Applications of Artificial Intelligence in Transport: An Overview
<p>Three-Phases Approach to develop advanced predictive model—adapted from [<a href="#B79-sustainability-11-00189" class="html-bibr">79</a>].</p> "> Figure 2
<p>The performance improvement from AI—adapted from [<a href="#B127-sustainability-11-00189" class="html-bibr">127</a>].</p> "> Figure 3
<p>The effect of using 30% autonomous vehicles on road on congestion cost in Australia—adapted from [<a href="#B157-sustainability-11-00189" class="html-bibr">157</a>].</p> "> Figure 4
<p>Deep learning system representation. Source: Authors.</p> ">
Abstract
:1. Introduction
2. Applications of AI in Transport
2.1. AI in Planning, Designing and Controlling Transportation Network Structures
2.1.1. Incident Detection
2.1.2. Predictive Models
2.2. Application of AI in Aviation and Public Transportation
2.2.1. Aviation
2.2.2. Shared Mobility
“ICT-enabled platforms for exchanges of goods and services drawing on non-market logics such as sharing, lending, gifting and swapping as well as market logic; renting and selling”
2.2.3. Buses
- Enhance the reliability of buses’ services;
- Prioritise movement of buses at traffic signals; and
- Provide information to passengers about the schedule of the bus near bus stops.
2.3. Intelligent Urban Mobility
Autonomous Vehicles
- Self-healing: Vehicles can recognize the error with themselves and fix it.
- Self-socializing: The ability of a vehicle to interact with the surrounding infrastructure, other vehicles and humans in natural language.
- Self-learning: The vehicle utilizes its own behaviours, driver, occupants, and the surrounding environment.
- Self-driving: The ability of the vehicle to drive itself, with some automated limitation in a controlled environment.
- Self-configuring: Each mobility contains digital information to identify the desired and personalized vehicle experience.
- Self-Integrating: The ability to integrate with other systems in the transport like any other intelligent transport devices.
3. The Limitation of AI Techniques
Computation Complexity of AI Algorithms
4. Future of AI Is Governed by Deep Learning
5. Future Research Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
AIS | Artificial Immune system |
SA | Simulated Annealing |
BCO | Bee Colony Optimization |
GA | Genetic algorithms |
RNN | Recurrent Neural Network |
CNN | Convolutional Neural Network |
PNN | Probabilistic Neural Network |
ITS | Intelligent Transport Systems |
NDP | Network Design Problem |
DBN | Deep Belief Network |
AV | Automated Vehicles |
References
- Sadek, A. Artificial Intelligence in Transportation. Transp. Res. Circ. 2007, E-C113, 72–79. [Google Scholar]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: New Delhi, India, 1999; p. 476. [Google Scholar]
- Abraham, A. Artificial Neural Networks. Handbook of Measuring System Design; Sydenham, P.H., Thorn, R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Minsky, M.; Papert, S. Perceptron Expanded Edition; MIT Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Wolpert, D.H. Bayesian Backpropagation Over I-O Functions Rather Than Weights. Adv. Neural Inf. Process. Syst. 1993, 6, 200–207. [Google Scholar]
- Parker, D. Learning Logic: Technical Report TR-87, Center for Computational Research in Economics and Management Science; The MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Getoor, B.; Taskar, L. Introduction to Statistical Relational Learning; Volume L of Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Bacciu, A.; Micheli, D.; Sperduti, A. Compositional generative mapping for tree-structured data—Part I: Bottom-up probabilistic modeling of trees. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 60, 1–9. Available online: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed on 27 December 2018). [CrossRef]
- Kim, P. Convolutional Neural Network; MATLAB Deep Learning Apress: Berkeley, CA, USA, 2017. [Google Scholar]
- McCann, M.T.; Jin, K.H.; Unser, M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Signal Process. Mag. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Yin, F.; Zhang, Y.M.; Liu, C.L.; Bengio, Y. Drawing and Recognizing Chinese Characters with Recurrent Neural Network. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 849–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.N.S.; Swamy, K.L. Recurrent Neural Networks. In Neural Networks and Statistical Learning; Springer: London, UK, 2014. [Google Scholar]
- Caterini, D.E.; Chang, A.L. Recurrent Neural Networks. In Deep Neural Networks in a Mathematical Framework; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Patterson, D. Introduction to Artificial Intelligence and Expert Systems; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1990. [Google Scholar]
- Australian Infrastructure Audit. Infrastructure Australia. Our Infrastructure Challenge. 2015. Available online: https://infrastructureaustralia.gov.au/policy-publications/publications/files/Australian-Infrastructure-Audit-Volume-1.pdf (accessed on 27 September 2018).
