Puerariae lobatae Radix: Progress in Extraction, Separation Methods and Pharmacological Activities Research
<p>Kudzu root (<span class="html-italic">Puerariae lobatae</span> Radix).</p> "> Figure 2
<p>The main chemical structures isolated from <span class="html-italic">Puerariae lobatae</span> Radix.</p> "> Figure 2 Cont.
<p>The main chemical structures isolated from <span class="html-italic">Puerariae lobatae</span> Radix.</p> "> Figure 2 Cont.
<p>The main chemical structures isolated from <span class="html-italic">Puerariae lobatae</span> Radix.</p> ">
Abstract
:1. Introduction
2. The Main Components in Kudzu Root
3. Extraction and Separation Methods of Flavonoids from Kudzu Root
3.1. Water Decoction Method
3.2. Solvent Extraction Method
3.3. Ultrasonic-Assisted Extraction Method
3.4. Microwave-Assisted Extraction Method
3.5. Pressurized Solvent Extraction Method
3.6. Ionic Liquid-Assisted Extraction Method
3.7. Supercritical CO2 Extraction Method
3.8. Cyclodextrin-Assisted Extraction Method
3.9. Molecularly Imprinted Solid-Phase Extraction Method
3.10. Macroporous Resin Adsorption Method
3.11. High-Performance Liquid Chromatography
3.12. High-Speed Counter-Current Chromatography
4. The Pharmacological Activities of Kudzu Root
4.1. Regulates Vasodilation
4.2. Treatment of Inflammatory Diseases
4.3. Antioxidant Effect
4.4. Treatment of Eye Diseases
4.5. Treatment of Non-Alcoholic Fatty Liver Disease
4.6. Lowering Blood Sugar
4.7. Reducing Alcohol Dependence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, H.; Yang, H. Phytochemicial and Extracting Technology Research Progress of Pueraria lobata. Chin. J. Exp. Tradit. Med. Formulae. 2006, 60–63. [Google Scholar]
- Fan, M.Y.; Liu, R.H.; Shao, F.; Meng, X.W.; Zhu, W.F.; Zhang, P.Z.; Zhang, Y.M. Chemical Constituents of Pueraria lobata Roots. J. Chin. Med. Mater. 2022, 45, 1877–1885. [Google Scholar]
- Deng, Y.; Lei, T.W.; Li, H.M.; Mo, X.C.; Wang, Z.T.; Ou, H.L. ERK5/KLF2 activation is involved in the reducing effects of puerarin on monocyte adhesion to endothelial cells and atherosclerotic lesion in apolipoprotein E-deficient mice. BBA-Mol. Basis. Dis. 2018, 1864, 2590–2599. [Google Scholar] [CrossRef]
- Tang, L.; Liu, D.; Yi, X.Q.; Xu, T.T.; Liu, Y.; Luo, Y.C.; Yin, D.; He, M. The protective effects of puerarin in cardiomyocytes from anoxia/reoxygenation injury are mediated by PKCε. Cell Biochem. Funct. 2014, 32, 378–386. [Google Scholar] [CrossRef]
- Bracken, B.K.; Penetar, D.M.; Maclean, R.R.; Lukas, S.E. Kudzu Root Extract Does Not Perturb the Sleep/Wake Cycle of Moderate Drinkers. J. Altern. Complement. Med. 2011, 17, 961–966. [Google Scholar] [CrossRef]
- Shi, W.L.; Yuan, R.; Chen, X.; Xin, Q.; Wang, Y.; Shang, X.H.; Cong, W.H.; Chen, K.J. Puerarin Reduces Blood Pressure in Spontaneously Hypertensive Rats by Targeting eNOS. Am. J. Chin. Med. 2019, 47, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.Y.; Zheng, S.; Ding, Y.J.; Dai, Y.Q.; Zhou, Y.; Xiang, R.F.; Bay-Jensen, A.C.; Karsdal, M.A.; Qvist, P.; Zheng, Q.L. Preventive effects of kudzu root on bone loss and cartilage degradation in ovariectomized rat. Am. J. Transl. Res. 2017, 9, 3517–3527. [Google Scholar] [PubMed]
- Jia, L.H.; Hu, Y.L.; Yang, G.H.; Li, P.L. Puerarin suppresses cell growth and migration in HPV-positive cervical cancer cells by inhibiting the PI3K/mTOR signaling pathway. Exp. Ther. Med. 2019, 18, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Mei, Z.G.; Fu, Y.; Yang, S.B.; Zhang, S.Z.; Huang, W.F.; Xiong, L.; Zhou, H.J.; Tao, W.; Feng, Z.T. Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway. Neural Regener. Res. 2018, 13, 989–998. [Google Scholar] [CrossRef]
- Ma, X.J.; Ma, J.R.; Leng, T.; Yuan, Z.Z.; Hu, T.T.; Liu, Q.Y.; Shen, T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Renal Fail. 2023, 45, 2146512. [Google Scholar] [CrossRef]
