Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling
"> Figure 1
<p>Number of paper published over the years.</p> "> Figure 2
<p>Number of papers published per specific topic. LCA: life cycle assessment; LCSA: life cycle sustainable assessment.</p> "> Figure 3
<p>International peer-reviewed journals hosting papers on the topics analyzed.</p> "> Figure 4
<p>Summary of the frameworks identified within the review.</p> "> Figure 5
<p>Examples of construction and demolition waste (CDW) management. On the left, unsorted cumulus of materials from emergency management in the event of the Emilia earthquake (2012; on the right, a mobile CDW treatment plant.</p> "> Figure 6
<p>Examples of properly managed CDW materials, deriving from selective demolitions (from the left: concrete structural elements, mixed materials from water systems, and finally, ready-to-use ground asphalt from road pavement demolition).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Product-Oriented Framework
3.1.1. Life Cycle Thinking, Life Cycle Assessment and Environmental Product Declaration
3.1.2. Eco-Design in Constructions
3.2. Policy-Oriented Framework
Circular Economy, CDW Recycling, and New Materials Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruuska, A.; Häkkinen, T. Material efficiency of building construction. Buildings 2014, 4, 266–294. [Google Scholar] [CrossRef] [Green Version]
- Marie Rousselot, E. Energy Efficiency Trends in Buildings in Europe|Policy Brief|ODYSSEE-MURE. Available online: https://www.odyssee-mure.eu/publications/policy-brief/buildings-energy-efficiency-trends.html (accessed on 28 December 2020).
- Beiser, V. The World in a Grain: The Story of Sand and How It Transformed Civilization by Vince Beiser. Available online: https://www.goodreads.com/book/show/36950075-the-world-in-a-grain (accessed on 28 December 2020).
- Policy and Strategy for Raw Materials|Internal Market, Industry, Entrepreneurship and SMEs. Available online: https://ec.europa.eu/growth/sectors/raw-materials/policy-strategy_en (accessed on 28 December 2020).
- Home—Eurostat. Available online: https://ec.europa.eu/eurostat/ (accessed on 28 December 2020).
- Hendriks, C.F.; Janssen, G.M.T. Use of recycled materials in constructions. Mater. Struct. 2003, 36, 604–608. [Google Scholar] [CrossRef]
- Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication. Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=126&menu=35 (accessed on 28 December 2020).
- The Sustainable Development Agenda—United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 28 December 2020).
- A European Green Deal|European Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 28 December 2020).
- European Green Deal: Construction Products Europe AISBL. Available online: https://www.construction-products.eu/news-events/latest-news/european-green-deal (accessed on 28 December 2020).
- New Circular Economy Action Plan. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_420 (accessed on 28 December 2020).
- Level(s). Available online: https://ec.europa.eu/environment/topics/circular-economy/levels_en (accessed on 28 December 2020).
- Clean Energy for all Europeans Package|Energy. Available online: https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en (accessed on 28 December 2020).
- In Focus: Energy Efficiency in Buildings|European Commission. Available online: https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-feb-17_en (accessed on 28 December 2020).
- Commission Outlines Road to Zero Pollution Action Plan. Available online: https://ec.europa.eu/environment/news/commission-outlines-road-zero-pollution-action-plan-2020-10-01_en (accessed on 28 December 2020).
- Circular Cities and Regions Initiative|European Commission. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/environment/circular-economy/circular-cities-and-regions-initiative_en (accessed on 28 December 2020).
- Sustainability in Building Design and Construction—Designing Buildings Wiki. Available online: https://www.designingbuildings.co.uk/wiki/Sustainability_in_building_design_and_construction (accessed on 28 December 2020).
- Ginga, C.P.; Ongpeng, J.M.C.; Daly, M.K.M. Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production. Materials 2020, 13, 2970. [Google Scholar] [CrossRef]
- LEED Rating System|U.S. Green Building Council. Available online: https://www.usgbc.org/leed (accessed on 28 December 2020).
- I Criteri Ambientali Minimi|Ministero Dell’Ambiente e della Tutela del Territorio e del Mare. Available online: https://www.minambiente.it/pagina/i-criteri-ambientali-minimi (accessed on 28 December 2020).
- Instituto de Ciencias de la Construcción Eduardo Torroja, C. CSIC para la Dirección General de Arquitectura, Vivienda y Suelo del Ministerio de Fomento Codigo Tecnico de la Edificaciòn. Available online: https://www.codigotecnico.org/ (accessed on 28 December 2020).
