Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India)
<p>Miyar Valley in India’s Himalayan region, and the location of the study area and its slope distribution. The grass/grazing area is marked by the white line. 1–4 study polygons. Location of the measurement pins depending on the degree of the slope: (1) 0–45°; (2) 45–90°; and (3) excluded comparison (control) area (0–90°). (4) The locations of the two polygons (polygon A and B) designated in order to check vegetation destruction and path widening.</p> "> Figure 2
<p>The experimental procedure for investigating vegetation destruction and path widening: (<b>a</b>) location of the four cords pulled through the polygon (2 × 4 m); and (<b>b</b>) path development and measuring procedure.</p> "> Figure 3
<p>Correlation between time of grazing and/or being trodden (X-axis) and relative vegetation cover (Y-axis) of <span class="html-italic">Persicaria affinis</span> (●); <span class="html-italic">Potentilla argyrophylla</span> (▲); <span class="html-italic">Astragalus Himalayanus</span> (○); and total (■) (<b>a</b>) decline in the number of plants, and (<b>b</b>) decline in the numbers of stems. Data for Polygon A is marked with a solid line, while Polygon B with a dotted line.</p> "> Figure 4
<p>The graphs of the data from the path widening experiment for both polygons, A and B (<b>a</b>,<b>b</b>), respectively. Each bar graph shows the width of the path for the initial stage, and one and two weeks later. The line graph shows changes in path width indicated in centimetres.</p> "> Figure 5
<p>A boxplot of the data from the soil loss experiment according to the slope’s degree of inclination. Values from the exposed (<b>a</b>,<b>b</b>) and comparison areas (<b>c</b>).</p> "> Figure 6
<p>Model of zoogenic erosion caused by the study sample (124 sheep, 287 goats, and 18 cattle): exposed (■) and comparison area (●).</p> "> Figure 7
<p>Daily soil loses caused by 100 animals.</p> ">
Abstract
:1. Introduction
2. Anthropo-Zoogenic Erosion: Terms and Scale of the Phenomenon
3. Study Area and Research Methodology
3.1. Study Area
3.2. Methods
4. Results
4.1. Vegetation Destruction due to Grazing or Trampling
4.2. Path Creation and Widening
4.3. The Horizontal Displacement of Soil
5. Discussion
5.1. Indirect and Direct Environmental Effects Caused by Livestock
5.2. Model of Zoogenic Erosion Caused by Livestock
6. Conclusions
7. Recommendations and Additional Considerations
- Introduce at least two main paths for the movement of livestock, for example, one to move to the grazing site and a second to move out from it. Because of this, the amount of complete plant destruction will be twice as small, and the erosion initiation process will be slower.
- Locate the places where livestock usually stay (e.g., during the night) on slopes with approximately 10 degrees of slope. The destruction will be lessened due to reduced traffic of livestock, and potentially lessen the risk of erosion. Also, a flat surface that is heavily trodden can lead to wetland creation. Thus, a 10-degree slope is better than a flat surface because water is drained from it by gravity.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pimentel, D.; Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Zachar, D. Soil Erosion; Elsevier: New York, NY, USA, 1982; ISBN 0-444-99725-3. [Google Scholar]
- Pimentel, D.; Pimentel, M. Food, Energy, and Society; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-4667-0. [Google Scholar]
- Shann, E.O.G. Cattle Chosen: The Story of the First Group Settlement in Western Australia, 1829 to 1841; Oxford University Press: London, UK, 1926. [Google Scholar]
- Bradfield, R. Soil conservation from the viewpoint of soil physics. Agron. J. 1937, 29, 85–92. [Google Scholar] [CrossRef]
- Sharpe, C.S. What is Soil Erosion? (No. 286); Miscellaneous Publication: Washington, DC, USA, 1934. [Google Scholar]