- Jiang, Z.L.; Cui, X.N.; Qu, P.R.; Shang, C.; Xiang, M.; Wang, J. Roles and mechanisms of puerarin on cardiovascular disease: A review. Biomed. Pharmacother. 2022, 147, 112655. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J. Ethnopharmacol. 2011, 134, 584–607. [Google Scholar] [CrossRef] [PubMed]
- Prasain, J.K.; Barnes, S.; Wyss, J.M. Kudzu isoflavone C-glycosides: Analysis, biological activities, and metabolism. Food Front. 2021, 2, 383–389. [Google Scholar] [CrossRef]
- He, H.; Peng, S.W.; Song, X.; Jia, R.Y.; Zou, Y.F.; Li, L.X.; Yin, Z.Q. Protective effect of isoflavones and triterpenoid saponins from pueraria lobata on liver diseases: A review. Food Sci. Nutr. 2022, 10, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, Z.N.; Zhang, S.J.; Sun, Y.; Zheng, F.J.; Li, Y.H. Protective effects and mechanism of puerarin targeting PI3K/Akt signal pathway on neurological diseases. Front. Pharmacol. 2022, 13, 1022053. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Wadhwa, K.; Mishra, R.; Gupta, S.; Ahmad, F.; Kamal, M.; Iqbal, D.; Alsaweed, M.; Nuli, M.V.; Abomughaid, M.M.; et al. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shi, Y.C.; Lee, D.Y.W. Applications of Pueraria lobata in treating diabetics and reducing alcohol drinking. Chin. Herb. Med. 2019, 11, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.; Zovko-Koncic, M.; Chrostek, L. Phytotherapy of Alcoholism. Nat. Prod. Commun. 2012, 7, 273–280. [Google Scholar] [CrossRef]
- Xuan, T.; Liu, Y.H.; Liu, R.; Liu, S.; Han, J.Q.; Bai, X.Y.; Wu, J.; Fan, R.H. Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review. Molecules 2023, 28, 6577. [Google Scholar] [CrossRef]
- Shen, Z.W.; Rong, H.D.; Wei, X.S.; Bing, D.; Pan, L. Progress in Research on Composition, Structure, Functions and Mechanism of Action of Radix puerariae Isoflavones. Food Sci. 2023, 44, 1877–1885. [Google Scholar]
- Fei, J.P. Qualities Analysis and Functional Evaluation of Pueraria Fermentedwine. Master’s Thesis, Northwest A&F University, Shanxi, China, 2018. [Google Scholar]
- Fei, C.J.; Gang, Z.G.; Ping, L.; Ping, K.L. Chemical constituents of Radix Puerariae from Anhui Province. Chin. J. Med. Chem. 2007, 1, 47–49. [Google Scholar]
- Jun-Ei, K.; Un-Ichi, F.; Junko, B.; Takashi, T.; Masaki, Y.; Toshihiro, N. Studies on the Constituents of Pueraria lobata. III. Isoflavonoids and Related Compounds in the Roots and the Voluble Stems. Chem. Pharm. Bull. 1987, 35, 4846–4850. [Google Scholar]
- Rong, H.; Stevens, J.F.; Deinzer, M.L.; Cooman, L.D.; Keukeleire, D.D. Identification of isoflavones in the roots of Pueraria lobata. Planta Med. 1998, 64, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Zhang, Q.W.; Wang, Y.T. Chemical constituents from roots of Pueraria lobata. China J. Chin. Mater. Medica 2010, 35, 3156–3160. [Google Scholar]
- Liu, C.J.; Zhao, Z.H.; Wang, D.Y. Studies on the chemical composition of kudzu root from the USA. China J. Chin. Mater. Medica 1992, 2, 101–102. [Google Scholar]
- Hirakura, K.; Morita, M.; Nakajima, K.; Sugama, K.; Takagi, K.; Niitsu, K.; Ikeya, Y.; Maruno, M.; Okada, M. Phenolic glucosides from the root of Pueraria lobata. Phytochemistry 1997, 46, 921–928. [Google Scholar] [CrossRef]
- Sang, Y.S.; Shi, H.M.; Min, Z.D. Studies on chemical constituents from root of Pueraria omeiensis. Chin. Tradit. Herb. Drugs 2002, 33, 11–13. [Google Scholar]
- Zhang, D.W.; Dai, S.J.; Li, G.H.; Dai, J.G. Chemical constituents in cane of Pueraria lobata. Chin. Tradit. Herb. Drugs 2011, 42, 649–651. [Google Scholar]
- Junei, K.; Izumi, M.; Kotaro, M.; Kiyoshi, K.; Toshiaki, T.; Masaki, Y.; Toshihiro, N. Oleanene-sapogenols from puerariae radix. Chem. Pharm. Bull. 1985, 33, 1293–1296. [Google Scholar] [CrossRef]