- Linking Melbourne Authority. Linking Melbourne. Annual Report. Available online: https://www.parliament.vic.gov.au/file_uploads/Linking_Melbourne_Authority_Annual_Report_2014-2015_CwBGv8WN.pdf (accessed on 5 March 2018).
- Klügl, F.; Bazzan, A.L.C.; Ossowski, S. Agents in traffic and transportation. Transp. Res. Part C Emerg. Technol. 2010, 18, 69–70. [Google Scholar] [CrossRef]
- Doǧan, E.; Akgüngör, A.P. Forecasting highway casualties under the effect of railway development policy in Turkey using artificial neural networks. Neural Comput. Appl. 2013, 22, 869–877. [Google Scholar]
- Budalakoti, S.; Srivastava, A.N.; Otey, M.E. Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2009, 39, 101–113. [Google Scholar] [CrossRef]
- Akgüngör, A.P.; Doğan, E. An artificial intelligent approach to traffic accident estimation: Model development and application. Transport 2009, 24, 135–142. [Google Scholar]
- Dia, H.; Rose, G. Development and evaluation of neural network freeway incident detection models using field data. Transp. Res. Part C Emerg. Technol. 1997, 5, 313–331. [Google Scholar] [CrossRef]
- Wang, R.; Fan, S.; Work, D.B. Efficient multiple model particle filtering for joint traffic state estimation and incident detection. Transp. Res. Part C Emerg. Technol. 2016, 71, 521–537. [Google Scholar] [CrossRef]
- Wang, R.; Work, D.B. Interactive multiple model ensemble Kalman filter for traffic estimation and incident detection. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 804–809. [Google Scholar]
- Dia, H. An object-oriented neural network approach to short-term traffic forecasting. Eur. J. Oper. Res. 2001, 131, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Song, G.; Hong, H.; Xie, K. Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. [Google Scholar] [CrossRef]
- Jiang, H.; Zou, Y.; Zhang, S.; Tang, J.; Wang, Y. Short-Term Speed Prediction Using Remote Microwave Sensor Data: Machine Learning versus Statistical Model. Math. Probl. Eng. 2016, 2016, 9236156. [Google Scholar] [CrossRef]
- Ledoux, C. An urban traffic flow model integrating neural networks. Transp. Res. Part C Emerg. Technol. 1997, 5, 287–300. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- More, R.; Mugal, A.; Rajgure, S.; Adhao, R.B.; Pachghare, V.K. Road traffic prediction and congestion control using Artificial Neural Networks. In Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21 December 2016; pp. 52–57. [Google Scholar]
- Wu, Y.; Tan, H.; Qin, L.; Ran, B.; Jiang, Z. A hybrid deep learning based traffic flow prediction method and its understanding. Transp. Res. Part C Emerg. Technol. 2018, 90, 166–180. [Google Scholar] [CrossRef]
- Theofilatos, A.; Yannis, G.; Kopelias, P.; Papadimitriou, F. Predicting Road Accidents: A Rare-events Modeling Approach. Transp. Res. Procedia 2016, 14, 3399–3405. [Google Scholar] [CrossRef] [Green Version]
- Król, A. The Application of the Artificial Intelligence Methods for Planning of the Development of the Transportation Network. Transp. Res. Procedia 2016, 14, 4532–4541. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Wei, H.; Wang, Z.D. Study on continuous network design problem using simulated annealing and genetic algorithm. Expert Syst. Appl. 2009, 36 Pt 2, 2735–2741. [Google Scholar] [CrossRef]
- Ceylan, H.; Bell, M.G.H. Traffic signal timing optimisation based on genetic algorithm approach, including drivers’ routing. Transp. Res. Part B Methodol. 2004, 38, 329–342. [Google Scholar] [CrossRef]
- Ulusoy, Ü.; Sivrikaya-Şerifoǧlu, G.; Bilge, F. A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles. Comput. Oper. Res. 1997, 24, 335–351. [Google Scholar] [CrossRef]
