodium Climate Suitability Model
3.9. Focus Group Discussions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thierfelder, C.; Matemba-Mutasa, R.; Bunderson, W.T.; Mutenje, M.; Nyagumbo, I.; Mupangwa, W. Evaluating manual conservation agriculture systems in southern Africa. Agric. Ecosyst. Environ. 2016, 222, 112–124. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Thierfelder, C.; Lambert, D.M. Conservation agriculture systems for Malawian smallholder farmers: Long-term effects on crop productivity, profitability and soil quality. Renew. Agric. Food Syst. 2013, 28, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.R.; Midega, C.A.O.; Bruce, T.J.A.; Hooper, A.M.; Pickett, J.A. Exploiting phytochemicals for developing a “push-pull” crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 2010, 61, 4185–4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefera, T.; Mugo, S.; Mwimali, M.; Anani, B.; Tende, R.; Beyene, Y.; Gichuki, S.; Oikeh, S.O.; Nang’ayo, F.; Okeno, J.; et al. Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya. Crop Prot. 2016, 89, 202–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mloza-Banda, H.; Kabambe, V. Integrated management for Striga control in Malawi. Afr. Crop Sci. J. 1996, 4, 263–273. [Google Scholar]
- Kabambe, V.H.; Resources, N.; Kanampiu, F. Evaluation of the use of herbicide (Imazapyr) and fertilizer application in integrated management of Striga asiatica in maize in Malawi. Afr. J. Agric. Res. 2007, 2, 687–691. [Google Scholar]
- Bouwmeester, H.; Manyong, V.; Mutabazi, K.; Maeda, C.; Omanya, G.; Mignouna, H.; Bokanga, M. Spatial Analysis of Livelihoods of Smallholder Farmers in Striga-Infested Maize-Growing Areas of Eastern and Southern Africa; International Institute of Tropical Agriculture: Ibadan, Nigeria; African Agricultural Technology Foundation (AATF): Nairobi, Kenya, 2009. [Google Scholar]
- Ngwira, A.R.; Aune, J.B.; Thierfelder, C. DSSAT modelling of conservation agriculture maize response to climate change in Malawi. Soil Tillage Res. 2014, 143, 85–94. [Google Scholar] [CrossRef]
- Kumar, R.; Jindal, J. Economic evaluation of biorational and conventional insecticides for the control of maize stem borer Chilo partellus (Swinhoe) in Zea mays. J. Appl. Nat. Sci. 2015, 7, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchère, V.; Alberola, C.; Ménassieu, J. Agronomy for sustainable agriculture. A review. Agron. Sustain. Dev. 2009, 29, 1–6. [Google Scholar] [CrossRef]
- Agboka, K.; Mawufe, A.K.; Tamò, M.; Vidal, S. Effects of plant extracts and oil emulsions on the maize cob borer Mussidia nigrivenella (Lepidoptera: Pyralidae) in laboratory and field experiments. Int. J. Trop. Insect Sci. 2009, 29, 185–194. [Google Scholar] [CrossRef]
- Badji, A.; Otim, M.H.; Kyamanywa, S. Maize resistance to stem borers and storage pests: The need for new genetic and functional genomics approaches in future research. Afr. J. Rural Dev. 2017, 2, 467–479. [Google Scholar]
- Conlong, D.E. Biological control of indigenous African stemborers: What do we know? Int. J. Trop. Insect Sci. 2001, 21, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Belay, D.; Foster, J.E. Efficacies of habitat management techniques in managing maize stem borers in Ethiopia. Crop Prot. 2010, 29, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.R.; Pickett, J.A.; Wadhams, L.; Muyekho, F. Habitat management strategies for the control of cereal stemborers and Striga in maize in Kenya. Int. J. Trop. Insect Sci. 2001, 21, 375–380. [Google Scholar] [CrossRef]