- Lu, J.; Sun, J.-H.; Tan, Y.; Kano, Y.; Yuan, D. New triterpenoid saponins from the flowers of Pueraria thomsonii. J. Asian. Nat. Prod. Res. 2013, 15, 1065–1072. [Google Scholar] [CrossRef]
- Tomonori, A.; Junnei, K.; Toshihiro, N.; Ryuichi, I. Oleanene-Type Triterpene Glycosides from Puerariae Radix. IV. Six New Saponins from Pueraria lobata. Chem. Pharm. Bull. 1997, 45, 362–366. [Google Scholar] [CrossRef]
- Ohshima, Y.; Okuyama, T.; Takahashi, K.; Takizawa, T.; Shibata, S. Isolation and high performance liquid chromatography (HPLC) of isoflavonoids from the Pueraria root. Planta Med. 1988, 54, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, H. Study on the Chemical Constituents of the Root of Pueraria lobata. Master’s Thesis, Shenyang Pharmaceutical University, Liaoning, China, 2011. [Google Scholar]
- Chen, M.H.; Zhang, S.J. Studies on the chemical composition of kudzu root. China J. Chin. Mater. Medica. 1985, 6, 36–38. [Google Scholar]
- Fan, C.H.; Chang, L. Research Progress on Chemical Constituents, Biological Activities and Processing and Utilization of Puerariae lobatae Radix. China Fruit Veg. 2022, 42, 36–40. [Google Scholar]
- Liu, M.; Li, Z.; Li, X.Y.; Tan, W.Y.; Wang, Q.; Liu, T. Study on kinetic model of extracting polysaccharide from Polygonatum odoratum. J. Guangdong Pharm. Univ. 2015, 31, 161–166. [Google Scholar]
- Zhang, A.C.; Li, Z.G.; Yu, L.Z. Effect of decoction time on the water-soluble components of kudzu root. J. Chin. Med. Mater. 1997, 2, 93–94. [Google Scholar]
- Li, Y.J.; Juan, S.Z.; Xian, T.H.; Min, L.G. Study on extraction technology of soluble ohwi pigment from ohwi. Food Ferment. Ind. 2003, 6, 51–54. [Google Scholar]
- Yang, S.J.; Zhang, H.X.; Zhou, Y.J. Study on the optimum extraction and purification technology of isoflavonoid of pueraria lobata. Food Sci. 2004, 8, 124–127. [Google Scholar]
- Zhang, X.G.; Wang, D.M. Research on the extraction process of puerarin. J. Chin. Med. Mater. 2004, 9, 680–682. [Google Scholar]
- Zhang, J.; Chen, Y.; Cao, S.L.; Yin, X.B.; Qi, J.J.; Zhang, H.; Dang, X.F.; Ni, J. Study on applicability of kinetic model for water extracts from Puerariae Radix. China J. Chin. Mater. Medica 2013, 38, 2788–2792. [Google Scholar]
- Li, J.P.; Jia, L.N.; Nie, T.T. Study on extraction of the effective composition of silybum marianum by organic solvent-internal reflux method. Liaoning Chem. Ind. 2004, 33, 497–499. [Google Scholar]
- Wu, Y.F.; Bai, J.H.; Zhao, E.L. Optimization of microwave-assisted extraction technology of puerarin from radix puerariae by orthogonal experiment. Hubei Agric. Sci. 2012, 51, 989–991. [Google Scholar]
- Liu, M.Y.; Dong, C.; Cao, X.Q.; Qin, L.; Xu, H.H.; Wang, Y.F.; Li, X.Y. Study on extraction process of radix puerariae. China Pharm. 2008, 3, 24–25. [Google Scholar]
- Han, J.; Cao, W.; Yin, H.; Yan, H.S.; Wang, C.L. Study on extraction of puerarin from Radix puerariae by orthogonal test. Chin. J. Hosp. Pharm. 2007, 3, 332–333. [Google Scholar]
- Pan, J.; Chen, Q.; Wang, G.X.; Zhang, J.; Xie, H.M. Optimum extracting technology of flavonoids in Radix Puerariae. Trans. Chin. Soc. Agric. Eng. 1998, 4, 236–239. [Google Scholar]
- Xu, H.N.; He, C.H. Separation and purification of puerarin with solvent extraction. Sep. Purif. Technol. 2007, 56, 397–400. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Kloskowskic, A.; Namiesnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: A framework toward the implementation of a generation of eco-friendly alternatives. Green Chem. 2015, 17, 3687–3705. [Google Scholar] [CrossRef]
- Cui, Z.F.; Djocki, A.V.E.; Yao, J.H.; Wu, Q.W.; Zhang, D.Q.; Nan, S.W.; Gao, J.; Li, C.L. COSMO-SAC-supported evaluation of natural deep eutectic solvents for the extraction of tea polyphenols and process optimization. J. Mol. Liq. 2021, 328, 115406. [Google Scholar] [CrossRef]