- Karoonsoontawong, A.; Waller, S. Dynamic Continuous Network Design Problem: Linear Bilevel Programming and Metaheuristic Approaches. Transp. Res. Rec. J. Transp. Res. Board 2006, 1964, 104–117. [Google Scholar] [CrossRef]
- Xu, T.; Wei, H.; Hu, G. Study on continuous network design problem using simulated annealing and genetic algorithm. Expert Syst. Appl. 2009, 36 Pt 1, 1322–1328. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaseen, S.G.; L-Slamy, N.A. Ant Colony Optimization. Int. J. Comput. Sci. Netw. Secur. 2008, 8, 351–357. [Google Scholar]
- Dorigo, M.; Gambardella, L.M.; Birattari, M.; Martinoli, A.; Poli, R.; Stützle, T. LNCS 4150—Ant Colony Optimization and Swarm Intelligence. In Proceedings of the 6th International Conference (ANTS 2008), Brussels, Belgium, 22–24 September 2008. [Google Scholar]
- Timmis, J.; Neal, M.; Hunt, J. An artificial immune system for data analysis. Biosystems 2000, 55, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, D.; Ji, Z. Artificial immune system (AIS) research in the last five years. In Proceedings of the 2003 Congress on Evolutionary Computation (CEC ’03), Canberra, Australia, 8–12 December 2003; Volume 1, pp. 123–130. [Google Scholar]
- Lučić, D.B.; Teodorović, P. Bee system: Modeling combinatorial optimization transportation engineering problems by swarm intelligence. In Proceedings of the TRISTAN IV Triennial Symposium on Transportation Analysis, Azores, Portugal, 13–19 June 2001. [Google Scholar]
- Lucic, D.; Teodorovic, P. Transportation modeling: An artificial life approach. In Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2002), Washington, DC, USA, 4–6 November 2002. [Google Scholar]
- Lučić, D.; Teodorović, P. Computing with bees: Attacking complex transportation engineering problems. Int. J. Artif. Intell. Tools 2003, 12, 375–394. [Google Scholar] [CrossRef]
- Lučić, D.; Teodorović, P. Vehicle routing problem with uncertain demand at nodes: The bee system and fuzzy logic approach. In Fuzzy Sets Based Heuristics for Optimization; Springer: Berlin/Heidelberg, Germany, 2003; pp. 67–82. [Google Scholar]
- Kahraman, C. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments (Vol. 16). Springer Science & Business Media, 2008. Available online: https://books.google.com.au/books?hl=en&lr=&id=s2GOmBVdXYoC&oi=fnd&pg=PR5&dq=Fuzzy+multi-criteria+decision+making:theory+and+applications+with+recent+&ots=cMJfePwACg&sig=VeZcfHidR_cvK49vIcmi5VvoE_w#v=onepage&q=Fuzzy%20multi-criteria%20decision%20making%3Atheory%20and%20applications%20with%20recent&f=false (accessed on 18 March 2018).
- Voracek, J. Prediction of mechanical properties of cast irons. Appl. Soft Comput. 2001, 1, 119–125. [Google Scholar] [CrossRef]
- Guarino, E.R.S.L.; Pfautz, J.D.; Cox, Z. Modeling human reasoning about meta-information. Int. J. Approx. Reason. 2009, 50, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Kulak, C.K.O.; Durmusoglu, M.B. Fuzzy multi-attribute equipment selection based on information axiom. J. Mater. Process. Technol. 2005, 169, 337–345. [Google Scholar] [CrossRef]
- Qureshi, M.F.; Shah, S.M.A.; Al-Matroushi, G.I.G. A Comparative Analysis of Multi-Criteria Road Network. Eur. Cent. Res. Train. Dev. UK 2013, 27–47. Available online: http://www.eajournals.org/wp-content/uploads/A-Comparative-Analysis-of-Multi-criteria-Road-Network.pdf (accessed on 5 July 2018).
- Murat, N.U.Y. Route choice modelling in urban transportation networks using fuzzy logic and logistic regression methods. J. Sci. Ind. Res. 2008, 67, 19–27. [Google Scholar]
- Harcourt, P. Route Optimization Techniques: An Overview. Available online: https://www.ijser.org/researchpaper/ROUTE-OPTIMIZATION-TECHNIQUES-AN-OVERVIEW.pdf (accessed on 11 September 2018).