- LEED v4|U.S. Green Building Council. Available online: https://www.usgbc.org/leed/v4 (accessed on 28 December 2020).
- Meneghelli, A. Whole-building embodied carbon of a North American LEED-certified library: Sensitivity analysis of the environmental impact of buildings materials. Build. Environ. 2018, 134, 230–241. [Google Scholar] [CrossRef]
- ISO—ISO 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework. Available online: https://www.iso.org/standard/37456.html (accessed on 29 December 2020).
- Monteiro, H.; Freire, F. Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods. Energy Build. 2011, 47, 572–583. [Google Scholar] [CrossRef] [Green Version]
- Galindro, B.M.; Welling, S.; Bey, N.; Olsen, S.I.; Soares, S.R.; Ryding, S. Making use of life cycle assessment and environmental product declarations: A survey with practitioners. J. Ind. Ecol. 2020, 24, 965–975. [Google Scholar] [CrossRef]
- Passer, A.; Lasvaux, S.; Allacker, K.; De Lathauwer, D.; Spirinckx, C.; Wittstock, B.; Kellenberger, D.; Gschösser, F.; Wall, J.; Wallbaum, H. Environmental product declarations entering the building sector: Critical reflections based on 5 to 10 years experience in different European countries. Int. J. Life Cycle Assess. 2015, 20, 1199–1212. [Google Scholar] [CrossRef] [Green Version]
- Göswein, V.; Rodrigues, C.; Silvestre, J.D.; Freire, F.; Habert, G.; König, J. Using anticipatory life cycle assessment to enable future sustainable construction. J. Ind. Ecol. 2020, 24, 178–192. [Google Scholar] [CrossRef]
- Peterson, B. How Much of an Impact Do Green Building Designs Really Have on the Environment?|Energy Central. Available online: https://energycentral.com/c/ec/how-much-impact-do-green-building-designs-really-have-environment (accessed on 29 December 2020).
- Bruce-Hyrkäs, T.; Pasanen, P.; Castro, R. Overview of Whole Building Life-Cycle Assessment for Green Building Certification and Ecodesign through Industry Surveys and Interviews. In Proceedings of the Procedia CIRP; Elsevier B.V.: 2017; Part of special issue 25th CIRP Life Cycle Engineering (LCE) Conference, Copenhagen, Denmark, 30 April–2 May 2018; Volume 69, pp. 178–183. [Google Scholar]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA databases focused on construction materials: A review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- Bach, R.; Hildebrand, L. A Comparative Overview of Tools for Environmental Assessment of Materials; RWTH Aachen University: Aachen, Germany, 2018. [Google Scholar]
- Harris, D.J. A quantitative approach to the assessment of the environmental impact of building materials. Build. Environ. 1999, 34, 751–758. [Google Scholar] [CrossRef]
- Shen, L.-Y.; Hao, J.L.; Tam, V.W.-Y.; Yao, H. A Checklist for assessing sustainability performance of construction projects. J. Civ. Eng. Manag. 2007, 13, 273–281. [Google Scholar] [CrossRef]
- Mellado, F.; Lou, E.C.W.; Becerra, C.L.C. Synthesising performance in the construction industry: An analysis of performance indicators to promote project improvement. Eng. Constr. Archit. Manag. 2019, 27, 579–608. [Google Scholar] [CrossRef]
- EUROPEAN COMMISSION Ecodesign Working Plan 2016–2019—EU Agenda. Available online: https://euagenda.eu/publications/european-commission-ecodesign-working-plan-2016-2019 (accessed on 29 December 2020).
- Denac, M.; Obrecht, M.; Radonjič, G. Current and potential ecodesign integration in small and medium enterprises: Construction and related industries. Bus. Strateg. Environ. 2018, 27, 825–837. [Google Scholar] [CrossRef]
- Eco-Design—European Environment Agency. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/eco-design (accessed on 29 December 2020).
- Vicente, J.; Frazao, R.; De Silva, F.M. Ecodesign Tools: One basis to operationalize Sustainable Design. In Proceedings of the VI CIPED-International Congress on Design Research, Lisbon, Portugal, 10–12 October 2011. [Google Scholar]
- Ahn, Y.H.; Pearce, A.R.; Wang, Y.; Wang, G. Drivers and barriers of sustainable design and construction: The perception of green building experience. Int. J. Sustain. Build. Technol. Urban Dev. 2013, 4, 35–45. [Google Scholar] [CrossRef]
- Toolbox—IPP—Environment—European Commission. Available online: https://ec.europa.eu/environment/ipp/toolbox.htm (accessed on 29 December 2020).
