Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data
<p>The kernel density distribution of the carbon emissions from ALU in China (Note: X-axis represents the carbon emissions from ALU).</p> "> Figure 2
<p>The kernel density distribution of the carbon emissions from ALU in the eastern region. (Note: X-axis represents the carbon emissions from ALU).</p> "> Figure 3
<p>The kernel density distribution of the carbon emissions from ALU in the central region. (Note: X-axis represents the carbon emissions from ALU).</p> "> Figure 4
<p>The kernel density distribution of the carbon emissions from ALU in the western region. (Note: X-axis represents the carbon emissions from ALU).</p> ">
Abstract
:1. Introduction
2. Methods and Data
2.1. Calculation of the Carbon Emissions from ALU
2.2. Kernel Density Estimation
2.3. Data Sources
3. Result Analysis
3.1. Descriptive Analysis of Carbon Emissions from ALU
3.2. Evolution Characteristics of the Carbon Emissions from ALU for the Whole Country
3.3. Regional Analysis of the Evolution Characteristics of the Carbon Emissions from ALU
4. Conclusions and Policy Recommendations
4.1. Conclusions
4.2. Policy Recommendations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shi, Q.; Chen, J.D.; Shen, L.Y. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 2017, 166, 615–627. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 2014: Synthesis Report; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Breetz, H.L. Regulating carbon emissions from indirect land use change (ILUC): U.S. and California case studies. Environ. Sci. Policy 2017, 77, 25–31. [Google Scholar] [CrossRef]
- Xu, H.Z.; Zhang, W.J. The causal relationship between carbon emissions and land urbanization quality: A panel data analysis for Chinese provinces. J. Clean. Prod. 2016, 137, 241–248. [Google Scholar] [CrossRef]
- Yadav, D.; Wang, J.Y. Modelling carbon dioxide emissions from agricultural soils in Canada. Environ. Pollut. 2017, 230, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.S.; Zhao, T.; Liu, N.; Kang, J.D. Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective. Appl. Energy 2014, 132, 298–307. [Google Scholar] [CrossRef]
- Nikzad, R.; Sedigh, G. Greenhouse gas emissions and green technologies in Canada. Environ. Dev. 2017, 24, 99–108. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L. Sources and sinks of carbon from land-use change in China. Glob. Biogeochem. Cycles 2003, 17, 1034–1047. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Gloor, M.; Gruber, N.; Beaulieu, C.; Jacobson, A.R.; Mikaloff Fletcher, S.E.; Pacala, S.; Rodgers, K. Trends and regional distributions of land ocean carbon sinks. Biogeosciences 2010, 7, 2351–2367. [Google Scholar] [CrossRef]
- Shuai, C.Y.; Shen, L.Y.; Jiao, L.D.; Wua, Y.; Tan, Y.T. Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl. Energy 2017, 187, 310–325. [Google Scholar] [CrossRef]
- Voicu, M.F.; Shaw, C.; Kurz, W.A.; Huffman, T.; Liu, J.G.; Fellows, M. Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada. J. Environ. Manag. 2017, 193, 318–325. [Google Scholar] [CrossRef] [PubMed]
- World Bank. World Development Indicators: Agricultural Methane Emissions. Available online: http://data.worldbank.org/indicator/EN.ATM.METH.KT.CE (Accessed on 25 January 2018).
