Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China
<p>Geographic location of Guangzhou (<b>a</b>) and (<b>c</b>), urban waterlogging risk spots of the central urban districts of Guangzhou (<b>b</b>) and land use/cover map (<b>d</b>).</p> "> Figure 2
<p>Two measures of scales were selected in our study: three different grid scales of 1 km × 1 km, 3 km × 3 km, 5 km × 5 km (<b>a</b>–<b>c</b>); catchment scale (<b>d</b>).</p> "> Figure 3
<p>The total variation in urban waterlogging risk spots is partitioned into the contributions of two subsets of explanatory variables (a, b and shared portion c) [<a href="#B62-sustainability-10-01589" class="html-bibr">62</a>]. PD, Patch Density; ED, Edge Density; LSI, Landscape Shape Index; ENN_MN, Mean Euclidean Nearest Neighbor Distance; AI, Aggregation Index.</p> "> Figure A1
<p>The spatial distribution map of 24 selected urban waterlogging risk spots and their on-site photographs.</p> ">
Abstract
:1. Introduction
- (1)
- Does the composition or the configuration of the impervious surface affect urban waterlogging risk spots more?
- (2)
- How does the impervious surface influence urban waterlogging risk spots at multiple scales?
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Urban Waterlogging Risk Spots and Scale Selection
2.2.2. Measurement of the Spatial Pattern of the Impervious Surface
2.2.3. Statistical Analyses
3. Results
3.1. Correlation Analysis Results at Multiple Scales
3.2. Results of Partial Redundancy Analysis at Multiple Scales
4. Discussion
4.1. Which Contributed More to Urban Waterlogging Risk Spots: The Composition or the Configuration of the Impervious Surface?
4.2. Scales Effects
4.3. Implications for Urban Planning and Urban Waterlogging Mitigation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Number | Urban Waterlogging Risk Spot | 100-m Buffer Radiuses of Urban Waterlogging Risk Spots | ||
---|---|---|---|---|
Substrate Materials | %Impervious | %Vegetation | Pervious | |
1 | Cement | 98.88 | 0.21 | No |
2 | Cement | 85.54 | 14.46 | No |
3 | Cement | 92.46 | 7.54 | No |
4 | Soil | 49.12 | 15.53 | part |
5 | Cement | 68.06 | 31.94 | part |
6 | Cement | 87.73 | 12.27 | No |
7 | Cement | 94.52 | 5.48 | No |
8 | Asphalt | 100 | 0 | No |
9 | Cement | 82.41 | 17.59 | No |
10 | Asphalt | 98.78 | 1.22 | No |
11 | Asphalt | 89.09 | 10.08 | No |
12 | Asphalt | 83.2 | 16.8 | No |
13 | Asphalt | 99.59 | 0.41 | No |
14 | Soil | 55.89 | 44.11 | Part |
15 | Asphalt | 77.97 | 18.26 | No |
16 | Asphalt | 86.75 | 13.25 | No |
17 | Asphalt | 85.09 | 0 | No |
18 | Cement | 95.19 | 4.81 | No |
19 | Soil | 66.89 | 33.11 | Part |
20 | Asphalt | 91.29 | 8.71 | No |
21 | Asphalt | 89.46 | 10.54 | No |
22 | Asphalt | 82.85 | 17.15 | No |
23 | Asphalt | 69.13 | 30.87 | Part |
24 | Soil | 68.22 | 31.78 | Part |
Spatial Resolution | 1 km × 1 km | 3 km × 3 km | 5 km × 5 km | Catchment | ||||
---|---|---|---|---|---|---|---|---|
Regression Model | R2 | Regression Model | R2 | Regression Model | R2 | Regression Model | R2 | |
2 m | Y = 0.285 × imp% + 1.562 | 0.059 | Y = 0.274 × imp% + 5.060 | 0.320 | Y = 6.600 × imp% + 9.731 | 0.428 | Y = 1.259 × Area_imp-0.887 × LSI + 2.262 | 0.424 |