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar] [CrossRef]
- Luciano, A.; Reale, P.; Cutaia, L.; Carletti, R.; Pentassuglia, R.; Elmo, G.; Mancini, G. Resources Optimization and Sustainable Waste Management in Construction Chain in Italy: Toward a Resource Efficiency Plan. Waste Biomass Valorization 2020, 11, 5405–5417. [Google Scholar] [CrossRef]
- Sertaç Erten, S.Ö. [PDF] OF MEGA-EVENT STADIUMS (1990–2012)|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/OF-MEGA-EVENT-STADIUMS-(-1990-2012-)-Erten-Özfiliz/03d24c6bad0d67b693afff6e45e37f39995fca10 (accessed on 28 December 2020).
- Cuenca-Moyano, G.M.; Martín-Morales, M.; Bonoli, A.; Valverde-Palacios, I. Environmental assessment of masonry mortars made with natural and recycled aggregates. Int. J. Life Cycle Assess. 2019, 24. [Google Scholar] [CrossRef]
- Dos Reis Oliveira, P.C.; van der Geest, H.G.; Kraak, M.H.S.; Westveer, J.J.; Verdonschot, R.C.M.; Verdonschot, P.F.M. Over forty years of lowland stream restoration: Lessons learned? J. Environ. Manag. 2020, 264, 110417. [Google Scholar] [CrossRef]
- Dos Reis, G.S.; Cazacliu, B.G.; Cothenet, A.; Poullain, P.; Wilhelm, M.; Sampaio, C.H.; Lima, E.C.; Ambros, W.; Torrenti, J.M. Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive. J. Clean. Prod. 2020, 258, 120733. [Google Scholar] [CrossRef]
- Fatemi, S.; Imaninasab, R. Performance evaluation of recycled asphalt mixtures by construction and demolition waste materials. Constr. Build. Mater. 2016, 120, 450–456. [Google Scholar] [CrossRef]
- Pederneiras, C.M.; Durante, M.D.P.; Amorim, Ê.F.; Ferreira, R.L.d.S. Incorporation of recycled aggregates from construction and demolition waste in paver blocks. Rev. IBRACON Estruturas Mater. 2020, 13. [Google Scholar] [CrossRef]
- Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 2016, 118, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Ossa, A.; García, J.L.; Botero, E. Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. J. Clean. Prod. 2016, 135, 379–386. [Google Scholar] [CrossRef]
- Remišová, E.; Decký, M.; Mikolaš, M.; Hájek, M.; Kovalčík, L.; Mečár, M. Design of Road Pavement Using Recycled Aggregate. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Beijing, China, 7–8 July 2016; IOP Publishing: Bristol, UK, 2016; 44, p. 022016. [Google Scholar]
- Herrador, R.; Pérez, P.; Garach, L.; Ordóñez, J. Use of Recycled Construction and Demolition Waste Aggregate for Road Course Surfacing. J. Transp. Eng. 2012, 138, 182–190. [Google Scholar] [CrossRef]
- Teijón-López-Zuazo, E.; Vega-Zamanillo, Á.; Calzada-Pérez, M.Á.; Robles-Miguel, Á. Use of Recycled Aggregates Made from Construction and Demolition Waste in Sustainable Road Base Layers. Sustainability 2020, 12, 6663. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. (PDF) Environmental Life Cycle Assessment of Concrete Made with Fine Recycled Concrete Aggregates. Available online: https://www.researchgate.net/publication/235939400_Environmental_life_cycle_assessment_of_concrete_made_with_fine_recycled_concrete_aggregates (accessed on 28 December 2020).