- Lau, L.J.; Zheng, H.H. How much slack was there in the Chinese economy prior to its economic reform of 1978. China Econ. Rev. 2017, 45, 124–142. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, H.; Wei, Y.M.; Li, Y.W. The influence of climate change on CO2 (carbon dioxide) emissions: An empirical estimation based on Chinese provincial panel data. J. Clean. Prod. 2016, 131, 667–677. [Google Scholar] [CrossRef]
- Lin, B.Q.; Fei, R.L. Regional differences of CO2 emissions performance in China’s agricultural sector: A Malmquist index approach. Eur. J. Agron. 2015, 70, 33–40. [Google Scholar] [CrossRef]
- Gao, B.; Ju, X.T.; Zhang, Q.; Christie, P.; Zhang, F.S. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosci. Discuss. 2011, 8, 3011–3024. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zhang, J.B.; He, Y.Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, G. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in Suzhou City, Anhui Province, China. Appl. Mech. Mater. 2013, 291–294, 1385–1388. [Google Scholar] [CrossRef]
- Xiong, C.; Yang, D.; Huo, J. Spatial-temporal characteristics and LMDI-based impact factor decomposition of agricultural carbon emissions in Hotan Prefecture, China. Sustainability 2016, 8, 262. [Google Scholar] [CrossRef]
- Tian, J.X.; Yang, H.L.; Xiang, P.G.; Liu, D.W.; Li, L. Drivers of agricultural carbon emissions in Hunan Province, China. Environ. Earth. Sci. 2016, 75, 121–138. [Google Scholar] [CrossRef]
- Yang, X.L.; Gao, W.S.; Zhang, M.; Chen, Y.Q.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Yao, Z.S.; Yan, G.X.; Zheng, X.H.; Wang, R.; Liu, C.Y.; Butterbach-Bahl, K. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environ. Pollut. 2017, 231, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Xiong, A.H.; Yang, D.G.; Huo, J.W.; Zhao, Y.N. The relationship between agricultural carbon emissions and agricultural economic growth and policy recommendations of low-carbon agriculture economy. Pol. J. Environ. Stud. 2016, 25, 2187–2195. [Google Scholar] [CrossRef]
- Luo, Y.S.; Long, X.L.; Wu, C.; Zhang, J.J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Johnson, J.M.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China. China Popul. Resour. Environ. 2012, 22, 42–47. (In Chinese) [Google Scholar]
- Wu, J.F.; Wang, X.H. Dynamic changes in the carbon intensity and sustainability of farmland use: A case study in Pingdu County, Shandong Province, China. Acta Ecol. Sin. 2017, 37, 2904–2912. (In Chinese) [Google Scholar]
- Li, B.; Fu, S.Y.; Zhang, J.B.; Yu, H.S. Carbon functions of agricultural land use and economy across China: A correlation analysis. Energy Procedia 2011, 5, 1949–1956. [Google Scholar]
- Chen, A.; Groenewold, N. Regional equality and national development in China: Is there a trade-off. Growth Chang. 2011, 42, 628–669. [Google Scholar]
- Feng, T.T.; Yang, Y.S.; Xie, S.Y.; Dong, J.; Ding, L. Economic drivers of greenhouse gas emissions in China. Renew. Sustain. Enegy Rev. 2017, 78, 996–1006. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G.A. Synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Institute of Resource, Ecosystem and Environment of Agriculture in Nanjing Agricultural University (IREEA). Available online: http://ireea.njau.edu.cn/ch/DownShow.asp?ID=101 (Accessed on 5 November 2007).
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Wu, X.R.; Zhang, J.B.; Tian, Y.; Li, P. Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resour. Sci. 2014, 36, 129–138. (In Chinese) [Google Scholar]
- Mood, A.M.; Graybill, F.A.; Boes, D.C. An Introduction to the Theory of Statistics; McGraw-Hill Book Company: New York, NY, USA, 1973. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis. Chapman and Hall: London, UK, 1986. [Google Scholar]