- Chen, M.; Lahaye, M. Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocolloid. 2021, 115, 106601. [Google Scholar] [CrossRef]
- Duru, K.C.; Slesarev, G.P.; Aboushanab, S.A.; Kovalev, I.S.; Zeidler, D.M.; Kovaleva, E.G.; Bhat, R. An eco-friendly approach to enhance the extraction and recovery efficiency of isoflavones from kudzu roots and soy molasses wastes using ultrasound-assisted extraction with natural deep eutectic solvents (NADES). Ind. Crop. Prod. 2022, 182, 114886. [Google Scholar] [CrossRef]
- Aboushanab, S.A.; Shevyrin, V.A.; Slesarev, G.P.; Melekhin, V.V.; Shcheglova, A.V.; Makeev, O.G.; Kovaleva, E.G.; Kim, K.H. Antioxidant and Cytotoxic Activities of Kudzu Roots and Soy Molasses against Pediatric Tumors and Phytochemical Analysis of Isoflavones Using HPLC-DAD-ESI-HRMS. Plants 2022, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, J.; Zhao, Y.; Yu, L.; He, Y.; Wan, H.; Li, C. Screening, Optimization, and Bioavailability Research of Natural Deep Eutectic Solvent Extracts from Radix pueraria. Molecules 2021, 26, 729. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.B. Purification and Anti-Oxidation Activity of Flavonoids from Hippophae rhamnoides Linn Leaves. Master’s Thesis, Huaqiao University, Fujian, China, 2016. [Google Scholar]
- Kwun, K.H.; Kim, G.J.; Shin, H.J. Ultrasonication assistance increases the efficiency of isoflavones extraction from kudzu (Pueraria lobata Ohwi) roots waste. Biotechnol. Bioprocess Eng. 2009, 14, 345–348. [Google Scholar] [CrossRef]
- Zhu, H.; Xing, Y.X.; Akan, O.D.; Yang, T. Ultrafine comminution-assisted ultrasonic-microwave synergistic extraction of Pueraria mirifica (Kudzu flower and root) flavonoids. Heliyon 2023, 9, e21137. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.H.; Li, J.H.; Liu, C.H. Study on extracting technology of Puerarin by large-scale ultrasonic extraction. China Pract. Med. 2007, 2, 1–2. [Google Scholar]
- Lee, M.H.; Lin, C.C. Comparison of techniques for extraction of isoflavones from the root of Radix Puerariae: Ultrasonic and pressurized solvent extractions. Food Chem. 2007, 105, 223–228. [Google Scholar] [CrossRef]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Optimisation of Pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction. Food Chem. 2017, 231, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.P. The Process of Microwave-Assisted Extraction of Potato Polyphenols. Food Ind. 2022, 43, 31–34. [Google Scholar]
- Sun, S.G.; Ma, C.J.; Huang, Q.; Gu, R.Y.; Luo, Z.Q. Combined High Speed Shear and Microwave Treatment for Extraction of Puerarin from Radix puerariae (Kudzu Root). Food Sci. 2009, 30, 50–53. [Google Scholar]
- Zhou, W.B. Study on the Total Isoflavones in Pueraria Root by Microwave-assisted Extraction. Food Sci. 2004, 25, 100–102. [Google Scholar]
- Du, G.; Zhao, H.Y.; Zhang, Q.W.; Li, G.H.; Yang, F.Q.; Wang, Y.; Li, Y.C.; Wang, Y.T. A rapid method for simultaneous determination of 14 phenolic compounds in Radix Puerariae using microwave-assisted extraction and ultra high performance liquid chromatography coupled with diode array detection and time-of-flight mass spectrometry. J. Chromatogr. A 2010, 1217, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.M.; Kamal, S.M.M.; Harun, M.R.; Omar, R.; Siajam, S.I. Subcritical Water Technology for Extraction of Phenolic Compounds from Chlorella sp. Microalgae and Assessment on Its Antioxidant Activity. Molecules 2017, 22, 1105. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.K.; Bi, W.T.; Tian, M.L.; Row, K.H. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2012, 904, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Du, F.Y.; Mao, X.H.