- Dougill, A.J.; Whitfield, S.; Stringer, L.C.; Vincent, K.; Wood, B.T.; Chinseu, E.L.; Steward, P.; Mkwambisi, D.D. Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers. J. Environ. Manag. 2017, 195, 25–34. [Google Scholar] [CrossRef]
- Fisher, M.; Holden, S.T.; Thierfelder, C.; Katengeza, S.P. Awareness and adoption of conservation agriculture in Malawi: What difference can farmer-to-farmer extension make? Int. J. Agric. Sustain. 2018, 16, 310–325. [Google Scholar] [CrossRef]
- Nyagumbo, I.; Mkuhlani, S.; Pisa, C.; Kamalongo, D.; Dias, D.; Mekuria, M. Maize yield effects of conservation agriculture based maize–legume cropping systems in contrasting agro-ecologies of Malawi and Mozambique. Nutr. Cycl. Agroecosys. 2016, 105, 275–290. [Google Scholar] [CrossRef]
- Nyagumbo, I.; Mkuhlani, S.; Mupangwa, W.; Rodriguez, D. Planting date and yield benefits from conservation agriculture practices across Southern Africa. Agric. Syst. 2017, 150, 21–33. [Google Scholar] [CrossRef]
- World Bank. Malawi Economic Monitor June 2019: Charting a New Course; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Midega, C.A.O.; Salifu, D.; Bruce, T.J.; Pittchar, J.; Pickett, J.A.; Khan, Z.R. Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crops Res. 2014, 155, 144–152. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A. Exploiting phytochemicals for developing sustainable crop protection strategies to withstand climate change: Example from Africa. In Advances in Plant Biopesticides; Springer: New Delhi, India, 2014; pp. 35–46. ISBN 9788132220060. [Google Scholar]
- Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Mudereri, B.T.; Abdel-Rahman, E.M.; Dube, T.; Niassy, S.; Khan, Z.; Tonnang, H.E.Z.; Landmann, T. A two-step approach for detecting Striga in a complex agroecological system using Sentinel-2 data. Sci. Total Environ. 2021, 762, 143151. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Pittchar, J.O.; Murage, A.W.; Birkett, M.A.; Bruce, T.J.A.; Pickett, J.A. Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120284. [Google Scholar] [CrossRef] [Green Version]
- Hailu, G.; Niassy, S.; Zeyaur, K.R.; Ochatum, N.; Subramanian, S. Maize–legume intercropping and push-pull for management of fall armyworm, stemborers, and Striga in Uganda. Agron. J. 2018, 110, 2513–2522. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.R.; Pickett, J.A.; Wadhams, L.J.; Hassanali, A.; Midega, C.A.O. Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. Crop Prot. 2006, 25, 989–995. [Google Scholar] [CrossRef]
- Atera, E.A.; Ishii, T.; Onyango, J.C.; Itoh, K.; Azuma, T. Striga infestation in Kenya: Status, distribution and management options. Sustain. Agric. Res. 2013, 2, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Murage, A.W.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Khan, Z.R. Determinants of adoption of climate-smart push-pull technology for enhanced food security through integrated pest management in eastern Africa. Food Secur. 2015, 7, 709–724. [Google Scholar] [CrossRef]
- Mudereri, B.T.; Abdel-Rahman, E.M.; Dube, T.; Landmann, T.; Khan, Z.R.; Kimathi, E.; Owino, R.; Niassy, S. Multi-source spatial data-based invasion risk modeling of Striga (Striga asiatica) in Zimbabwe. GIScience Remote Sens. 2020, 57, 553–571. [Google Scholar] [CrossRef]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant, communications in soil science and plant analysis. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture. Available online: http://www.fao.org/ag/ca/1a.html (accessed on 16 February 2017).