- Kuang, B.; Lu, X.H.; Zhou, M.; Rao, Y.X. Analysis of spatial-temporal evolution of urban land economic density disparity in prefecture-level cities of China. Sci. Geogr. Sin. 2017, 37, 1850–1858. (In Chinese) [Google Scholar]
- Burkhauser, R.V.; Rovba, L. Income Inequality in the 1990s: Comparing the United States, Great Britain and Germany; Discussion Papers 576; Econstor: Berlin, German, 2006. [Google Scholar]
- Fan, D.; Wang, W.G. Industrial energy efficiency in China and driving factors based on a low carbon economy. Resour. Sci. 2013, 35, 1790–1800. (In Chinese) [Google Scholar]
- Xie, H.L.; Wang, W. Exploring the spatial-temporal disparities of urban land use economic efficiency in China and its influencing factors under environmental constraints based on a Sequential Slacks-Based Model. Sustainability 2015, 7, 10171–10190. [Google Scholar] [CrossRef]
- Yue, Q.; Xu, X.R.; Hillier, J.; Cheng, K.; Pan, G.X. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- Li, A.J.; Zhang, A.Z.; Zhou, Y.X.; Yao, X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. J. Clean. Prod. 2017, 141, 1428–1444. [Google Scholar] [CrossRef]
- Li, Z.W.; Zheng, X.G. Study on relationship between Sichuan agricultural carbon dioxide emissions and agricultural economic growth. Energy Procedia 2011, 5, 1073–1077. [Google Scholar]
- Lu, S.S.; Liu, Y.S.; Long, H.L.; Guan, X.H. Agricultural Production Structure Optimization: A Case study of major grain producing areas, China. J. Integr. Agric. 2013, 12, 184–197. [Google Scholar] [CrossRef]
- Xu, F.; Xiang, N.; Yan, J.J.; Chen, L.J.; Nijkamp, P.; Higano, Y. Dynamic simulation of China’s carbon emission reduction potential by 2020. Lett. Spat. Resour. Sci. 2015, 8, 15–27. [Google Scholar] [CrossRef]
Carbon Sources | Calculation Method | Emission Coefficient | Unit | References | Data Sources |
---|---|---|---|---|---|
Chemical Fertilizer | Consumption of Chemical Fertilizers in Rural Areas | 0.8956 | kg C/kg | West and Marland [31] | China Rural Statistical Yearbook (CRSY) |
Pesticide | Consumption of Pesticides | 4.9341 | kg C/kg | Post and Kwon [32] | |
Agricultural Film | Consumption of Plastic Film for Farm Use | 5.18 | kg C/kg | IREEA [33] | |
Agricultural Machinery | Total Power of Agricultural Machinery | 0.18 | kg C/kW | Li et al. [28] | |
Agricultural Irrigation | Effective Irrigation Area | 25 | kg C/hm2 | Dubey and Lal [34] | |
Tillage | Sown Area of Farm Crops | 312.6 | kg C/km2 | Wu et al. [35] |
Items Degree | Height of the Peak | Width of the Peak | Location of the Peak | Number of Peaks | The Left Tail | The Right Tail |
---|---|---|---|---|---|---|
Increase | Flat | Increase | Move left | Increase | Longer | Longer |
Decrease | Steep | Decrease | Move right | Decrease | Shorter | Shorter |
Indicators | Unit | National Total | Eastern Region | Central Region | Western Region |
---|---|---|---|---|---|
Area of Agricultural Land at Year-end | 103 hectares | 645,456.8 | 82,244.5 | 138,790.3 | 424,422 |
Area of Cultivated Land at Year-end | 103 hectares | 134,998.9 | 31,191.5 | 53,378.8 | 50,428.6 |
Population at Year-end | 104 persons | 137,462 | 56,901 | 43,054 | 37,507 |
Gross Domestic Products | 100 million yuan | 722,767.9 | 401,651.7 | 176,097.3 | 145,018.9 |
Gross Output of Agricultural Products | 100 million yuan | 57,636 | 21,177.5 | 19,217.9 | 17,240.6 |
Per Capita Disposable Income of Rural Households | yuan | 11,421.7 | 15,789.61 | 10,940.55 | 8914.13 |
Output of Grain | 104 tons | 62,143.8 | 16,952.1 | 28,690.7 | 16,501 |
Crop Area Affected by Natural Disaster | 103 hectares | 21,770 | 6778 | 6692 | 8300 |
Variable | Mean | Standard Deviation (SD) | SD/Mean | Max | Min | Samples |
---|---|---|---|---|---|---|