- Alberts, H.W.; Molinari, O.G. Pastures of Puerto Rico and Their Relation to soil Conservation; (No. 513); Miscellaneous Publication: Washington, DC, USA, 1943. [Google Scholar]
- Smolik, J.D.; Rogers, L.E. Effects of cattle grazing and wildfire on soil-dwelling nematodes of the shrub-steppe ecosystem. J. Range Manag. 1976, 29, 304–306. [Google Scholar] [CrossRef]
- Rickard, W.H.; Uresk, D.W.; Cline, J.F. Impact of cattle grazing on three perennial grasses in south-central Washington. J. Range Manag. 1975, 28, 108–112. [Google Scholar] [CrossRef]
- Jahnke, H.E. Livestock Production Systems and Livestock Development in Tropical Africa; Kieler Wissenschaftsverlag Vauk: Kiel, Germany, 1982. [Google Scholar]
- Mahaney, W.C.; Zhang, L. Removal of local alpine vegetation and overgrazing in the Dalijia Mountains, northwestern China. Mt. Res. Dev. 1991, 11, 165–167. [Google Scholar] [CrossRef]
- Bojo, J.; Casells, D. Land Degradation and Rehabilitation in Ethiopia: A reassessment; AFTES Working Paper 17; World Bank: Washington, DC, USA, 1995. [Google Scholar]
- De Haan, C.; Steinfeld, H.; Blackburn, H. Livestock and Environment: Finding a Balance; Study Report; European Commission: Brussels, Belgium, 1997; Available online: http://agrienvarchive.ca/bioenergy/download/livestock_env_fao.pdf (accessed on 20 November 2017).
- Whitmore, A. Impact of livestock on soil. Landbauforsch. Volkenrode FAL Agric. Res. Sonderh. 2001, 226, 39–41. [Google Scholar]
- Carvalho, J.L.N.; Raucci, G.S.; Cerri, C.E.P.; Bernoux, M.; Feigl, B.J.; Wruck, F.J.; Cerri, C.C. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Tillage Res. 2010, 110, 175–186. [Google Scholar] [CrossRef]
- Bell, L.W.; Kirkegaard, J.A.; Swan, A.; Hunt, J.R.; Huth, N.I.; Fettell, N.A. Impacts of soil damage by grazing livestock on crop productivity. Soil Tillage Res. 2011, 113, 19–29. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Lin, Q.; Yuan, M.; Xu, D.; Yu, H.; Hu, Y.; Duan, J.; Li, X.; He, Z.; et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob. Chang. Biol. 2013, 19, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Palacio, R.G.; Bisigato, A.J.; Bouza, P.J. Soil erosion in three grazed plant communities in Northeastern Patagonia. Land Degrad. Dev. 2014, 25, 594–603. [Google Scholar] [CrossRef]
- Peters, G.; Morris, K.; Frood, D.; Papas, P.; Roberts, J. A Guide to Managing Livestock Grazing in Victoria’s Wetlands. Decision Framework and Guidelines—Version 1.0; Arthur Rylah Institute for Environmental Research Technical Report Series No. 265; Department of Environment, Land, Water and Planning: Heidelberg, Australia, 2015.
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American soil degradation: Processes, practices, and mitigating strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Yuan, H.; Hou, F. Grazing intensity and soil depth effects on soil properties in alpine meadow pastures of Qilian Mountain in northwest China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 222–232. [Google Scholar] [CrossRef]
- Kalhoro, S.A.; Xu, X.; Chen, Y.; Hua, R.; Raza, S.; Ding, K. Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China). Sustainability 2017, 9, 1349. [Google Scholar] [CrossRef]
- Waters, C.M.; Orgill, S.E.; Melville, G.J.; Toole, I.D.; Smith, W.J. Management of Grazing Intensity in the Semi-Arid Rangelands of Southern Australia: Effects on Soil and Biodiversity. Land Degrad. Dev. 2017, 28, 1363–1375. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Chadwick, D.R.; Jones, D.L.; Evans, C.D.; Jones, M.B.; Rees, R.M.; Smith, P. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 2018, 253, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Roberson, E. Impacts of Livestock Grazing on Soils and Recommendations for Management. 1996. Available online: https://www.cnps.org/cnps/archive/letters/soils.pdf (accessed on 20 November 2017).