- Aretakis, N.; Roumeliotis, I.; Alexiou, A.; Romesis, C.; Mathioudakis, K. Turbofan Engine Health Assessment from Flight Data. J. Eng. Gas Turbines Power 2014, 137, 041203. [Google Scholar] [CrossRef]
- Bagloee, M.; Sarvi, S.A.; Patriksson, M. A hybrid branch-and-bound and benders decomposition algorithm for the network design problem. Comput. Civ. Infrastruct. Eng. 2017, 32, 319–343. [Google Scholar] [CrossRef]
- Rodrigue, J.P. Parallel modelling and neural networks: An overview for transportation/land use systems. Transp. Res. Part C Emerg. Technol. 1997, 5, 259–271. [Google Scholar] [CrossRef]
- Li, X.; Shi, X.; He, J.; Liu, X. Coupling simulation and optimization to solve planning problems in a fast-developing area. Ann. Assoc. Am. Geogr. 2011, 101, 1032–1048. [Google Scholar] [CrossRef]
- Wen, Y.; Li, S.Y. Fastest Complete Vehicle Routing Problem Using Learning Multiple Ant Colony Algorithm. Adv. Mater. Res. Trans. Tech. Publ. 2011, 217, 1044–1049. [Google Scholar] [CrossRef]
- Such, F.P.; Madhavan, V.; Conti, E.; Lehman, J.; Stanley, K.O.; Clune, J. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning. arXiv, 2017; arXiv:1712.06567. [Google Scholar]
- Optibus & Metropoline. Schedule Optimization Achieves Much More Than Just Cost Reduction. Available online: https://www.optibus.com/case/company-name-5/ (accessed on 11 November 2018).
- Bagloee, S.A.; Tavana, M.; Asadi, M.; Oliver, T. Autonomous vehicles: Challenges, opportunities, and future implications for transportation policies. J. Mod. Transp. 2016, 24, 284–303. [Google Scholar] [CrossRef]
- Bell, J.E.; McMullen, P.R. Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Fries, R.; Chowdhury, M.; Brummond, J. Transportation Infrastructure Security Utilizing Intelligent Transportation Systems; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Nuzzolo, A.; Comi, A. Advanced public transport and intelligent transport systems: New modelling challenges. Transp. A Transp. Sci. 2016, 12, 674–699. [Google Scholar] [CrossRef]
- Liu, X. Deep Reinforcement Learning for Intelligent Transportation Systems; No. Nips. arXiv, 2018; arXiv:1812.00979. [Google Scholar]
- Ferdowsi, A.; Challita, U.; Saad, W. Deep Learning for Reliable Mobile Edge Analytics in Intelligent Transportation Systems. arXiv, 2017; arXiv:1712.04135. [Google Scholar]
- Wang, C.; Li, X.; Zhou, X.; Wang, A.; Nedjah, N. Soft computing in big data intelligent transportation systems. Appl. Soft Comput. J. 2016, 38, 1099–1108. [Google Scholar] [CrossRef]
- Gilmore, N.; Abe, J.F. Neural network models for traffic control and congestion prediction. J. Intell. Transp. Syst. 1995, 2, 231–252. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Kaku, T. Development of a Self-Organizing Traffic Control System Using Neural Network Models. Transp. Res. Rec. 1991, 1324, 137–145. [Google Scholar]
- Choy, M.C.; Srinivasan, D.; Cheu, R.L. Cooperative, hybrid agent architecture for real-time traffic signal control. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2003, 33, 597–607. [Google Scholar] [CrossRef]
- Choy, M.; Cheu, R.; Srinivasan, D.; Logi, F. Real-time coordinated signal control through use of agents with online reinforcement learning. Transp. Res. Rec. J. Transp. Res. Board 2003, 1836, 64–75. [Google Scholar] [CrossRef]
- Stojmenovic, M. Real time machine learning based car detection in images with fast training. Mach. Vis. Appl. 2006, 17, 163–172. [Google Scholar] [CrossRef]
- Gu, F.; Qian, Y.; Chen, Z. From Twitter to detector: Real-time traffic incident detection using social media data. Transp. Res. Part C Emerg. Technol. 2016, 67, 321–342. [Google Scholar] [CrossRef]
- Mahamuni, A. Internet of Things, machine learning, and artificial intelligence in the modern supply chain and transportation. Def. Transp. J. 2018, 74, 14. Available online: https://insights.samsung.com/2018/05/22/internet-of-things-machine-learning-and-artificial-intelligence-in-the-modern-supply-chain-and-transportation/ (accessed on 27 December 2018).
