Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters
<p>Sketch map of the study area.</p> "> Figure 2
<p>Image mosaic result of UAV.</p> "> Figure 3
<p>Scanning and classification results of wheat leaves. (<b>a</b>) Sampling method; (<b>b</b>) Scanning results; (<b>c</b>) Classification results.</p> "> Figure 4
<p>Fitting analysis chart between the measured and the predicted values of the LAI.</p> "> Figure 5
<p>Spatial distribution map of the LAI.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Design of Field Sampling
2.3. Image Dataset
2.4. Field Measured LAI
2.5. Methods
2.5.1. RGB-Image Parameters
2.5.3. Establishment and Validation of the Model
2.5.2. Grey Correlation Analysis
- (1)
- Dimensionless processing of the wheat LAI data
- (2)
- Calculation of the correlation coefficientAccording to Equation (2), the grey correlation coefficient between the reference arrays and the comparison arrays was calculated.In the formula, is the correlation coefficient between the reference arrays and the comparison arrays k; and are the minimum absolute difference and the maximum absolute difference, respectively; is identification coefficient with its value in [0,1], generally 0.5; is absolute difference array.
- (3)
- Calculation of grey correlation degreeCalculate the grey correlation degree according to Equation (3):
- (4)
- Ranking of grey correlation degree.According to the correlation degree , the UAV RGB-based image parameters were sorted.
3. Results
3.1. Grey Correlation Analysis between the LAI and the RGB-Based Image Parameters
3.2. Establishment and Validation of the Model
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Barclay, J.H. Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. Tree Physiol. 1998, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Dong, P.; Xi, X. Estimating leaf area index of maize using airborne full-waveform lidar data. Remote Sens. Lett. 2016, 7, 111–120. [Google Scholar] [CrossRef]
- Mirzaie, M.; Darvishzadeh, R.; Shakiba, A.; Matkan, A.A.; Atzberger, C.; Skidmore, A. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 1–11. [Google Scholar] [CrossRef]
- Pan, Y.Z.; Li, L.; Zhang, J.S.; Liang, S.L.; Hou, D. Crop area estimation based on MODIS-EVI time series according to distinct characteristics of key phenology phases: A case study of winter wheat area estimation in small scale area. J. Remote Sens. 2011, 15, 578–594. [Google Scholar]
- Deng, L.Y.; Shen, Z.F.; Ke, Y.M.; Xu, Z.Y. Winter wheat planting area extraction using multi-temporal remote sensing images based on field parcel. Trans. CSAE 2018, 34, 157–164. [Google Scholar]
- Pei, H.J.; Feng, H.K.; Li, C.C.; Jin, X.L.; Li, Z.H.; Yang, G.J. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index. Trans. CSAE 2017, 33, 74–82. [Google Scholar]
- Wang, P.; Zhou, Y.; Huo, Z.; Han, L.; Qiu, J.; Tan, Y.; Liu, D. Monitoring growth condition of spring maize in northeast china using a process-based model. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 27–36. [Google Scholar] [CrossRef]
- Bumsuk, S.; Jihye, L.; Kyung, D.L.; Sukyoung, H.; Sinkyu, K. Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA. Field Crop. Res. 2019, 238, 113–128. [Google Scholar]
- Ritika, S.; Subrata, N.; Patel, N.R. Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Ecol. Inform. 2019, 52, 94–102. [Google Scholar]
- Pasolli, L.; Asam, S.; Castelli, M.; Bruzzone, L.; Wohlfahrt, G.; Zebisch, M.; Notarnicola, C. Retrieval of leaf area index in mountain grasslands in the alps from modis satellite imagery. Remote Sens. Environ. 2015, 165, 159–174. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.X.; Jiang, Z.W.; Wu, W.B.; Ren, J.Q.; Liu, B.; Tuya, H. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. J. Integr. Agric. 2017, 16, 266–285. [Google Scholar] [CrossRef]
- Xia, Y.; Ni, W.; Yong, L.; Tao, C.; Tian, Y.C.; Qi, C.; Yan, Z. Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens. 2017, 9, 1304. [Google Scholar]
- Gao, L.; Yang, G.J.; Yu, H.Y.; Xu, B.; Zhao, X.Q.; Dong, J.H.; Ma, Y.B. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remoter sensing. Trans. CSAE 2016, 32, 113–120. [Google Scholar]
- Li, C.C.; Niu, Q.L.; Yang, G.J.; Feng, H.K.; Liu, J.G.; Wang, Y.J. Estimation of Leaf Area Index of Soybean Breeding Materials Based on UAV Digital Images. Trans. Chin. Soc. Agric. Mach. 2017, 48, 147–158. [Google Scholar]
- Kim, D.W.; Yun, H.S.; Jeong, S.J.; Kwon, Y.S.; Kim, S.G.; Lee, W.S.; Kim, H.J. Modeling and Testing of Growth Status for Chinese Cabbage and White Radish with UAV-Based RGB Imagery. Remote Sens. 2018, 10, 563. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Liu, R.Y.; Wang, J.H.; Yang, G.J.; Huang, W.J.; Li, W.G.; Chang, H.; Li, X.W. Comparison of ground-based LAI measuring methods on winter wheat. Trans. CSAE 2011, 27, 220–224. [Google Scholar]