- Wu, G.L.; Dong, W.; Yu, L.; Lu-Ming, D.; Zhen-Heng, L. Warm-season Grazing Benefits Species Diversity Conservation and Topsoil Nutrient Sequestration in Alpine Meadow. Land Degrad. Dev. 2017, 28, 1311–1319. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Schell, L.D.; Vanden Heuvel, B. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands. Ecol. Appl. 1999, 9, 45–64. [Google Scholar] [CrossRef]
- Krahulec, F.; Skálová, H.; Herben, T.; Hadincová, V.; Wildová, R.; Pecháčková, S. Vegetation changes following sheep grazing in abandoned mountain meadows. Appl. Veg. Sci. 2001, 4, 97–102. [Google Scholar] [CrossRef]
- Pande, T.N.; Yamamoto, H. Cattle treading effects on plant growth and soil stability in the mountain grassland of Japan. Land Degrad. Dev. 2006, 17, 419–428. [Google Scholar] [CrossRef]
- Dumont, B.; Garel, J.P.; Ginane, C.; Decuq, F.; Farruggia, A.; Pradel, P.; Rigolot, C.; Petit, M. Effect of cattle grazing a species-rich mountain pasture under different stocking rates on the dynamics of diet selection and sward structure. Animal 2007, 1, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wu, G.L.; Zhao, L.P.; Li, Y.; Li, W.; Cheng, J.M. Cumulative effects of 20-year exclusion of livestock grazing on above-and belowground biomass of typical steppe communities in arid areas of the Loess Plateau, China. Plant Soil Environ. 2011, 57, 40–44. [Google Scholar] [CrossRef]
- Dong, Q.M.; Zhao, X.Q.; Wu, G.L.; Shi, J.J.; Ren, G.H. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environ. Earth Sci. 2013, 70, 2359–2370. [Google Scholar] [CrossRef]
- Butler, D.R. Zoogeomorphology: Animals as Geomorphic Agents; Cambridge University Press: Cambridge, USA, 1995; ISBN 978-0-521-03932-1. [Google Scholar]
- Jońca, E. Winter denudation of molehills in mountainous areas. Acta Theriol. 1972, 17, 407–412. [Google Scholar] [CrossRef]
- Wheat, J.; Malde, H.; Leopold, E. The Olsen-Chubbuck Site: A Paleo-Indian Bison Kill. Mem. Soc. Am. Archaeol. 1972, 26, 1–180. [Google Scholar]
- Bennett, H.H. Soil Conservation; McGraw-Hill: New York, NY, USA; London, UK, 1939. [Google Scholar]
- Edmond, D.B. The influence of treading on pasture. A preliminary study. N. Z. J. Agric. Res. 1958, 3, 319–328. [Google Scholar]
- Evans, R. The erosional impacts of grazing animals. Prog. Phys. Geogr. 1998, 22, 251–268. [Google Scholar] [CrossRef]
- Matches, A.G. Plant response to grazing: A review. J. Prod. Agric. 1992, 5, 1–7. [Google Scholar] [CrossRef]
- Midriak, R. Waste lands above the timberline of Slovakia. Lesn. Cas. For. J. 2011, 57, 157–165. [Google Scholar] [CrossRef]
- Gyuricza, C.; Smutný, V.; Percze, A.; Pósa, B.; Birkás, M. Soil condition threats in two seasons of extreme weather conditions. Plant Soil Environ. 2015, 61, 151–157. [Google Scholar] [CrossRef]
- Vallentine, J.F. Grazing Management; Academic Press: Cambridge, MA, USA, 2000; ISBN 9780127100012. [Google Scholar]
- Fox, D.G.; Seaney, R.R. Beefing up New York’s abandoned farmland. N. Y. Food Life Sci. Q. 1984, 15, 6–9. [Google Scholar]
- Bilotta, G.S.; Brazier, R.E.; Haygarth, P.M. The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Adv. Agron. 2007, 94, 237–280. [Google Scholar]