- Nyirenda, N.; Saka, A. Enhancing soil productivity for sustained food production for small-scale farmers in Malawi: A Sasakawa global 2000 and agricultural extension partnership initiative. In Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, 11–15 February 2001; International Maize and Wheat Centre (CIMMYT) and Kenya Agricultural Research Institute (KARI): Nairobi, Kenya, 2001. [Google Scholar]
- Khan, Z.; Pickett, A.; Pittchar, J.; Genga, G.; Ndiege, A.; Nyagol, D. A Primer on Planting and Managing ‘Push-Pull’ Fields for Stemborer and Striga Weed Control in Maize—A Step-by-Step Guide for Farmers and Extension Staff, 3rd ed.; International Centre of Insect Physiology and Ecology: Nairobi, Kenya, 2019; ISBN 9789966063250. [Google Scholar]
- Lark, R.M.; Ligowe, I.S.; Thierfelder, C.; Magwero, N.; Namaona, W.; Njira, K. Longitudinal analysis of a long-term conservation agriculture experiment in Malawi and lessons for future experimental design. Exp. Agric. 2020, 54, 506–527. [Google Scholar] [CrossRef]
- Berner, D.K.; Winslow, M.D.; Awad, A.E.; Cardwell, K.F.; Raj, D.R.M.; Kim, S.K. Striga Research Methods. A Manual, 2nd ed.; Pan-African Striga Control Network; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 1997; pp. 1–80. Available online: https://biblio1.iita.org/bitstream/handle/20.500.12478/3941/U97ManBernerStrigaNothomNodev.pdf?sequence=1 (accessed on 1 September 2021).
- Ampofo, J.K.O. Maize Stalk Borer (Lepidoptera: Pyralidae) Damage and Plant Resistance. Environ. Entomol. 1986, 15, 1124–1129. [Google Scholar] [CrossRef]
- ESRI. What is ArcGIS 9.2. 2006. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjKnpb4o_71AhUdklYBHX6-AFsQFnoECAMQAQ&url=https%3A%2F%2Fwww.canyonco.org%2Fwp-content%2Fuploads%2F2016%2F04%2Fwhat-is-arcgis92.pdf&usg=AOvVaw3OmdujQfs1X-mFg3I39UED (accessed on 1 September 2021).
- Basharat, M.; Shah, H.R.; Hameed, N. Landslide susceptibility mapping using GIS and weighted overlay method: A case study from NW Himalayas, Pakistan. Arab. J. Geosci. 2016, 9, 292. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions; Version 3.4.1; American Museum of Natural History: New York, NY, USA, 2022; Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 11 February 2021).
- Mudereri, B.T.; Kimathi, E.; Chitata, T.; Moshobane, M.C.; Abdel-Rahman, E.M. Landscape-scale biogeographic distribution analysis of the whitefly, Bemisia tabaci (Gennadius, 1889) in Kenya. Int. J. Trop. Insect Sci. 2021, 41, 1585–1599. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 11 February 2021).
- Moshobane, M.C.; Mudereri, B.T.; Mukundamago, M.; Chitata, T. Predicting future distribution patterns of Jatropha gossypiifolia L. in South Africa in response to climate change. S. Afr. J. Bot. 2022, 146, 417–425. [Google Scholar] [CrossRef]
- Chemura, A.; Mudereri, B.T.; Yalew, A.W.; Gornott, C. Climate change and specialty coffee potential in Ethiopia. Sci. Rep. 2021, 11, 8097. [Google Scholar] [CrossRef] [PubMed]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Lobulu, J.; Shimelis, H.; Laing, M.; Mushongi, A.A. Maize production constraints, traits preference and current Striga control options in western Tanzania: Farmers’ consultation and implications for breeding. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 734–746. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Eugène, M.; Bastianelli, D. Silverleaf Desmodium (Desmodium uncinatum). Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. Available online: http://www.feedipedia.org/node/299 (accessed on 3 February 2017).