- Wysocki, M.; Czuk, A. Jordan neural network for modelling and predictive control of dynamic systems. In Proceedings of the 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 24–27 August 2015; Volume 2, pp. 145–150. [Google Scholar]
- Dong, J.; Shao, C.J.; Xiong, C.F.; Li, Z.H. Short-term traffic flow forecasting of road network based on Elman neural network. J. Transp. Syst. Eng. Inf. Technol. 2010, 1, 022. [Google Scholar]
- ATOS 2012. Expecting the Unexptected Business Pattern Management. Atos Scientific Community. Available online: https://atos.net/content/dam/global/ascent-whitepapers/ascent-whitepaper-expecting-the-unexpected-business-pattern-management.pdf (accessed on 2 October 2018).
- Levene, C.; Litman, J.; Schillinger, S.; Toomey, I. How Advanced Analytics Can Benefit Infrastructure Capital Planning; Mckinsey Co. (Capital Proj. Infrastructure): New York, NY, USA, 2018. [Google Scholar]
- Held, K.; Küng, M.; Çabukoglu, L.; Pareschi, E.; Georges, G.; Boulouchos, G. Future mobility demand estimation based on sociodemographic information: A data-driven approach using machine learning algorithms. In Proceedings of the 18th Swiss Transport Research Conference (STRC 2018), Ascona, Switzerland, 16–18 May 2018. [Google Scholar]
- Yao, H.; Wu, F.; Jia, Y.; Lu, S.; Gong, P.; Ye, J. Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction. arXiv, 2018; arXiv:1802.08714. [Google Scholar]
- Mukai, N.; Yoden, N. Taxi demand forecasting based on taxi probe data by neural network. In Intelligent Interactive Multimedia: Systems and Service; Springer: Berlin/Heidelberg, Germany, 2012; pp. 589–597. [Google Scholar]
- Li, B.; Zhang, D.; Sun, L.; Chen, C.; Li, S.; Qi, G.; Yang, Q. Hunting or Waiting? Discovering Passenger-Finding Strategies from a Large-Scale Real-World Taxi Dataset. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; pp. 63–68. [Google Scholar]
- Liao, J.; Zhou, S.; Di, L.; Yuan, X.; Xiong, B. Large-scale short-term urban taxi demand forecasting using deep learning. In Proceedings of the 23rd Asia and South Pacific Design Automation Conference, Jeju, Korea, 22–25 January 2018; pp. 428–433. [Google Scholar]
- Ren, H.; Song, Y.; Wang, J.; Hu, Y.; Lei, J. A Deep Learning Approach to the Citywide Traffic Accident Risk Prediction. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018. [Google Scholar]
- Chen, Q.; Song, X.; Yamada, H.; Shibasaki, R. Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 338–344. [Google Scholar]
- Vasavi, S. Extracting Hidden Patterns Within Road Accident Data Using Machine Learning Techniques. In Information and Communication Technology; Springer: Singapore, 2018; pp. 13–22. [Google Scholar]
- Taamneh, M.; Alkheder, S.; Taamneh, S. Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. J. Transp. Saf. Secur. 2017, 9, 146–166. [Google Scholar] [CrossRef]
- Oza, N.; Castle, J.P.; Stutz, J. Classification of aeronautics system health and safety documents. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2009, 39, 670–680. [Google Scholar] [CrossRef]
- Williams, J.K. Using random forests to diagnose aviation turbulence. Mach. Learn. 2014, 95, 51–70. [Google Scholar] [CrossRef]
- Loboda, I. Neural Networks for Gas Turbine Diagnosis; Machine Learning; Springer: New York, NY, USA, 2016; Chapter 8. [Google Scholar]
- Laurell, C.; Sandström, C. The sharing economy in social media: Analyzing tensions between market and non-market logics. Technol. Forecast. Soc. Chang. 2017, 125, 58–65. [Google Scholar] [CrossRef]
- Geissinger, A.; Laurell, C.; Sandström, C. Technological Forecasting & Social Change Digital Disruption beyond Uber and Airbnb—Tracking the long tail of the sharing economy. Technol. Forecast. Soc. Chang. 2018, in press. [Google Scholar] [CrossRef]
- Firnkorn, J.; Müller, M. What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm. Ecol. Econ. 2011, 70, 1519–1528. [Google Scholar] [CrossRef]
- Cohen, B.; Kietzmann, J. Ride On! Mobility Business Models for the Sharing Economy. Organ. Environ. 2014, 27, 279–296. [Google Scholar] [CrossRef]
- Inside BigData. AI in Sharing Economy. 2018. Available online: https://insidebigdata.com/2018/08/02/ai-sharing-economy/ (accessed on 14 September 2018).