- Foreyt, W.J.; Jessup, D.A. Fatal pneumonia of bighorn sheep following association with domestic sheep. J. Wildl. Dis. 1982, 18, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.E.; Field, T.G. Scientific Farm Animal Production: An Introduction to Animal Science; Prentice-Hall of India Pvt. Ltd.: Delhi, India, 2011; ISBN-13: 978-8120343986. [Google Scholar]
- Mulholland, B.; Fullen, M.A. Cattle trampling and soil compaction on loamy sands. Soil Use Manag. 1991, 7, 189–193. [Google Scholar] [CrossRef]
- Mishra, C.; Van Wieren, S.E.; Heitkönig, I.M.; Prins, H.H. A theoretical analysis of competitive exclusion in a Trans-Himalayan large-herbivore assemblage. Anim. Conserv. 2002, 5, 251–258. [Google Scholar] [CrossRef]
- Stephenson, T. Forbidden Land: The Struggle for Access to Mountain and Moorland; Manchester University Press: Manchester, UK, 1989; ISBN 9780719029660. [Google Scholar]
- Eren, M.I.; Durant, A.; Neudorf, C.; Haslam, M.; Shipton, C.; Bora, J.; Korisettar, R.; Petraglia, M. Experimental examination of animal trampling effects on artifact movement in dry and water saturated substrates: A test case from South India. J. Archaeol. Sci. 2010, 37, 3010–3021. [Google Scholar] [CrossRef]
- Spedding, C.R.W. Grassland Ecology; Oxford University Press: London, UK, 1971; ISBN-13: 978-0198541127. [Google Scholar]
- Liebman, M.; Mohler, C.L.; Staver, C.P. Ecological Management of Agricultural Weeds; Cambridge University Press: Cambridge, UK, 2001; ISBN 0521560683. [Google Scholar]
- Hahn, M.V.; McDaniel, B.T.; Wilk, J.C. Genetic and Environmental Variation of Hoof Characteristics of Holstein Cattle. J. Dairy Sci. 1984, 67, 2986–2998. [Google Scholar] [CrossRef]
- Duncan, K.; Holdaway, R. Footprint pressures and locomotion of moas and ungulates and their effects on the New Zealand indigenous biota through trampling. N. Z. J. Ecol. 1989, 12, 97–101. [Google Scholar]
- Frame, J. Fundamentals of grassland management. Pt. 10. The grazing animal. Scott. J. Agric. 1971, 50, 28–44. [Google Scholar]
- Barros, A.; Pickering, C.M.; Renison, D. Short-term effects of pack animal grazing exclusion from Andean alpine meadows. Arct. Antarct. Alp. Res. 2014, 46, 333–343. [Google Scholar] [CrossRef]
- Cluzeau, D.; Binet, F.; Vertes, F.; Simon, J.C.; Riviere, J.M.; Trehen, P. Effects of intensive cattle trampling on soil-plant-earthworms system in two grassland types. Soil Biol. Biochem. 1992, 24, 1661–1665. [Google Scholar] [CrossRef]
- Carter, J.F. Pastures and Range Research Techniques; Comstock Publishing Associates: Ithaca, NY, USA, 1962. [Google Scholar]
- Schothorst, C.J. The Carrying Capacity of Grassland Soils; Wageningen Academic Publishers: Wageningen, Holland, 1963. [Google Scholar]
- Muller, S. Yield and grazing losses in a pasture productivity experiment in Niedehein. Z. Acker U. Pfl. Bau. 1965, 121, 171–183. [Google Scholar]
- Kellett, A.J. Poaching of Grassland and the Role of Drainage; Technical Report 78/1; Field Drainage Experimental Unit, Ministry of Agriculture, Fisheries and Food: London, UK, 1978.
- Patric, J.H. Soil erosion in the eastern forest. J. For. Res. 1976, 74, 671–677. [Google Scholar]
- USDA. US Department of Agriculture: Summary Report 1992 National Reseources Inventory; Soil Conservation Service, USDA: Washington, DC, USA, 1994.