10 m | Y = 0.285 × imp% + 1.561 | 0.058 | Y = 2.729 × imp% + 5.060 | 0.321 | Y = 6.610 × imp% + 9.731 | 0.429 | Y = 0.934 × Area_imp + 2.244 | 0.257 |
30 m | Y = 0.325 × imp% + 1.576 | 0.073 | Y = 2.720 × imp% + 5.060 | 0.319 | Y = 6.569 × imp% + 9.731 | 0.423 | Y = 0.922 × Area_imp + 0.455 × imp% + 2.244 | 0.307 |
Model | 1 km × 1 km | 3 km × 3 km | 5 km × 5 km | Catchment | ||||
---|---|---|---|---|---|---|---|---|
Regression Model | R2 | Regression Model | R2 | Regression Model | R2 | Regression Model | R2 | |
Model 2 | Y = 0.306× %build + 1.562 | 0.075 | Y = 3.056 × %build + 5.060 | 0.409 | Y = 7.456 × ED + 9.731 | 0.557 | Y = 0.884 × Area_build + 0.518 × ED + 2.261 | 0.352 |
Model 3 | Y = 0.306× %build + 1.562 | 0.069 | Y = 2.924 × %build + 1.075 × PD + 5.060 | 0.472 | Y = 8.837 × %build + 5.344 × PD − 4.275 × ED + 9.731 | 0.689 | Y = 0.965 × Area_build + 2.261 | 0.297 |
Model 4 | Y = 0.578 × ED − 0.381 × LSI + 1.562 | 0.083 | Y = 2.890 × ED + 1.504 ×AI + 5.060 | 0.403 | Y = 7.456 × ED + 9.731 | 0.557 | Y = 1.210 × LSI + 0.748 × AI + 2.304 | 0.279 |
Model 5 | - | - | Y = 1.547 × LSI + 5.060 | 0.089 | Y = 4.800 × LSI + 9.731 | 0.207 | Y = 0.831 × LSI + 2.304 | 0.192 |
References
- East Asia Department, Asian Development Bank. Water-Related Disasters and Disaster Risk Management in the People’s Republic of China; ADB Reports; Asian Development Bank: Mandaluyong, Philippines, 2015. [Google Scholar]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Xue, F.; Huang, M.; Wang, W.; Zou, L. Numerical Simulation of Urban Waterlogging Based on FloodArea Model. Adv. Meteorol. 2016, 2016, 3940707. [Google Scholar] [CrossRef]
- Akter, A.; Mohit, S.A.; Chowdhury, M.A.H. Predicting urban storm water-logging for Chittagong city in Bangladesh. Int. J. Sustain. Built Environ. 2017, 6, 238–249. [Google Scholar] [CrossRef]
- Li, C. Ecohydrology and good urban design for urban storm water-logging in Beijing, China. Ecohydrol. Hydrobiol. 2012, 12, 287–300. [Google Scholar] [CrossRef]
- Quan, R.-S.; Liu, M.; Lu, M.; Zhang, L.-J.; Wang, J.-J.; Xu, S.-Y. Waterlogging risk assessment based on land use/cover change: A case study in Pudong New Area, Shanghai. Environ. Earth Sci. 2010, 61, 1113–1121. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Voinov, A.; Gao, S. Nature-inspired stormwater management practice: The ecological wisdom underlying the Tuanchen drainage system in Beijing, China and its contemporary relevance. Landsc. Urban Plan. 2016, 155, 11–20. [Google Scholar] [CrossRef]
- Jia, H.; Yao, H.; Yu, S.L. Advances in LID BMPs research and practice for urban runoff control in China. Front. Environ. Sci. Eng. 2013, 7, 709–720. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Song, B. Public perceptions of and willingness to pay for sponge city initiatives in China. Resour. Conserv. Recycl. 2017, 122, 11–20. [Google Scholar] [CrossRef]
- Gaitan, S.; Ten Veldhuis, J.A.E. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 9–14. [Google Scholar] [CrossRef]
- Wang, C.; Du, S.; Wen, J.; Zhang, M.; Gu, H.; Shi, Y.; Xu, H. Analyzing explanatory factors of urban pluvial floods in Shanghai using geographically weighted regression. Stoch. Environ. Res. Risk Assess. 2017, 31, 1777–1790. [Google Scholar] [CrossRef]