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J. Chromatogr. A 2007, 1140, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Carradori, S.; Locatelli, M.; Secci, D.; Cesa, S.; Mollica, A.; Riga, S.; Angeli, A.; Supuran, C.T.; Celia, C.; et al. Bioactive isoflavones from Pueraria lobata root and starch: Different extraction techniques and carbonic anhydrase inhibition. Food Chem. Toxicol. 2018, 112, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Li, Y.; Chi, R. Optimization of ionic liquid-based microwave-assisted extraction of isoflavones from Radix puerariae by response surface methodology. Sep. Purif. Technol. 2014, 129, 71–79. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Z.; Peng, N.; Zhou, J.; Yong, X.; Yuan, H.; Zheng, T. Optimization of ionic liquids-based microwave-assisted hydrolysis of puerarin and daidzein derivatives from Radix Puerariae Lobatae extract. Food Chem. 2018, 256, 149–155. [Google Scholar] [CrossRef]
- Ramezani, N.; Raji, F.; Rezakazemi, M.; Younas, M. Juglone extraction from walnut (Juglans regia L.) green husk by supercritical CO2: Process optimization using Taguchi method. J. Environ. Chem. Eng. 2020, 8, 103776. [Google Scholar] [CrossRef]
- Wang, L.; Yang, B.; Du, X. Investigation of supercritical fluid extraction of puerarin from Pueraria lobata. J. Food Process. Eng. 2009, 32, 682–691. [Google Scholar] [CrossRef]
- Choi, Y.H.; Chin, Y.W.; Kim, J.; Jeon, S.H.; Yoo, K.P. Strategies for supercritical fluid extraction of hyoscyamine and scopolamine salts using basified modifiers. J. Chromatogr. A 1999, 863, 47–55. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Z.X.; Wang, G.J.; Ruan, X.; Wu, Q.F.; Luo, C.C.; Wu, Z.G.; Wei, F.; Zhao, Y.X.; Wang, Q. Supercritical extraction and antioxidant activity of major ingredients in Puerariae lobatae root, Pinus massoniana needle, Citrus reticulata peel and their mixture. J. CO₂ Util. 2021, 48, 101518. [Google Scholar] [CrossRef]
- Bai, C.C.; Tian, B.R.; Zhao, T.; Huang, Q.; Wang, Z.Z. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications. Molecules 2017, 22, 1475. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Liu, F.; Sun, L.; Huo, H.N.; Ren, X.L.; Wang, M. Associated-Extraction Efficiency of Six Cyclodextrins on Various Flavonoids in Puerariae Lobatae Radix. Molecules 2019, 24, 93. [Google Scholar] [CrossRef]
- He, X.L.; Tan, T.W.; Xu, B.Z.; Janson, J.C. Separation and purification of puerarin using β-cyclodextrin-coupled agarose gel media. J. Chromatogr. A 2004, 1022, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Hughes, T.C.; Hao, X.; Mei, D.; Tan, T. Preparation of monomeric and polymeric β-cyclodextrin functionalized monoliths for rapid isolation and purification of puerarin from Radix puerariae. J. Sep. Sci. 2011, 34, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Wang, Z.N.; Zhou, T.; Song, X.Q.; Liu, Q.Y.; Zhang, Y.M.; He, L.M. Determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with HPLC. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2015, 990, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.N.; Jia, X.J.; Lu, Q.; Peng, Y.; Du, S.H.; Chen, Q. Highly efficient and selective enrichment of puerarin from Radix puerariae by molecularly imprinted solid-phase extraction. Sep. Purif. Technol. 2010, 71, 324–330. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, L.Y.; Chen, D.J.; Wang, P.; Zhao, J.W.; Peng, Y.; Du, S.H.; Zhang, Z.P. Molecularly imprinted layer-coated monodisperse spherical silica microparticles toward affinity-enrichment of isoflavonoid glycosides from Radix puerariae. Analyst 2012, 137, 2891–2902. [Google Scholar] [CrossRef]
- Meng, L. Purification of puerarin by macroporous resin adsorption and its antioxidant activity. Tianjin Agric. Sci. 2016, 22, 16–18. [Google Scholar]