- Trimble, S.W.; Mendel, A.C. The cow as a geomorphic agent—A critical review. Geomorphology 1995, 13, 233–253. [Google Scholar] [CrossRef]
- Koogler, R. 21st Century Homestead: Agroecology; Lulu Press Inc.: Morrisville, NC, USA, 2015. [Google Scholar]
- Apollo, M. The population of Himalayan regions—By the numbers: Past, present and future. In Contemporary Studies in Environment and Tourism; Efe, R., Öztürk, M., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2017; pp. 143–159. ISBN 978-1-4438-7283-6. [Google Scholar]
- Kulkarni, A.V.; Rathore, B.P.; Singh, S.K.; Bahuguna, I.M. Understanding changes in the Himalayan cryosphere using remote sensing techniques. Int. J. Remote Sens. 2011, 32, 601–615. [Google Scholar] [CrossRef]
- Apollo, M. Środowiskowe skutki wysokogórskiej turystyki wspinaczkowej (na przykładzie wybranych obszarów Himalajów). Ph.D. Thesis, Pedagogical University of Cracow, Cracow, Poland, 2017. [Google Scholar]
- Saini, R. Glacier Dynamics Water Resource Assessment and Landscape Evolution in Miyar Basin, Lahaul Himalayas, Himachal Pradesh. Ph.D. Thesis, Jawaharlal Nehru University, New Delhi, India, 2008. [Google Scholar]
- Negi, S.S. Discovering the Himalaya; Indus Publishing Company: New Delhi, India, 2002; ISBN-13: 978-8173870798. [Google Scholar]
- Padigala, B. Social Capital and Local Institutions—A Perspective to Assess Communities Adaptation Potential to Climate Change. In Handbook of Climate Change Adaptation; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1028–1050. [Google Scholar] [CrossRef]
- Apollo, M. The clash-social, environmental and economical changes in tourism destination areas caused by tourism the case of Himalayan villages (India and Nepal). Curr. Issues Tour. Res. 2015, 5, 6–19. [Google Scholar]
- Zoladek, M.; Kordowska, M. Exploration Tourism: Based on Selected Areas. In Contemporary Studies in Environment and Tourism; Efe, R., Öztürk, M., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2017; pp. 1–8. ISBN 978-1-4438-7283-6. [Google Scholar]
- Polunin, O.; Stainton, A. Flowers of the Himalaya; Oxford University Press: New Delhi, India, 2011; ISBN 978-0-19-564187-5. [Google Scholar]
- Liebenberg, L. A Field Guide to the Animal Tracks of Southern Africa; New Africa Books: Cape Town, South Africa, 1990. [Google Scholar]
- Patto, P.M.; Clement, C.R.; Forbes, T.J. Grassland Poaching in England and Wales; Grassland Research Institute: Maidenhead, UK, 1978. [Google Scholar]
Average Weight (kg) | Average Hoof Size; One Side Only * (B) | Hoof Size (cm2) | Static Pressure (kg cm−2) | ||||
---|---|---|---|---|---|---|---|
World (A) | Himalaya (A’) | Literature | One Side Only * | ||||
(A÷B) | (A’÷B) | ||||||
Sheep | 41–80 1 | 34.5 4 | 43 5 | 21.5 5 | 0.7–0.9 7 | 0.95–1.86 | 0.8 |
Goat | 27–140 2 | 34 4 | 39.2 6 | 19.6 6 | 0.43 9 | 0.68–3.57 | 0.87 |
Cattle | 350–600 3 | 226.5 4 | 216 6 | 93–103 8 108 6 | 1.3–2.8 7 1.5–1.7 10 | 1.62–2.78 | 1.05 |