- Su, M.; Zheng, Y.; Hao, Y.; Chen, Q.; Chen, S.; Chen, Z.; Xie, H. The influence of landscape pattern on the risk of urban water-logging and flood disaster. Ecol. Indic. 2017. [Google Scholar] [CrossRef]
- Su, W.; Duan, H. Catchment-based imperviousness metrics impacts on floods in Niushou River basin, Nanjing City, East China. Chin. Geogr. Sci. 2017, 27, 229–238. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J. The nature of small-scale flooding, muddy floods and retention pond sedimentation in central Belgium. Geomorphology 1999, 29, 275–292. [Google Scholar] [CrossRef]
- Rodolfo, K.S.; Siringan, F.P. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disasters 2006, 30, 118–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, W.; Xu, S.; Yu, L. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Chang. 2012, 115, 537–558. [Google Scholar] [CrossRef]
- Herk, S.V.; Zevenbergen, C.; Ashley, R.; Rijke, J. Learning and Action Alliances for the integration of flood risk management into urban planning: A new framework from empirical evidence from The Netherlands. Environ. Sci. Policy 2011, 14, 543–554. [Google Scholar] [CrossRef]
- Mowla, Q.A.; Islam, M.S. Natural Drainage System and Water Logging in Dhaka: Measures to address the Problems. J. Bangladesh Inst. Plan. 2013, 6, 22–33. [Google Scholar]
- Nie, L. Integrated stormwater management as a long term strategy for preservation of building environment = La gestion intégrée des eaux pluviales comme stratégie à long terme pour la préservation du patrimoine bâti. J. Neurosci. Res. 2013, 42, 758–767. [Google Scholar]
- Hu, S.L.; Han, C.F.; Meng, L.P. A Scenario Planning Approach for Propositioning Rescue Centers for Urban Waterlog Disasters; Pergamon Press, Inc.: Oxford, UK, 2015; pp. 425–435. [Google Scholar]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yu, K.; Li, D. Spatial characteristics of local floods in Beijing urban area. Urban Water J. 2014, 11, 557–572. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Fu, Y. Spatio-temporal Characteristics of Urban Storm Waterlogging in Guangzhou and the Impact of Urban Growth. J. Geo-Inf. Sci. 2015, 17, 445–450. (In Chinese) [Google Scholar]
- Du, S.; Shi, P.; Van Rompaey, A.; Wen, J. Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Nat. Hazards 2015, 76, 1457–1471. [Google Scholar] [CrossRef]
- Gilroy, K.L.; Mccuen, R.H. A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. J. Hydrol. 2012, 414, 40–48. [Google Scholar] [CrossRef]
- Mejía, A.I.; Moglen, G.E. Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrol. Processes 2010, 24, 3359–3373. [Google Scholar] [CrossRef]
- Yang, G.; Bowling, L.C.; Cherkauer, K.A.; Pijanowski, B.C. The impact of urban development on hydrologic regime from catchment to basin scales. Landsc. Urban Plan. 2011, 103, 237–247. [Google Scholar] [CrossRef]
- Meierdiercks, K.L.; Smith, J.A.; Baeck, M.L.; Miller, A.J. Heterogeneity of Hydrologic Response in Urban Watersheds1. JAWRA 2010, 46, 1221–1237. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Csillag, F.; Kabos, S. Wavelets, boundaries, and the spatial analysis of landscape pattern. Ecoscience 2002, 9, 177–190. [Google Scholar] [CrossRef]
- Remmel, T.K.; Csillag, F. When are two landscape pattern indices significantly different? J. Geogr. Syst. 2003, 5, 331–351. [Google Scholar] [CrossRef]