- Mupangwa, W.; Mutenje, M.; Thierfelder, C.; Nyagumbo, I. Are conservation agriculture (CA) systems productive and profitable options for smallholder farmers in different agro-ecoregions of Zimbabwe? Renew. Agric. Food Syst. 2016, 32, 87–103. [Google Scholar] [CrossRef]
- Ndayisaba, P.C.; Kuyah, S.; Midega, C.A.O.; Mwangi, P.N.; Khan, Z.R. Intercropping Desmodium and maize improves nitrogen and phosphorus availability and performance of maize in Kenya. Field Crops Res. 2021, 263, 108067. [Google Scholar] [CrossRef]
- Njeru, N.K.; Midega, C.A.O.; Muthomi, J.W.; Wagacha, J.M.; Khan, Z.R. Influence of socio-economic and agronomic factors on aflatoxin and fumonisin contamination of maize in western Kenya. Food Sci. Nutr. 2019, 7, 2291–2301. [Google Scholar] [CrossRef]
- Babiker, A.G.T.; Hamdoun, A.M.; Rudwan, A.; Mansi, N.G.; Faki, H.H. Influence of soil moisture on activity and persistence of the strigol analogue GR 24. Weed Res. 1987, 27, 173–178. [Google Scholar] [CrossRef]
- Mashavakure, N.; Mashingaidze, A.B.; Musundire, R.; Gandiwa, E.; Thierfelder, C.; Muposhi, V.K.; Svotwa, E. Influence of tillage, fertiliser regime and weeding frequency on germinable weed seed bank in a subhumid environment in Zimbabwe. S. Afr. J. Plant Soil 2019, 36, 319–327. [Google Scholar] [CrossRef]
- Muthoni, F.; Thierfelder, C.; Mudereri, B.T.; Manda, J.; Bekunda, M.; Hoeschle-Zeledon, I. Machine learning model accurately predict maize grain yields in conservation agriculture systems in Southern Africa. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Hooper, A.M.; Caulfield, J.C.; Hao, B.; Pickett, J.A.; Midega, C.A.O.; Khan, Z.R. Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica. Phytochemistry 2015, 117, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Hassanali, A.; Herren, H.; Khan, Z.R.; Pickett, J.A.; Woodcock, C.M. Integrated pest management: The push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 611–621. [Google Scholar] [CrossRef]
- Khan, Z.R.; Pickett, J.A.; Hassanali, A.; Hooper, A.M.; Midega, C.A.O. Desmodium species and associated biochemical traits for controlling Striga species: Present and future prospects. Weed Res. 2008, 48, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.G.; Pengelly, B.C.; Brown, S.D.; Donnelly, J.L.; Eagles, D.A.; Franco, M.A.; Hanson, J.; Mullen, B.; Partridge, I.; Peters, M.; et al. Tropical Forages: An Interactive Selection Tool; CSIRO, DPI&F(Qld), CIAT and ILRI: Brisbane, Australia, 2005. [Google Scholar]
- Kassie, M.; Stage, J.; Diiro, G.; Muriithi, B.; Muricho, G.; Ledermann, S.T.; Pittchar, J.; Midega, C.; Zeyaur, K. Push–pull farming system in Kenya: Implications for economic and social welfare. Land Use Policy 2018, 77, 186–198. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Menale, K.; Diiro, G.; Muricho, G. Does gender matter in the adoption of push-pull pest management and other sustainable agricultural practices? Evidence from Western Kenya. Food Secur. 2018, 10, 253–272. [Google Scholar] [CrossRef]