- Raymond, R.; Sugiura, T.; Tsubouchi, K. Location recommendation based on location history and spatio-temporal correlations for an on-demand bus system. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4 November 2011; p. 377. [Google Scholar]
- Mukai, J.; Watanabe, N.; Feng, T. Route Optimization Using Q-Learning for On-Demand Bus Systems. In Knowledge-Based and Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 567–574. [Google Scholar]
- Ma, J.; Song, C.; Ceder, A.; Liu, T.; Guan, W. Fairness in optimizing bus-crew scheduling process. PLoS ONE 2017, 12, e0187623. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Z.; Jian, F. Study on the optimization methods of transit network based on Ant Algorithm. In Proceedings of the IEEE International Vehicle Electronics Conference 2001, Tottori, Japan, 25–28 September 2001; pp. 215–219. [Google Scholar]
- Chien, S.I.-J.; Ding, Y.; Wei, C. Dynamic Bus Arrival Time Prediction with Artificial Neural Networks. J. Transp. Eng. 2002, 128, 429–438. [Google Scholar] [CrossRef]
- Jeong, R.; Rilett, R. Bus arrival time prediction using artificial neural network model. In Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA, 3–6 October 2004; pp. 988–993. [Google Scholar]
- Han, W.; Zhang, X.; Yin, J.; Li, Y.; Li, D. Architecture of iBus: A Self-Driving Bus for Public Roads. Available online: https://www.sae.org/publications/technical-papers/content/2017-01-0067/ (accessed on 27 December 2018).
- ChinaDaily. Self-Driving Bus Goes on World’s First Trial Run on Public Road. Available online: http://www.chinadaily.com.cn/china/2017-12/03/content_35179951.htm (accessed on 12 March 2018).
- Huiling, B.; Goh, E. AI, Robotics and Mobility as a Service: The Case of Singapore. Field Actions Sci. Rep. J. Field Actions Spec. Issue 2017, 26–29. Available online: https://journals.openedition.org/factsreports/4411 (accessed on 27 December 2018).
- Yu, E. Singapore Aims to Drive up Standards for Autonomous Vehicles with Test Centre. Available online: https://www.zdnet.com/article/singapore-aims-to-drive-up-standards-for-autonomous-vehicles-with-test-centre/ (accessed on 23 March 2017).
- Bausch, J. Local Motors and IBM Pave the Way for the Future of Automobiles. AspenCore IBM. Available online: https://www.electronicproducts.com/Internet_of_Things/Research/Local_Motors_and_IBM_Pave_the_Way_for_the_Future_of_Automobiles.aspx (accessed on 16 April 2018).
- Rosin, J. Optibus Uses Artificial Intelligence to Improve Mass Transit’s On-Time Performance and Prevent Delays. 2018. Available online: https://finance.yahoo.com/news/optibus-uses-artificial-intelligence-improve-110000554.html?guccounter=1 (accessed on 13 April 2018).
- Liu, T.; Ceder, A. Analysis of a new public-transport-service concept: Customized bus in China. Transp. Policy 2015, 39, 63–76. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Guan, W.; Wang, F.; Liu, T.; Tu, W.; Song, C. Large-scale demand driven design of a customized bus network: A methodological framework and Beijing case study. J. Adv. Transp. 2017, 2017, 3865701. [Google Scholar] [CrossRef]
- Bridj. 2018. Available online: https://www.bridj.com/journey/ (accessed on 15 July 2018).