- Remmel, T.K.; Fortin, M.J. Categorical, class-focused map patterns: Characterization and comparison. Landsc. Ecol. 2013, 28, 1587–1599. [Google Scholar] [CrossRef]
- Salavati, B.; Oudin, L.; Furusho-Percot, C.; Ribstein, P. Modeling approaches to detect land-use changes: Urbanization analyzed on a set of 43 US catchments. J. Hydrol. 2016, 538, 138–151. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A.; Batelaan, O. Coupling urban expansion models and hydrological models: How important are spatial patterns? Land Use Policy 2010, 27, 965–975. [Google Scholar] [CrossRef]
- Yang, G.; Bowling, L.C.; Cherkauer, K.A.; Pijanowski, B.C.; Niyogi, D. Hydroclimatic Response of Watersheds to Urban Intensity: An Observational and Modeling-Based Analysis for the White River Basin, Indiana. J. Hydrometeorol. 2010, 11, 122–138. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Yu, S. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China. Environ. Monitor. Assess. 2016, 188, 54. [Google Scholar] [CrossRef] [PubMed]
- Glenis, V.; Mcgough, A.S.; Kutija, V.; Kilsby, C.; Woodman, S. Flood modelling for cities using Cloud computing. J. Cloud Comput. Adv. Syst. Appl. 2013, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Tapia, C.; Abajo, B.; Feliu, E.; Mendizabal, M.; Martinez, J.A.; Fernández, J.G.; Laburu, T.; Lejarazu, A. Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecol. Indic. 2017, 78, 142–155. [Google Scholar] [CrossRef]
- Guerreiro, S.; Glenis, V.; Dawson, R.; Kilsby, C. Pluvial Flooding in European Cities—A Continental Approach to Urban Flood Modelling. Water 2017, 9, 296. [Google Scholar] [CrossRef]
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Leandro, J.; Schumann, A.; Pfister, A. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. J. Hydrol. 2016, 535, 356–365. [Google Scholar] [CrossRef]
- Redfern, T.W.; Macdonald, N.; Kjeldsen, T.R.; Miller, J.D.; Reynard, N. Current understanding of hydrological processes on common urban surfaces. Prog. Phys. Geogr. 2016, 40, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Yao, L.; Sun, R.; Chen, L. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting landscape metrics as indicators of spatial heterogeneity—A comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Caparros-Midwood, D.; Dawson, R.; Barr, S. Optimization of urban spatial development against flooding and other climate risks, and wider sustainability objectives. In Proceedings of the 3rd European Conference on Flood Risk Management (FLOODrisk 2016), Lyon, France, 17–21 October 2016; Volume 7, p. 04016. [Google Scholar]
- Mignot, E.; Paquier, A.; Haider, S. Modeling floods in a dense urban area using 2D shallow water equations. J. Hydrol. 2006, 327, 186–199. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.D.; Li, N.; Wang, S. Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landsc. Urban Plan. 2015, 140, 8–16. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS Help; Documentation for FRAGSTATS; Fragstats: Amherst, MA, USA, 2014. [Google Scholar]