- Chi, R.A.; Zhou, F.; Huang, K.; Zhang, Y.F. Adsorption behaviors of puerarin on S-8 macroporous resin. Chin. J. Nat. Med. 2011, 9, 120–125. [Google Scholar]
- Guo, H.D.; Zhang, Q.F.; Chen, J.G.; Shang, G.; Cheng, X.; Guo, Y.X. Large scale purification of puerarin from Puerariae lobatae Radix through resins adsorption and acid hydrolysis. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2015, 980, 8–15. [Google Scholar] [CrossRef]
- Niu, Y.; Li, H.; Dong, J.; Wang, H.; Hashi, Y.K.; Chen, S.Z. Identification of isoflavonoids in Radix puerariae for quality control using on-line high performance liquid chromatography-diode array detector-electrospray ionization-mass spectrometry coupled with post-column derivatization. Food Res. Int. 2012, 48, 528–537. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Talpur, Z.H.; Yang, W.Y.; Xiong, Y.R.; Wu, T.; Zhang, Y.Q.; Shen, X.Y.; Du, Y.P. Dual-spectrum online monitoring of puerarin and total flavonoids contents during the extraction process of Pueraria lobata. Talanta 2022, 248, 123608. [Google Scholar] [CrossRef]
- Cao, X.L.; Tian, Y.; Zhang, T.Y.; Li, X.; Ito, Y. Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography. J. Chromatogr. A 1999, 855, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.L.; Yang, Y.F.; Hu, X.; Xie, X.X.; Meucci, J.; Fang, M.; Zhao, L.J. Purification of Puerarin from Pueraria lobata by FCPC versus HSCCC Using Small-volume Columns. Chin. Herb. Med. 2014, 6, 140–144. [Google Scholar] [CrossRef]
- Shi, S.Y.; Ma, Y.J.; Zhang, Y.P.; Liu, L.L.; Liu, Q.; Peng, M.J.; Xiong, X. Systematic separation and purification of 18 antioxidants from Pueraria lobata flower using HSCCC target-guided by DPPH-HPLC experiment. Sep. Purif. Technol. 2012, 89, 225–233. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Zhao, A.Q.; Han, B.H.; Fan, Y.J.; Liu, C.M.; Liu, J.J. Preparative separation of isoflavones in plant extract of Pueraria lobata by high performance counter-current chromatography. Anal. Methods 2015, 7, 1321–1327. [Google Scholar] [CrossRef]
- Vos, T. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1562. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.D.; Sufra, R.; St Sauveur, R.; Jean-Pierre, M.C.; Apollon, A.; Malebranche, R.; Theard, M.; Pierre, G.; Devieux, J.; Lau, J.; et al. Spectrum of prevalent cardiovascular diseases in urban Port-au-Prince, Haiti: A population-based cross-sectional study. Lancet Reg. Health 2024, 33, 100729. [Google Scholar] [CrossRef]
- Chen, M.; Xiang, L.; Wu, G.L.; Liao, Y.D.; Cai, Y.F. Puerarin Inhibits Endothelium-Dependent Contractions in Mouse Carotid Arteries. Med. Sci. Monit. 2020, 26, 923163. [Google Scholar] [CrossRef]
- Zhou, T.T.; Wang, Z.W.; Guo, M.T.; Zhang, K.; Geng, L.; Mao, A.Q.; Yang, Y.J.; Yu, F. Puerarin induces mouse mesenteric vasodilation and ameliorates hypertension involving endothelial TRPV4 channels. Food Funct. 2020, 11, 10137–10148. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.F.Y.; Deng, S.Y.; Ng, E.S.K.; Yeung, J.H.K.; Kwan, Y.W.; Lau, C.B.S.; Koon, J.C.M.; Zhou, L.; Zuo, Z.; Leung, P.C.; et al. Mechanisms of the relaxant effect of a Danshen and Gegen formulation on rat isolated cerebral basilar artery. J. Ethnopharmacol. 2010, 132, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Sidbury, R.; Davis, D.M.; Cohen, D.E.; Cordoro, K.M.; Berger, T.G.; Bergman, J.N.; Chamlin, S.L.; Cooper, K.D.; Feldman, S.R.; Hanifin, J.M.; et al. Guidelines of care for the management of atopic dermatitis. J. Am. Acad. Dermatol. 2014, 71, 327–349. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, X.; Hou, C.; Yu, S.; Zhang, Y.; Yu, Z.; Kong, L.; Liu, C.; Feng, L.; Wang, D.; et al. Cold Plasma Irradiation Attenuates Atopic Dermatitis via Enhancing HIF-1α-Induced MANF Transcription Expression. Front. Immunol. 