- Zhou, C.; Dai, P.; Li, R. The passenger demand prediction model on bus networks. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops, Dallas, TX, USA, 7–10 December 2013; pp. 1069–1076. [Google Scholar]
- Zhou, C.; Dai, P.; Zhang, Z. Passenger demand prediction on bus services. In Proceedings of the International of the Conference on Green Computing and Internet Things, ICGCIoT 2015, Delhi, India, 8–10 October 2016; pp. 1430–1435. [Google Scholar]
- Barabino, B.; Di Francesco, M.; Mozzoni, S. Rethinking bus punctuality by integrating Automatic Vehicle Location data and passenger patterns. Transp. Res. Part A Pol. Pract. 2015, 75, 84–95. [Google Scholar] [CrossRef]
- Tilocca, P.; Farris, S.; Angius, S.; Argiolas, R.; Obino, A.; Secchi, S.; Mozzoni, S.; Barabino, B. Managing Data and Rethinking Applications in an Innovative Managing Data and Rethinking Applications in an Innovative Mid-sized Bus Fleet Bus Fleet. Transp. Res. Procedia 2017, 25, 1899–1919. [Google Scholar] [CrossRef]
- Hounsell, N.B.; Shrestha, B.P.; Wong, A. Data management and applications in a world-leading bus fleet. Transp. Res. Part C 2012, 22, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Mendes-moreira, J.; Moreira-matias, L.; Gama, J.; Freire, J.; Sousa, D. Validating the coverage of bus schedules: A Machine Learning approach. Inf. Sci. 2015, 293, 299–313. [Google Scholar] [CrossRef]
- Khiari, O.; Moreira-Matias, J.; Cerqueira, L.; Cats, V. Automated setting of Bus schedule coverage using unsupervised machine learning. In Advances in Knowledge Discovery and Data Mining; Springer: Cham, Switzerland, 2016; pp. 552–564. [Google Scholar]
- Samaras, I.; Fachantidis, P.; Tsoumakas, A.; Vlahavas, G. A prediction model of passenger demand using AVL and APC data from a bus fleet. In Proceedings of the 19th Panhellenic Conference on Informatics, Athens, Greece, 1–3 October 2015; pp. 129–134. [Google Scholar]
- Moreira-Matias, L.; Mendes-Moreira, J.; de Sousa, J.F.; Gama, J. Improving Mass Transit Operations by Using AVL-Based Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1636–1653. [Google Scholar] [CrossRef]
- Li, T.; Sun, D.; Jing, P.; Yang, K. Smart card data mining of public transport destination: A literature review. Information 2018, 9, 18. [Google Scholar] [CrossRef]
- Jung, J.; Sohn, K. Deep-learning architecture to forecast destinations of bus passengers from entry-only smart-card data. IET Intell. Transp. Syst. 2017, 11, 334–339. [Google Scholar] [CrossRef]
- Zhang, W.; Guhathakurta, S.; Fang, J.; Zhang, G. Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach. Sustain. Cities Soc. 2015, 19, 34–45. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K.M. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part C Emerg. Technol. 2014, 40, 1–13. [Google Scholar] [CrossRef]
- Kornhauser, A.L. Uncongested Mobility for All: New Jersey’s Area-wide aTaxi System; Princeton University: Princeton, NJ, USA, 2013. [Google Scholar]
- Poczter, L.; Jankovic, S.L. The Google Car: Driving toward a better future? J. Bus. Case Stud. 2014, 10, 7. [Google Scholar] [CrossRef]
- McKinsey Global Institute. Notes from the AI Frontier. Insights from Hundreds of Use Cases; McKinsey Global Institute: San Francisco, CA, USA, 2018; p. 36. [Google Scholar]
- Chong, Z.J.; Qin, B.; Bandyopadhyay, T.; Wongpiromsarn, T.; Rebsamen, B.; Dai, P.; Rankin, E.S.; Ang, M.H. Autonomy for Mobility on Demand; Springer: Berlin/Heidelberg, Germany, 2013; Volume 127. [Google Scholar]
- Manyika, J.; Chui, M.; Bughin, J.; Dobbs, R.; Bisson, P.; Marrs, A. Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy; McKinsey Global Insitute: San Francisco, CA, USA, 2013; p. 163. [Google Scholar]
- Waymo. Available online: https://waymo.com/tech/ (accessed on 24 May 2018).
- Stanley, B.; Gyimesi, K. A New Relationship—People and Cars; IBM Institute for Business Value: Armonk, NY, USA, 2016; p. 21. [Google Scholar]
- Anderson, J.; Kalra, N.; Stanley, K.; Sorensen, P.; Samaras, C.; Oluwatola, O. Autonomous Vehicle Technology: A Guide for Policymakers; RAND Corporation: Arlington, VA, USA, 2016. [Google Scholar]
- Dresner, K.; Stone, P. Sharing the road: Autonomous vehicles meet human drivers. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, 6–12 January 2007; pp. 1263–1268. [Google Scholar]
- Fajardo, D.; Au, T.-C.; Waller, S.; Stone, P.; Yang, D. Automated Intersection Control. Transp. Res. Rec. J. Transp. Res. Board 2011, 2259, 223–232. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Hübner, H.P. Automated Driving—Where Are We Heading? Available online: https://link.springer.com/chapter/10.1007%2F978-3-658-05978-1_5 (accessed on 30 March 2018).