Site | Treatments | pH | %OC | %OM | %N | P (μg/g) | K Cmol/Kg | Ca Cmol/Kg | Mg (Cmol/Kg) | % Sand | % Silt | % Clay | Texture |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mbawa | CP sole maize | 5.90 | 0.43 | 0.74 | 0.04 | 31.75 | 1.17 | 0.127 | 3.87 | 76 | 6 | 18 | Sandy Loam |
Mbawa | CA + PP | 5.14 | 0.63 | 1.08 | 0.05 | 29.18 | 1.05 | 0.086 | 4.54 | 74 | 6 | 20 | Sandy Loam/ Sandy Clay Loam |
Chitedze | CP sole maize | 5.86 | 1.00 | 1.72 | 0.09 | 20.83 | 1.05 | 0.101 | 1.96 | 64 | 10 | 26 | Sandy Clay Loam |
Chitedze | CA+ PP | 6.13 | 1.71 | 2.96 | 0.15 | 7.62 | 1.52 | 0.084 | 4.53 | 64 | 8 | 28 | Sandy Clay Loam |
Chitala | PP + CA | 6.01 | 1.69 | 2.87 | 0.16 | 114.08 | 1.64 | 0.124 | 3.26 | 64 | 8 | 28 | Sandy Clay Loam |
Chitala | CP sole maize | 6.43 | 1.29 | 2.22 | 0.11 | 9.51 | 3.41 | 0.086 | 3.58 | 68 | 10 | 22 | Sandy Clay Loam |
Range | 5.5–7.5 | 0.88–2.35 | 1.5–4.0 | 0.09–0.15 | 19.0–25.0 | 0.11–0.40 | 2.0 | 0.2–4.0 |
Growing Seasons | ||||
---|---|---|---|---|
Treatments | 2016–2017 | 2017–2018 | 2018–2019 | Treatments Effect |
Chitedze Research Station | ||||
CA—PP | 2584 c | 2229 c | 3121 b | 2645 |
CA sole maize | 2308 c | 4204 a | 3811 b | 3441 |
CP—PP | 3274 b | 1443 c | 3457 b | 2725 |
CP sole maize | 4275 a | 3173 b | 5260 a | 4236 |
Seasonal effects | 3110 B | 2762 B | 3912 A | |
LSD Seasons (Y): 989.1 * LSD Treatments (T): 856.6 ** LSD T × Y: 1713.2 ns | ||||
Mbawa research station | ||||
CA—PP | 3300 cbd | 1948 a | 3982 ab | 3077 |
CA sole maize | 5616 a | 2071 a | 3395 bc | 3694 |
CP—PP | 4859 da | 3046 a | 4622 a | 4176 |
CP sole maize | 5676 a | 2322 a | 3353 bc | 3784 |
Seasonal effects | 4863 A | 2347 B | 3838 C | |
LSD Seasons (Y): 1007.4 *** LSD Treatments (T): 1163.2 * LSD Y × T: 2014.8 ns | ||||
Chitala research station | ||||
CA—PP | 8379 a | 7794 a | 3299 a | 6491 |
CA sole maize | 8569 a | 6595 ba | 4384 ab | 6516 |
CP—PP | 6697 ba | 7009 a | 3373 a | 5693 |
CP sole maize | 8297 a | 4320 cb | 4135 a | 5584 |
Seasonal effects | 7986 A | 6429 B | 3798 C | |
LSD Seasons (Y): 1221.8 ***, LSD Treatments (T): 1410.8 ns, LSD T × Y: 2343.6 ns |
Growing Seasons | ||||
---|---|---|---|---|
Treatments | 2016–2017 | 2017–2018 | 2018–2019 | Treatments Effect |
Chitedze Research Station | ||||
CA—PP | 32.3 a | 19.7 b | 28.6 b | 26.6 |
CA sole maize | 28.3 a | 32.0 a | 26.3 b | 28.8 |
CP—PP | 41.0 b | 28.7 a | 31.6 b | 33.7 |
CP sole maize | 44.0 b | 32.3 a | 36.3 a | 37.5 |
Seasonal effects | 36.4 A | 28.2 B | 30.1 B | |