2022, 13, 941219. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeon, Y.D.; Lee, Y.M.; Kim, D.K. The suppressive effect of puerarin on atopic dermatitis-like skin lesions through regulation of inflammatory mediators in vitro and in vivo. Biochem. Bioph. Res. Commun. 2018, 498, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Lofthus, D.M.; Stevens, S.R.; Armstrong, P.W.; Granger, C.B.; Mahaffey, K.W. Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coronary. Artery. Dis. 2012, 23, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; Wu, M.M.; Fang, H.; Su, Y.; Zhang, L.L.; Zhou, H. Puerarin Prevents Acute Liver Injury via Inhibiting Inflammatory Responses and ZEB2 Expression. Front. Pharmacol. 2021, 12, 727916. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.W.; Yang, H.K.; Jun, M.S.; Lee, B.C. Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice. Biomedicines. 2022, 10, 175. [Google Scholar] [CrossRef]
- Kim, S.H.; Reaven, G. Obesity and Insulin Resistance: An Ongoing Saga. Diabetes 2010, 59, 2105–2106. [Google Scholar] [CrossRef]
- Birch-Machin, M.A.; Bowman, A. Oxidative stress and ageing. Brit. J. Dermatol. 2016, 175, 26–29. [Google Scholar] [CrossRef]
- Gao, D.; Cho, C.W.; Kim, J.H.; Kim, C.T.; Jeong, W.S.; Wang, Y.; Li, X.W.; Kang, J.S. Extraction and Concentration of Waste Pueraria lobata Stems with Antioxidants and Anti-Melanogenesis Activity as a Novel Skin Whitening Agent for Natural Cosmetic Prototypes. Int. J. Mol. Sci. 2022, 23, 352. [Google Scholar] [CrossRef] [PubMed]
- Bacanli, M.; Basaran, A.A.; Basaran, N. The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug Chem. Toxicol. 2017, 40, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.L.; Zhao, Y.P.; Shu, B. The radical scavenging activities of Radix puerariae isoflavonoids:: A chemiluminescence study. Food Chem. 2004, 86, 525–529. [Google Scholar] [CrossRef]
- Li, X.F.; Yuan, T.T.; Xu, H.X.; Xin, X.; Zhao, G.L.; Wu, H.; Xiao, X.L. Whole-Cell Catalytic Synthesis of Puerarin Monoesters and Analysis of Their Antioxidant Activities. J. Agr. Food Chem. 2019, 67, 299–307. [Google Scholar] [CrossRef]
- Ye, H.; Yuan, S.; Cong, X.D. Biotransformation of puerarin into 3′-hydroxypuerarin by Trichoderma harzianum NJ01. Enzym. Microb. Technol. 2007, 40, 594–597. [Google Scholar] [CrossRef]
- Hao, C.Y.; Wang, W.T.; Shao, M.X.; Zhao, Z.Y.; Tang, L.D. Effects of Puerarin on Experimental Model of Retinal Vein Occlusion in Rats. Chin. Herb. Med. 2014, 6, 110–114. [Google Scholar] [CrossRef]
- Guan, L.N.; Li, C.; Zhang, Y.; Gong, J.Y.; Wang, G.Y.; Tian, P.; Shen, N. Puerarin ameliorates retinal ganglion cell damage induced by retinal ischemia/reperfusion through inhibiting the activation of TLR4/NLRP3 inflammasome. Life Sci. 2020, 256, 117935. [Google Scholar] [CrossRef]
- Song, Q.T.; Zhao, Y.; Li, Q.; Han, X.; Duan, J.G. Puerarin protects against iron overload-induced retinal injury through regulation of iron-handling proteins. Biomed. Pharmacother. 2020, 122, 109690. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Cao, L.M.; Liu, Y.S.; Wang, X.N.; Zhang, S.M.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.M.; Gu, Y.Q.; et al. Longitudinal Associations Between Hand Grip Strength and Non-Alcoholic Fatty Liver Disease in Adults: A Prospective Cohort Study. Front. Med. 2021, 8, 752999. [Google Scholar] [CrossRef]