- Contreras, M.; Teixeira, S.R.; Lucas, M.C.; Lima, L.C.N.; Cardoso, D.S.L.; da Silva, G.A.C.; Gregório, G.C.; de Souza, A.E.; dos Santos, A. Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Constr. Build. Mater. 2016, 123, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Panizza, M.; Natali, M.; Garbin, E.; Tamburini, S.; Secco, M. Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Constr. Build. Mater. 2018, 181, 119–133. [Google Scholar] [CrossRef]
- Martín-Morales, M.; Zamorano, M.; Valverde-Palacios, I.; Cuenca-Moyano, G.M.; Sánchez-Roldán, Z. Quality control of recycled aggregates (RAs) from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 270–303. ISBN 9780857096906. [Google Scholar]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Use of recycled aggregates arising from construction and demolition waste in new construction applications. J. Clean. Prod. 2019, 236, 117629. [Google Scholar] [CrossRef]
- Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [Google Scholar] [CrossRef]
- Anike, E.E.; Saidani, M.; Ganjian, E.; Tyrer, M.; Olubanwo, A.O. The potency of recycled aggregate in new concrete: A review. Constr. Innov. 2019, 19, 594–613. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T. Critical consideration of buildings’ environmental impact assessment towards adoption of circular economy: An analytical review. J. Clean. Prod. 2018, 205, 763–780. [Google Scholar] [CrossRef]
- Doǧan-Saǧlamtimur, N. Waste Foundry Sand Usage for Building Material Production: A First Geopolymer Record in Material Reuse. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Hansen, T.C. Recycled concrete aggregate and fly ash produce concrete without portland cement. Cem. Concr. Res. 1990, 20, 355–356. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Z.; Ding, T.; Xiao, J. Environmental and economic assessment on 3D printed buildings with recycled concrete. J. Clean. Prod. 2021, 278, 123884. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Wong, Y.C.; Arulrajah, A.; Horpibulsuk, S. Strength evaluation of utilizing recycled plastic waste and recycled crushed glass in concrete footpaths. Constr. Build. Mater. 2019, 197, 489–496. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Šavija, B.; Paul, S.C.; Anggraini, V. Engineering properties of concrete with waste recycled plastic: A review. Sustainability 2018, 10, 3875. [Google Scholar] [CrossRef] [Green Version]
- Vitale, P.; Arena, N.; Di Gregorio, F.; Arena, U. Life cycle assessment of the end-of-life phase of a residential building. Waste Manag. 2017, 60, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Borghi, G.; Pantini, S.; Rigamonti, L. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). J. Clean. Prod. 2018, 184, 815–825. [Google Scholar] [CrossRef]
- Coelho, A.; De Brito, J. Generation of construction and demolition waste in Portugal. Waste Manag. Res. 2011, 29, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Zanni, S.; Simion, I.M.; Gavrilescu, M.; Bonoli, A. Life Cycle Assessment Applied to Circular Designed Construction Materials. Procedia CIRP 2018, 69, 154–159. [Google Scholar] [CrossRef]
- Liikanen, M.; Grönman, K.; Deviatkin, I.; Havukainen, J.; Hyvärinen, M.; Kärki, T.; Varis, J.; Soukka, R.; Horttanainen, M. Construction and demolition waste as a raw material for wood polymer composites – Assessment of environmental impacts. J. Clean. Prod. 2019, 225, 716–727. [Google Scholar] [CrossRef]
- Di Maria, A.; Eyckmans, J.; Van Acker, K. Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Manag. 2018, 75, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Simion, I.M.; Zanni, S.; Bamonti, S.; Bonoli, A.; Gavrilescu, M.; Bignozzi, M.C. Eco-efficient management of construction and demolition waste. Procedia Environ. Sci. Eng. Manag. 2014, 1. [Google Scholar] [CrossRef]
- Simion, I.M.; Ghinea, C.; Maxineasa, S.G.; Taranu, N.; Bonoli, A.; Gavrilescu, M. Ecological footprint applied in the assessment of construction and demolition waste integrated management. Environ. Eng. Manag. J. 2013, 12. [Google Scholar] [CrossRef]
- Marzouk, M.; Azab, S. Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resour. Conserv. Recycl. 2014, 82, 41–49. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonoli, A.; Zanni, S.; Serrano-Bernardo, F. Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling. Sustainability 2021, 13, 2139. https://doi.org/10.3390/su13042139
Bonoli A, Zanni S, Serrano-Bernardo F. Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling. Sustainability. 2021; 13(4):2139. https://doi.org/10.3390/su13042139
Chicago/Turabian StyleBonoli, Alessandra, Sara Zanni, and Francisco Serrano-Bernardo. 2021. "Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling" Sustainability 13, no. 4: 2139. https://doi.org/10.3390/su13042139
APA StyleBonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling. Sustainability, 13(4), 2139. https://doi.org/10.3390/su13042139