- Alexakis, D.D.; Grillakis, M.G.; Koutroulis, A.G.; Agapiou, A.; Themistocleous, K.; Tsanis, I.K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; et al. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: The case study of Yialias basin in Cyprus. Nat. Hazards Earth Syst. Sci. 2014, 14, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xu, T.; Chen, Y. Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm. Remote Sens. 2016, 8, 625. [Google Scholar] [CrossRef]
- Remmel, T.K.; Csillag, F.; Mitchell, S.W.; Boots, B. Empirical distributions of landscape pattern indices as functions of classified image composition and spatial structure. In Proceedings of the Symposium on Geospatial Theory, Processing, and Applications, Ottawa, ON, Canada, 8–12 July 2002; pp. 9–12. [Google Scholar]
- Legendre, P. Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 2007, 1, 3–8. [Google Scholar] [CrossRef]
- Mudrák, O.; Doležal, J.; Frouz, J. Initial species composition predicts the progress in the spontaneous succession on post-mining sites. Ecol. Eng. 2016, 95, 665–670. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Wu, Z.; Cheng, J. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China. Environ. Pollut. 2015, 206, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5; Cambridge University Press: New York, USA, 2014. [Google Scholar]
- Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Volis, S.; Dorman, M.; Blecher, M.; Sapir, Y.; Burdeniy, L. Variation partitioning in canonical ordination reveals no effect of soil but an effect of co-occurring species on translocation success in Iris atrofusca. J. Appl. Ecol. 2011, 48, 265–273. [Google Scholar] [CrossRef]
- Yeo, I.Y.; Guldmann, J.M. Land-use optimization for controlling peak flow discharge and nonpoint source water pollution. Environ. Plan. B Plan. Des. 2006, 33, 903–921. [Google Scholar] [CrossRef]
- Gunn, J.R. Urban Patterns and Flood Damage in Texas Coastal Watersheds. Ph.D. dissertation, Texas A & M University, College Station, TX, USA, 2016. [Google Scholar]
- Niehoff, D.; Fritsch, U.; Bronstert, A. Land-use impacts on storm-runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol. 2002, 267, 80–93. [Google Scholar] [CrossRef]
- Sillanpää, N.; Koivusalo, H. Impacts of urban development on runoff event characteristics and unit hydrographs across warm and cold seasons in high latitudes. J. Hydrol. 2015, 521, 328–340. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Quan, R.; Zhang, L.; Liu, M.; Lu, M.; Wang, J.; Niu, H. Risk assessment of rainstorm waterlogging on subway in central urban area of Shanghai, China based on scenario simulation. Sci. Geogr. Sin. 2014, 73, 1569–1585. [Google Scholar]
- Brabec, E. Imperviousness and Land Use Policy: Toward an effective approach to watershed planning. J. Hydrol. Eng. 2009, 14, 425–433. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Dottori, F.; Todini, E. Testing a simple 2D hydraulic model in an urban flood experiment. Hydrol. Processes 2013, 27, 1301–1320. [Google Scholar] [CrossRef]
- Amaguchi, H.; Kawamura, A.; Olsson, J.; Takasaki, T. Development and testing of a distributed urban storm runoff event model with a vector-based catchment delineation. J. Hydrol. 2012, 420–421 (Suppl. C), 205–215. [Google Scholar] [CrossRef]