Slope Degree | Soil Loss on a Specific Pin (mm) | Standard Deviation | Mean (mm) | Coefficient of Variance | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
Exposed area | ||||||||
10° | −1 | −2 | 0 | −1 | −1 | −0.71 | −1.00 | 0.71 |
15° | −2 | −2 | −2 | −3 | −1 | −0.71 | −2.00 | 0.35 |
25° | −4 | −5 | −3 | −4 | −3 | −0.84 | −3.80 | 0.22 |
35° | −6 | −5 | −4 | −7 | −8 | −1.58 | −6.00 | 0.26 |
50° | −16 | −17 | −18 | −16 | −15 | −1.14 | −16.40 | 0.07 |
55° | −20 | −15 | −17 | −21 | −19 | −2.41 | −18.40 | 0.13 |
65° | −21 | −17 | −19 | −18 | −21 | −1.79 | −19.20 | 0.09 |
85° | −22 | −24 | −19 | −17 | −24 | −3.11 | −21.20 | 0.15 |
Pearson correlation coefficient | −0.95 | −0.97 | −0.92 | −0.89 | −0.98 | |||
Comparison (control) area | ||||||||
10° | −1 | −1 | 0 | −1 | −1 | −0.45 | −0.80 | 0.56 |
45° | −1 | −2 | −2 | −1 | −1 | −0.55 | −1.40 | 0.39 |
65° | −2 | −2 | −1 | −1 | −2 | −0.55 | −1.60 | 0.34 |
85° | −2 | −2 | −3 | −1 | −1 | −0.84 | −1.80 | 0.46 |
Exposed Area | Comparison (Control) Area | |||
---|---|---|---|---|
Linear Regression Model | ya = −0.3164x + 2.4463 | yb = −0.0134x − 0.7153 | ||
R² | 0.92 | 0.98 | ||
Slope Degree (x) | Soil loss level (mm) | |||
ya | yb | ya − yb | Level of Change | |
10° | −0.72 | −0.85 | 0.13 | 0.85 |
20° | −3.88 | −0.98 | −2.90 | 3.95 |
30° | −7.05 | −1.12 | −5.93 | 6.31 |
40° | −10.21 | −1.25 | −8.96 | 8.16 |
50° | −13.37 | −1.39 | −11.99 | 9.65 |
60° | −16.54 | −1.52 | −15.02 | 10.89 |
70° | −19.70 | −1.65 | −18.05 | 11.92 |
80° | −22.87 | −1.79 | −21.08 | 12.79 |
90° | −26.03 | −1.92 | −24.11 | 13.55 |
No | Total | Static pressure (kg cm−2) | Number of Animals that Caused the Same Pressure as All Three Together (N) 1 | ||
---|---|---|---|---|---|
Mean | Weighted Arithmetic Mean | ||||
Sheep | 124 | 429 | 0.8 | 461 | |
Goat | 287 | 0.87 | 0.86 | 424 | |
Cattle | 18 | 1.05 | 351 |
Slope Degree (°) | Soil Loss Level (mm) | |||
---|---|---|---|---|
Sheep | Goats | Cattle | Total | |
10 | 0.04 | 0.11 | 0.01 | 0.16 |
20 | −0.77 | −1.93 | −0.15 | −2.84 |
30 | −1.57 | −3.96 | −0.30 | −5.83 |
40 | −2.38 | −5.99 | −0.45 | −8.83 |
50 | −3.19 | −8.02 | −0.61 | −11.82 |
60 | −4.00 | −10.06 | −0.76 | −14.81 |
70 | −4.80 | −12.09 | −0.92 | −17.81 |
80 | −5.61 | −14.12 | −1.07 | −20.80 |
90 | −6.42 | −16.15 | −1.22 | −23.79 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apollo, M.; Andreychouk, V.; Bhattarai, S.S. Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India). Sustainability 2018, 10, 951. https://doi.org/10.3390/su10040951
Apollo M, Andreychouk V, Bhattarai SS. Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India). Sustainability. 2018; 10(4):951. https://doi.org/10.3390/su10040951
Chicago/Turabian StyleApollo, Michal, Viacheslav Andreychouk, and Suman S. Bhattarai. 2018. "Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India)" Sustainability 10, no. 4: 951. https://doi.org/10.3390/su10040951
APA StyleApollo, M., Andreychouk, V., & Bhattarai, S. S. (2018). Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India). Sustainability, 10(4), 951. https://doi.org/10.3390/su10040951