- Niu, Q.L.; Feng, H.K.; Yang, G.J.; Li, C.C.; Yang, H.; Xu, B.; Zhao, Y.X. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images. Trans. CSAE 2018, 34, 73–82. [Google Scholar]
- Torres-Sánchez, J.; Peña, J.M.; De Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 335–343. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from chris/proba data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Sellaro, R.; Crepy, M.; Trupkin, S.A.; Karayekov, E.; Buchovsky, A.S.; Rossi, C.; Casal, J.J. Cryptochrome as a sensor of the blue/green ratio of natural radiation in arabidopsis. Plant. Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.S.; Reid, J.F. Evaluation of colour representations for maize images. J. Agric. Eng. Res. 1996, 63, 185–195. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Saberioon, M.M.; Amin, M.S.M.; Anuar, A.R.; Gholizadeh, A.; Wayayok, A.; Khairunniza-Bejo, S. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 35–45. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.J.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Liu, S.F.; Dang, Y.G.; Fang, Z.G. Grey System Theory and Its Application; Science Press: Beijing, China, 2004. [Google Scholar]
- Deng, J.L. Basic of Grey System; Huazhong University of Science and Technology Press: Wuhan, China, 2002. [Google Scholar]
- Xia, X.; Sun, Y.; Wu, K.; Jiang, Q. Optimization of a straw ring-die briquetting process combined analytic hierarchy process and grey correlation analysis method. Fuel Process. Technol. 2016, 152, 303–309. [Google Scholar] [CrossRef]
- Umut, H.; Mamat, S.; Nijat, K.; Nigela, T.; Wang, J.Z.; Irxat, A. Hyperspectral Estimation Model of Leaf Water Content in Spring Wheat Based on Grey Correlational Analysis. Spectrosc. Spectr. Anal. 2018, 38, 3905–3911. [Google Scholar]
- Fang, S.S.; Yao, X.S.; Zhang, J.Q.; Han, M. Grey correlation analysis on travel modes and their influence factors. Procedia Eng. 2017, 174, 347–352. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
Abbreviation | Name | Equation | References |
---|---|---|---|
R | DN value of Red Channel | R = DNR | [16] |
G | DN value of Green Channel | G = DNG | [16] |
B | DN value of Blue Channel | B = DNB | [16] |
r | Normalized Redness Intensity | [20] | |
g | Normalized Greenness Intensity | [20] | |
b | Normalized blueness Intensity | [20] | |
EXG | Excess Green Index | [21] | |
VARI | Visible Atmospherically Resistant Index | [22] | |
GRRI | Green Red Ratio Index | [23] | |
GBRI | Green Blue Ratio Index | [24] | |
RBRI | Red Blue Ratio Index | [24] | |
INT | Color Intensity | [25] | |
IKAW | Kawashima Index | [26] | |
IPCA | Principal Component Analysis Index | [27] | |
MGRVI | Modified Green Red Vegetation Index | [28] | |
RGBVI | Red Green Blue Vegetation Index | [28] | |
GRVI | Green Red Vegetation Index | [29] | |
GLA | Green Leaf Algorithm | [30] | |
CIVE | Color Index of Vegetation | [20] | |
VDVI | Visible Differential Vegetation Index | [21] |
RGB-Based Image Parameters | Grey Correlation Degree (Order) | RGB-Based Image Parameters | Grey Correlation Degree (Order) |
---|---|---|---|
VARI | 0.9166(1) | GBRI | 0.8638(11) |
RGBVI | 0.8891(2) | EXG | 0.8478(12) |
B | 0.8879(3) | R | 0.8462(13) |
GLA | 0.8837(4) | INT | 0.8426(14) |
G | 0.8817(5) | IPCA | 0.8315(15) |
VDVI | 0.8804(6) | r | 0.7919(16) |
MGRVI | 0.8801(7) | CIVE | 0.7877(17) |
g | 0.8718(8) | b | 0.7872(18) |
GRVI | 0.8697(9) | RBRI | 0.7573(19) |
GRRI | 0.8647(10) | IKAW | 0.7543(20) |
Type of Models | RGB-Based Image Parameters | Model Equation | R2 | RMSE |
---|---|---|---|---|
univariate regression model | VARI | y = 11.1632x + 2.6115 | 0.725 | 0.475 |
y = 11.6809x0.5512 | 0.722 | 0.474 | ||
y = 3.4525e1.7984x | 0.714 | 0.485 | ||
y= −4.0725x2 + 13.6643x + 2.2510 | 0.726 | 0.473 | ||
multivariate regression model | VARI, RGBVI, B, GLA | LAI = 3.9941 × VARI + 4.8813 × RGBVI + 0.0122 × B + 6.0529 × GLA + 1.2818 | 0.767 | 0.422 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, U.; Sawut, M.; Chen, S. Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters. Sustainability 2019, 11, 6829. https://doi.org/10.3390/su11236829
Hasan U, Sawut M, Chen S. Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters. Sustainability. 2019; 11(23):6829. https://doi.org/10.3390/su11236829
Chicago/Turabian StyleHasan, Umut, Mamat Sawut, and Shuisen Chen. 2019. "Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters" Sustainability 11, no. 23: 6829. https://doi.org/10.3390/su11236829
APA StyleHasan, U., Sawut, M., & Chen, S. (2019). Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters. Sustainability, 11(23), 6829. https://doi.org/10.3390/su11236829