LSD Seasons (Y): 5.5 **, LSD Treatments (T): 4.6 **, LSD Y × T: 9.6 ns | ||||
Mbawa Research Station | ||||
CA—PP | 36.3 a | 18.0 c | 22.3 dc | 25.5 |
CA sole maize | 39.3 b | 18.3 c | 21.0 c | 26.2 |
CP—PP | 40.6 a | 30.7 a | 25.3 a | 32.0 |
CP sole maize | 41.3 a | 25.3 b | 17.9 b | 26.7 |
Seasonal effects | 39.4 A | 21.8 C | 21.6 B | |
LSD Seasons (Y): 2.68 ***, LSD Treatments (T): 3.09 *** LSD Y × T: 5.36 * | ||||
Chitala Research Station | ||||
CA—PP | 41.7 a | 67.0 a | 34.7 b | 47.8 |
CA sole maize | 33.0 b | 66.7 a | 34.7 b | 44.8 |
CP—PP | 40.0 a | 64.3 a | 34.3 b | 46.2 |
CP sole maize | 46.7 a | 34.3 b | 41.3 a | 50.3 |
Seasonal effects | 40.3 B | 65.2 A | 36.2 C | |
LSD Seasons (Y): 8.5 ***, LSD Treatments (T): 9.81 * LSD Y × T: 17.0 ns |
Growing Seasons | Growing Seasons | |||||
---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | Treatments Effect | 2016–2017 | 2017–2018 | Treatments Effect | |
Treatments | Number of Stemborer Exit Holes | Season Mean | Stemborer Severity | Season Mean | ||
CA—PP | 3.10 c | 0.73 b | 1.92 | 2.0 a | 1.3 b | 1.7 |
CA sole maize | 3.13 c | 2.25 a | 2.69 | 2.3 ab | 1.7 b | 2.0 |
CP—PP | 3.79 b | 1.01 b | 2.40 | 3.3 c | 3.0 a | 3.2 |
CP sole maize | 4.23 a | 2.20 a | 3.22 | 3.6 c | 2.7 a | 3.1 |
Seasonal effects | 3.56 A | 1.56 B | 2.8 A | 2.2 B | ||
LSD Seasons (Y): 0.307 ***, LSD Treatments (T): 0.409 ***, LSD Y × T: 0.614 ns LSD Seasons (Y): 0.819 ns, LSD Treatments (T): 1.158 **, LSD, Y × T: 1.639 ns |
Growing Seasons | ||||
---|---|---|---|---|
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | |
Treatments | Striga Severity | Number of Affected Plants | ||
CA—PP | 1.0 bc | 1.3 b | 0.67 b | 6.0 d |
CA sole maize | 1.3 b | 1.6 b | 0.12 bc | 8.3 c |
CP—PP | 1.4 b | 3.6 a | 0.68 b | 18.0 b |
CP sole maize | 2.0 a | 3.3 a | 2.67 a | 24.3 a |
Seasonal effects | 1.4 A | 2.5 B | 1.00 A | 14.2 B |
LSD Seasons (Y): 0.569 ***, LSD Treatments (T): 0.605 ** LSD Y × T: 1.138 * | LSD Seasons (Y): 2.635 ***, LSD Treatments (T):0.989 *** LSD Y × T: 5.269 ** |
Growing Seasons | |||
---|---|---|---|
Treatments | 2016–2017 | 2017–2018 | Treatments Effect |
Plant Height (cm) | |||
CA—PP | 154.9 a | 137.2 a | 146.1 |
CA sole maize | 160.7 a | 136.2 a | 148.5 |
CP—PP | 163.2 a | 131.5 a | 147.4 |
CP sole maize | 149.1 b | 112.3 b | 130.7 |
Seasonal effects | 157.0 A | 129.2 B | |
LSD Seasons (Y): 9.21 ***, LSD Treatments (T): 12.23 ** LSD Y × T: 18.35 ns |
With Conservation Agriculture and Push–Pull Technology (CA—PP) | |||||
---|---|---|---|---|---|
District | Ploughing and Planting (Person-Days) | Weeding (Person-Days) | Harvesting (Person-Days) | Threshing (Person-Days) | Yield (kg/ha) |
Lilongwe | 24 | 16 | 12 | 12 | 2400 |
Salima | 56 | 24 | 48 | 14 | 6400 |
Nkhotakota | 50 | 20 | 24 | 18 | 2880 |