- Olden, J.D.; Jackson, D.A. Illuminating the ‘black box’: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Arora, M.K.; Sarkar, S.; Gupta, R.P. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 2006, 85, 347–366. [Google Scholar] [CrossRef]
- Setiono, J.Y.; Leow, R.; Thong, W.K. Opening the neural network black box: An algorithm for extracting rules from function approximating artificial neural networks. In Proceedings of the Twenty First International Conference on Information Systems, Brisbane, Australia, 10–13 December 2000; pp. 176–186. [Google Scholar]
- Dayhoff, J.E.; DeLeo, J.M. Artificial neural networks: Opening the black box. Cancer 2001, 91, 1615–1635. [Google Scholar] [CrossRef]
- Waltz, D.L. Artificial Intelligence: Realizing the Ultimate Promises of Computing in Computing Research. AI Mag. 1997, 18, 49–52. [Google Scholar]
- Vlahogianni, E.I.; Karlaftis, M.G.; Golias, J.C. Short-term traffic forecasting: Where we are and where we’re going. Transp. Res. Part C 2014, 43, 3–19. [Google Scholar] [CrossRef]
- Chowdhury, A.W.; Sadek, M. Advantages and Limitations of Artificial Intelligence. Available online: https://www.researchgate.net/profile/Said_Easa/publication/273576102_Design_and_construction_of_transportation_infrastructure_httponlinepubstrborgonlinepubscircularsec168pdf/links/55097a910cf26ff55f85932b.pdf#page=14 (accessed on 10 June 2018).
- Black, P. Big-O Notation. Dict. Algorithms Data Structures. Available online: http://www.nist.gov/dads/HTML/ bigOnotation.html (accessed on 20 July 2018).
- Danziger, Big O Notation. 2010. Available online: http://www.scs.ryerson.ca/~mth110/Handouts/PD/bigO.Pdf (accessed on 14 November 2018).
- Fortnow, L. The status of the P versus NP problem. Commun. ACM 2009, 52, 78–86. [Google Scholar] [CrossRef]
- Cook, S. The P Versus NP Problem. In The Millennium Prize Problems; American Mathematical Society: Providence, RI, USA, 2006; p. 86. [Google Scholar]
- Feynman, R. Feynman Lectures on Computation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Adoni, A.H.; Nahhal, W.Y.; Aghezzaf, T.; Elbyed, B. The MapReduce-based approach to improve vehicle controls on big traffic events. In Proceedings of the 2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), Rabat, Morocco, 27–28 April 2017. [Google Scholar]
- Dean, S.; Ghemawat, J. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [Google Scholar] [CrossRef]
- Kumar, A.; Moseley, R.; Vassilvitskii, B.; Vattani, S. Fast greedy algorithms in mapreduce and streaming. ACM Trans. Parallel Comput. (TOPC) 2015, 2, 14. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, J.; Guan, J.; Zhang, L. Method of predicting bus arrival time based on MapReduce combining clustering with neural network. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 10–12 March 2017; pp. 296–302. [Google Scholar]
- Agafonov, A.; Yumaganov, A. Spatial-Temporal K Nearest Neighbors Model on MapReduce for Traffic Flow Prediction. In International Conference on Intelligent Data Engineering and Automated Learning; Springer: Cham, Switzerland, 2018; pp. 253–260. [Google Scholar]
- Larose, C.; Larose, D.T. Discovering Knowledge in Data: An Introduction to Data Mining; John Wiley Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Schmidhuber, J. Deep Learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Deep Learning Market Size & Growth, Industry Research Report 2025; Grand View Research: Pune, India, 2017. [Google Scholar]
- Department of Infrastructure and Regional Development. Traffic and Congestion Cost Trends for Australian Capital Cities; No. Information Sheet 74; Department of Infrastructure and Regional Development: Canberra, Australia, 2015; pp. 1–39.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of Artificial Intelligence in Transport: An Overview. Sustainability 2019, 11, 189. https://doi.org/10.3390/su11010189
Abduljabbar R, Dia H, Liyanage S, Bagloee SA. Applications of Artificial Intelligence in Transport: An Overview. Sustainability. 2019; 11(1):189. https://doi.org/10.3390/su11010189
Chicago/Turabian StyleAbduljabbar, Rusul, Hussein Dia, Sohani Liyanage, and Saeed Asadi Bagloee. 2019. "Applications of Artificial Intelligence in Transport: An Overview" Sustainability 11, no. 1: 189. https://doi.org/10.3390/su11010189
APA StyleAbduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of Artificial Intelligence in Transport: An Overview. Sustainability, 11(1), 189. https://doi.org/10.3390/su11010189