Consumption of Chemical Fertilizers in rural areas (104 t) | 165.867 | 136.573,6 | 0.8234 | 716.1 | 2.5 | 496 |
Consumption of Pesticides (t) | 51,052.55 | 43,354.291 | 0.8492 | 173,461 | 583 | 496 |
Consumption of Plastic Film for Farm Use (t) | 64,005.09 | 62,057.471 | 0.9696 | 343,524 | 128 | 496 |
Total Power of Agricultural Machinery (104 kW) | 2608.976 | 2656.100 | 1.0181 | 13,353 | 95.3 | 496 |
Effective Irrigation Area (103 hm2) | 1899.166 | 1453.426 | 0.7653 | 5530.8 | 137.4 | 496 |
Sown Area of Farm Crops (103 hm2) | 5103.706 | 3572.396 | 0.7000 | 14,425 | 173.7 | 496 |
Region | Province | 2000 | 2003 | 2006 | 2009 | 2012 | 2015 | Average |
---|---|---|---|---|---|---|---|---|
Eastern Region | Beijing | 24.82 | 23.76 | 22.03 | 21.78 | 21.20 | 16.79 | 21.68 |
Tianjin | 22.32 | 25.04 | 31.28 | 32.83 | 31.22 | 27.75 | 29.32 | |
Hebei | 325.84 | 352.16 | 386.44 | 403.33 | 417.59 | 428.91 | 387.46 | |
Liaoning | 162.69 | 169.68 | 188.27 | 215.61 | 240.84 | 244.92 | 205.37 | |
Shanghai | 34.67 | 30.89 | 29.25 | 26.09 | 23.36 | 20.98 | 27.90 | |
Jiangsu | 392.08 | 391.78 | 406.36 | 415.04 | 408.44 | 396.96 | 403.40 | |
Zhejiang | 133.90 | 138.13 | 146.20 | 149.13 | 150.51 | 145.89 | 144.77 | |
Fujian | 150.31 | 152.04 | 164.51 | 170.18 | 170.96 | 174.18 | 163.56 | |
Shandong | 581.67 | 646.97 | 718.27 | 687.11 | 688.51 | 664.09 | 671.11 | |
Guangdong | 219.59 | 244.48 | 259.24 | 287.53 | 305.31 | 316.51 | 272.64 | |
Hainan | 30.98 | 40.55 | 55.05 | 73.15 | 72,53 | 83.22 | 59.63 | |
Central Region | Shanxi | 105.56 | 109.91 | 121.98 | 132.21 | 149.45 | 151.67 | 128.59 |
Jilin | 133.85 | 148.89 | 177.89 | 210.01 | 245.52 | 275.26 | 199.56 | |
Heilongjiang | 159.13 | 165.14 | 215.68 | 257.48 | 316.08 | 331.27 | 241.85 | |
Anhui | 305.52 | 337.54 | 362.02 | 386.80 | 418.04 | 423.85 | 375.03 | |
Jiangxi | 147.58 | 149.85 | 184.02 | 199.31 | 209.71 | 210.11 | 185.79 | |
Henan | 487.40 | 536.43 | 618.55 | 714.97 | 775.35 | 808.42 | 661.26 | |
Hubei | 313.42 | 334.81 | 364.29 | 413.84 | 430.80 | 406.07 | 378.56 | |
Hunan | 235.96 | 251.49 | 289.77 | 311.39 | 336.25 | 336.21 | 294.96 | |
Western Region | Inner Mongolia | 97.32 | 114.05 | 153.50 | 201.07 | 230.05 | 281.70 | 177.78 |
Guangxi | 178.19 | 205.81 | 234.54 | 259.36 | 283.45 | 300.35 | 245.11 | |
Chongqing | 86.55 | 89.12 | 99.04 | 113.40 | 119.74 | 122.94 | 105.63 | |
Sichuan | 267.40 | 265.09 | 292.61 | 319.02 | 332.32 | 331.91 | 301.29 | |
Guizhou | 81.52 | 87.60 | 96.42 | 112.01 | 122.16 | 130.09 | 103.82 | |
Yunnan | 143.28 | 166.57 | 192.46 | 222.93 | 274.73 | 302.46 | 216.79 | |
Tibet | 3.12 | 3.96 | 5.26 | 5.62 | 6.19 | 7.68 | 5.42 | |
Shaanxi | 140.61 | 148.64 | 156.75 | 191.84 | 246.12 | 241.37 | 184.78 | |
Gansu | 100.87 | 112.96 | 124.72 | 149.67 | 201.67 | 226.83 | 153.26 | |
Qinghai | 8.57 | 8.36 | 8.80 | 10.12 | 12.69 | 14.58 | 10.43 | |
Ningxia | 25.79 | 28.09 | 34.46 | 40.95 | 46.33 | 47.11 | 37.49 | |
Xinjiang | 132.33 | 147.95 | 191.28 | 240.68 | 293.48 | 388.85 | 230.73 | |
Total emissions in China | 5232.83 | 5627.75 | 6330.94 | 6974.46 | 7580.61 | 7858.93 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data. Sustainability 2018, 10, 552. https://doi.org/10.3390/su10020552
Lu X, Kuang B, Li J, Han J, Zhang Z. Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data. Sustainability. 2018; 10(2):552. https://doi.org/10.3390/su10020552
Chicago/Turabian StyleLu, Xinhai, Bing Kuang, Jing Li, Jing Han, and Zuo Zhang. 2018. "Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data" Sustainability 10, no. 2: 552. https://doi.org/10.3390/su10020552
APA StyleLu, X., Kuang, B., Li, J., Han, J., & Zhang, Z. (2018). Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data. Sustainability, 10(2), 552. https://doi.org/10.3390/su10020552