- Mejía, A.I.; Moglen, G.E. Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures. J. Hydrol. Eng. 2009, 14, 416–424. [Google Scholar] [CrossRef]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S. Modelling green roof stormwater response for different soil depths. Landsc. Urban Plan. 2016, 153, 170–179. [Google Scholar] [CrossRef]
- Ogden, F.L.; Raj Pradhan, N.; Downer, C.W.; Zahner, J.A. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Wu, X.; Yu, D.; Chen, Z.; Wilby, R.L. An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai. Nat. Hazards 2012, 63, 305–323. [Google Scholar] [CrossRef]
Spatial Resolution | Class | Scale | Composition | Fragmentation | Shape LSI | Proximity ENN_MN | Connectivity Cohesion | Aggregation AI | ||
---|---|---|---|---|---|---|---|---|---|---|
% | Area | PD | ED | |||||||
2 m | Impervious surface | 1 km × 1 km | 0.257 ** | - | −0.082 | −0.019 | −0.093 | −0.085 | 0.198 * | 0.207 ** |
3 km × 3 km | 0.578 ** | - | −0.067 | 0.149 | −0.121 | −0.422 ** | 0.451 ** | 0.371 ** | ||
5 km × 5 km | 0.671 ** | - | 0.013 | 0.359 | 0.076 | −0.528** | 0.285 | 0.359 | ||
Catchment | 0.359 * | 0.477 ** | −0.112 | −0.394 ** | −0.169 | 0.047 | 0.416 ** | 0.412 ** | ||
10 m | Impervious surface | 1 km × 1 km | 0.255 ** | - | −0.196 * | 0.000 | −0.080 | −0.130 | 0.208** | 0.150 |
3 km × 3 km | 0.579 ** | - | −0.374 ** | 0.190 | −0.120 | −0.357 * | 0.429** | 0.376 ** | ||
5 km × 5 km | 0.672 ** | - | −0.370 | 0.434 * | 0.110 | −0.544 ** | 0.330 | 0.360 | ||
Catchment | 0.260 | 0.523 ** | −0.170 | −0.150 | 0.070 | 0.140 | 0.295* | 0.240 | ||
30 m | Impervious surface | 1 km × 1 km | 0.260 ** | - | −0.212 ** | −0.050 | −0.130 | −0.100 | 0.196* | 0.181 * |
3 km × 3 km | 0.577 ** | - | −0.522 ** | 0.110 | −0.220 | −0.407 ** | 0.399** | 0.439 ** | ||
5 km × 5 km | 0.668 ** | - | −0.574 ** | 0.380 | 0.010 | −0.462 * | 0.380 | 0.442 * | ||
Catchment | 0.270 | 0.523 ** | −0.361 * | −0.190 | 0.060 | 0.010 | 0.335 * | 0.270 | ||
2 m | Building | 1 km × 1 km | 0.274 ** | - | −0.001 | 0.237 ** | 0.026 | −0.281 ** | 0.186 * | 0.159 |
3 km × 3 km | 0.653 ** | - | 0.302 * | 0.623 ** | 0.378 ** | −0.560 ** | 0.382 ** | 0.234 | ||
5 km × 5 km | 0.752 ** | - | 0.449 * | 0.748 ** | 0.574 ** | −0.816 ** | 0.407 * | 0.164 | ||
Catchment | 0.297 * | 0.545 ** | 0.383 ** | 0.371 * | 0.423 ** | −0.360 * | 0.103 | 0.041 | ||
Pavement | 1km × 1km | -0.034 | - | 0.037 | 0.030 | 0.008 | −0.013 | −0.020 | −0.041 | |
3 km × 3 km | 0.228 | - | 0.401 ** | 0.309 * | 0.390 ** | −0.169 | 0.239 | −0.007 | ||
5 km × 5 km | 0.507 ** | - | 0.551 ** | 0.457 * | 0.627 ** | −0.270 | 0.087 | 0.087 | ||
Catchment | 0.433 | 0.433 ** | 0.364 * | 0.145 | 0.459 ** | −0.117 | 0.202 | −0.271 |
Spatial Resolution | Fraction | 1 km × 1 km | 3 km × 3 km | 5 km × 5 km | Catchment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variation | Test | Selected | Variation | Test | Selected | Variation | Test | Selected | Variation | Test | Selected | ||
% of All | p | Metrics | % of All | p | Metrics | % of All | p | Metrics | % of All | p | Metrics | ||
2 m | a | 3.0 | 0.025 | %imp | 10.3 | 0.008 | %imp | 27.3 | 0.003 | %imp | 25.1 | 0.001 | Area_imp |
b | −0.9 | 0.777 | AI | −2.1 | 0.646 | AI | 2.0 | 0.277 | ENN_MN | 15.6 | 0.003 | ED | |
c1 | 2.9 | 0.027 | Cohesion | 21.7 | 0.002 | Cohesion | 15.5 | 0.002 | 7.4 | 0.001 | AI | ||