Mzimba | 44 | 21 | 42 | 56 | 4000 |
Mean | 44 | 20 | 32 | 25 | 3920 |
Without Conservation Agriculture and Push–Pull Technology (CA—PP) | |||||
Lilongwe | 8 | 12 | 8 | 6 | 1200 |
Salima | 36 | 18 | 32 | 8 | 3600 |
Nkhotakota | 28 | 12 | 18 | 14 | 1920 |
Mzimba | 22 | 12 | 35 | 42 | 3200 |
Mean | 24 | 14 | 23 | 18 | 2480 |
Years | Correlation Coefficient/p Value | pH | OC | OM | N | P | K | Ca | Mg | Clay | Silt | Rainfall |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | R | 0.303 | 0.175 | 0.160 | 0.217 | 0.632 | 0.524 | 0.426 | 0.555 | −0.050 | 0.145 | 0.038 |
p value | 0.338 | 0.587 | 0.619 | 0.498 | 0.028 | 0.080 | 0.167 | 0.061 | 0.877 | 0.654 | 0.462 | |
2018 | R | 0.637 | 0.537 | 0.530 | 0.542 | 0.337 | 0.763 | 0.065 | 0.737 | 0.239 | 0.433 | 0.546 |
p value | 0.026 | 0.072 | 0.076 | 0.069 | 0.283 | 0.004 | 0.842 | 0.006 | 0.454 | 0.160 | 0.290 | |
2019 | R | −0.026 | −0.178 | −0.181 | −0.153 | 0.041 | −0.128 | 0.205 | −0.068 | −0.037 | 0.143 | 0.064 |
p value | 0.937 | 0.580 | 0.574 | 0.635 | 0.899 | 0.692 | 0.523 | 0.834 | 0.909 | 0.657 | 0.750 | |
Combined | R | 0.344 | 0.243 | 0.234 | 0.263 | 0.368 | 0.463 | 0.208 | 0.472 | 0.064 | 0.228 | 0.076 |
p value | 0.040 | 0.154 | 0.169 | 0.121 | 0.027 | 0.004 | 0.223 | 0.004 | 0.712 | 0.181 | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niassy, S.; Agbodzavu, M.K.; Mudereri, B.T.; Kamalongo, D.; Ligowe, I.; Hailu, G.; Kimathi, E.; Jere, Z.; Ochatum, N.; Pittchar, J.; et al. Performance of Push–Pull Technology in Low-Fertility Soils under Conventional and Conservation Agriculture Farming Systems in Malawi. Sustainability 2022, 14, 2162. https://doi.org/10.3390/su14042162
Niassy S, Agbodzavu MK, Mudereri BT, Kamalongo D, Ligowe I, Hailu G, Kimathi E, Jere Z, Ochatum N, Pittchar J, et al. Performance of Push–Pull Technology in Low-Fertility Soils under Conventional and Conservation Agriculture Farming Systems in Malawi. Sustainability. 2022; 14(4):2162. https://doi.org/10.3390/su14042162
Chicago/Turabian StyleNiassy, Saliou, Mawufe Komi Agbodzavu, Bester Tawona Mudereri, Donwell Kamalongo, Ivy Ligowe, Girma Hailu, Emily Kimathi, Zwide Jere, Nathan Ochatum, Jimmy Pittchar, and et al. 2022. "Performance of Push–Pull Technology in Low-Fertility Soils under Conventional and Conservation Agriculture Farming Systems in Malawi" Sustainability 14, no. 4: 2162. https://doi.org/10.3390/su14042162
APA StyleNiassy, S., Agbodzavu, M. K., Mudereri, B. T., Kamalongo, D., Ligowe, I., Hailu, G., Kimathi, E., Jere, Z., Ochatum, N., Pittchar, J., Kassie, M., & Khan, Z. (2022). Performance of Push–Pull Technology in Low-Fertility Soils under Conventional and Conservation Agriculture Farming Systems in Malawi. Sustainability, 14(4), 2162. https://doi.org/10.3390/su14042162