TE | 5.0 | 29.9 | ENN_MN | 44.8 | 48.1 | Cohesion | |||||||
10 m | a | 1.3 | 0.079 | %imp | 14.8 | 0.003 | %imp | 17.5 | 0.012 | %imp | 19.4 | 0.004 | Area_imp |
b | −1.1 | 0.884 | PD | 1.1 | 0.315 | PD, AI | −1.9 | 0.569 | ED | 0.3 | 0.274 | Cohesion | |
c1 | 4.6 | 0.034 | Cohesion | 17.3 | 0.002 | Cohesion | 25.4 | 0.006 | ENN_MN | 6.3 | 0.002 | ||
TE | 4.9 | 33.2 | ENN_MN | 41.0 | 26.0 | ||||||||
30 m | a | 1.8 | 0.079 | %imp | 1.6 | 0.145 | %imp | 3.4 | 0.155 | %imp | 18.8 | 0.003 | Area_imp |
b | −0.7 | 0.589 | PD, AI | −0.7 | 0.467 | PD, AI | −1.8 | 0.515 | PD, AI | 3.1 | 0.163 | PD | |
c1 | 3.8 | 0.046 | Cohesion | 30.3 | 0.004 | Cohesion | 38.9 | 0.012 | ENN_MN | 6.9 | 0.002 | Cohesion | |
TE | 4.8 | 31.2 | ENN_MN | 40.5 | 28.8 |
Fraction | 1 km × 1 km | 3 km × 3 km | 5 km × 5 km | Catchment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variation | Test | Selected | Variation | Test | Selected | Variation | Test | Selected | Variation | Test | Selected | |
% of All | p | Metrics | % of All | p | Metrics | % of All | p | Metrics | % of All | p | Metrics | |
a1 | 3.1 | 0.013 | %build | 0.7 | 0.222 | %build | −2.0 | 0.636 | %build | 10.7 | 0.012 | Area_build |
b1 | 0.9 | 0.166 | ED | −3.3 | 0.754 | PD, ED | −5.9 | 0.793 | PD, ED | 20.6 | 0.008 | ED, LSI |
c2 | 3.8 | 0.001 | ENN_MN | 40.2 | 0.001 | LSI, ENN_MN | 56.7 | 0.005 | LSI, ENN_MN | −4.0 | 0.005 | ENN_MN |
TE | 7.9 | 37.6 | Cohesion | 48.8 | Cohesion | 27.3 | ||||||
a1 | 6.9 | 0.002 | %build | 39.1 | 0.001 | %build | 45.3 | 0.001 | %build | 16.5 | 0.001 | Area_build |
b2 | −4.0 | 0.974 | LSI | 6.3 | 0.045 | LSI | 12.9 | 0.022 | LSI | 25.0 | 0.001 | LSI |
c3 | <0.1 | 0.168 | 1.8 | 0.001 | PD, ED | 9.4 | 0.001 | PD, ED | −9.8 | 0.001 | ||
TE | 2.9 | 47.3 | 67.6 | 31.7 | ||||||||
a2 | <0.1 | 0.323 | %pave | 2.6 | 0.100 | %pave | −0.4 | 0.382 | %pave | 10.7 | 0.029 | Area pave |
b1 | 5.3 | 0.007 | ED | 36.3 | 0.001 | ED | 44.9 | 0.011 | ED, PD | 12.8 | 0.031 | ED, LSI |
c4 | −0.5 | 0.023 | ENN_MN | 0.6 | 0.001 | ENN_MN | 5.9 | 0.01 | ENN_MN | 4.3 | 0.006 | ENN_MN |
TE | 4.8 | 39.5 | 50.4 | 27.8 | ||||||||
a2 | 0.0 | 0.407 | %pave | <0.1 | 0.293 | %pave | −3.6 | 0.904 | %pave | −3.1 | 0.825 | Area pave |
b2 | 0.0 | 0.407 | ENN_MN | 5.0 | 0.139 | PD, ED | 13.2 | 0.117 | PD, ED | −0.3 | 0.420 | LSI |
c5 | 0.0 | 0.810 | ED | 3.2 | 0.103 | ENN_MN | 9.1 | 0.102 | ENN_MN | 14.7 | 0.033 | |
TE | 0.0 | 8.2 | 18.7 | 11.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Cheng, J.; Wu, Z.; Li, C.; Qin, J.; Liu, T. Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China. Sustainability 2018, 10, 1589. https://doi.org/10.3390/su10051589
Zhang H, Cheng J, Wu Z, Li C, Qin J, Liu T. Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China. Sustainability. 2018; 10(5):1589. https://doi.org/10.3390/su10051589
Chicago/Turabian StyleZhang, Hui, Jiong Cheng, Zhifeng Wu, Cheng Li, Jun Qin, and Tong Liu. 2018. "Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China" Sustainability 10, no. 5: 1589. https://doi.org/10.3390/su10051589
APA StyleZhang, H., Cheng, J., Wu, Z., Li, C., Qin, J., & Liu, T. (2018). Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China. Sustainability, 10(5), 1589. https://doi.org/10.3390/su10051589