- Sun, C.B.; Zhang, J.; Hou, J.; Hui, M.L.; Qi, H.L.; Lei, T.; Zhang, X.S.; Zhao, L.X.; Du, H.W. Induction of autophagy via the PI3K/Akt/mTOR signaling pathway by Pueraria flavonoids improves non-alcoholic fatty liver disease in obese mice. Biomed. Pharmacother. 2023, 157, 114005. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Li, Z.; Su, D.; Yang, M.; Tao, S.; Li, J. Comparison between the efficacies of curcumin and puerarin in C57BL/6 mice with steatohepatitis induced by a methionine- and choline-deficient diet. Exp. Ther. Med. 2014, 7, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.X.; Zhang, N.H.; Aldhahrani, A.; Soliman, M.M.; Zhang, L.B.; Zhou, F. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation. Front. Immunol. 2022, 13, 956688. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.Q.; Pan, L.; Huang, Z.C.; Liang, Y.Z.; Liao, Y.H.; Xia, N. Development and Validation of a Prediction Model for Survival in Diabetic Patients With Acute Kidney Injury. Front. Endocrinol. 2021, 12, 737996. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liang, T.; Duan, X.Q.; Xu, L.Y.; Zhang, K.F.; Li, R. Anti-diabetic effects of puerarin, isolated from Pueraria lobata (Willd.), on streptozotocin-diabetogenic mice through promoting insulin expression and ameliorating metabolic function. Food Chem. Toxicol. 2013, 60, 341–347. [Google Scholar] [CrossRef] [PubMed]
- She, S.Y.; Liu, W.J.; Li, T.; Hong, Y.K. Effects of puerarin in STZ-induced diabetic rats by oxidative stress and the TGF-β1/Smad2 pathway. Food Funct. 2014, 5, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.; Prasain, J.K.; Peng, N.; Dai, Y.Y.; Wyss, J.M. Acute and Chronic Kudzu Improves Plasma Glucose Tolerance in Non-Diabetic CD-1 Mice. J. Endocrinol. Diabetes Mellit. 2014, 2, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Hayakawa, S.; Yamamoto, T.; Su, H.C.; Liu, I.M.; Cheng, J.T. Mediation of β-endorphin by the isoflavone puerarin to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med. 2004, 70, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Duru, K.C.; Mukhlynina, E.A.; Moroz, G.A.; Gette, I.F.; Danilova, I.G.; Kovaleva, E.G. Anti-diabetic effect of isoflavone rich kudzu root extract in experimentally induced diabetic rats. J. Funct. Foods 2020, 68, 103922. [Google Scholar] [CrossRef]
- Szulc, M.; Kujawski, R.; Baraniak, J.; Kania-Dobrowolska, M.; Kaminska, E.; Gryszczynska, A.; Czora-Poczwardowska, K.; Winiarska, H.; Mikolajczak, P.L. Differential Influence of Pueraria lobata Root Extract and Its Main Isoflavones on Ghrelin Levels in Alcohol-Treated Rats. Pharmaceuticals 2022, 15, 25. [Google Scholar] [CrossRef]
- Gloppen, K.M.; Roesler, J.S.; Farley, D.M. Assessing the Costs of Excessive Alcohol Consumption in Minnesota. Am. J. Prev. Med. 2022, 63, 505–512. [Google Scholar] [CrossRef]
- Lu, L.; Liu, Y.L.; Zhu, W.L.; Shi, J.; Liu, Y.; Ling, W.; Kosten, T.R. Traditional Medicine in the Treatment of Drug Addiction. Am. J. Drug Alcohol Abus. 2009, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.C.; Guthrie, S.; Xie, C.Y.; Mai, K.; Lee, D.Y.; Lumeng, L.; Li, T.K. Isoflavonoid compounds extracted from Pueraria lobata suppress alcohol preference in a pharmacogenetic rat model of alcoholism. Alcohol. Clin. Exp. Res. 1996, 20, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Penetar, D.M.; Toto, L.H.; Farmer, S.L.; Lee, D.Y.W.; Ma, Z.Z.; Liu, Y.Z.; Lukas, S.E. The isoflavone puerarin reduces alcohol intake in heavy drinkers: A pilot study. Drug Alcohol. Depen. 2012, 126, 251–256. [Google Scholar] [CrossRef]
- Penetar, D.M.; Toto, L.H.; Lee, D.Y.W.; Lukas, S.E. A single dose of kudzu extract reduces alcohol consumption in a binge drinking paradigm. Drug Alcohol. Depen. 2015, 153, 194–200. [Google Scholar] [CrossRef] [PubMed]
Classification | No. | Name | Reference |
---|---|---|---|
Flavonoids | 1 | Puerarin | [22] |
2 | Daidzin | [22] | |
3 | Daidzein | [22] | |
4 | Genistin | [23] | |
5 | Genistein | [23] | |
6 | Biochanin A | [24] | |
7 | Formononetin | [22] | |
8 | 3′-hydroxy puerarin | [22] | |
9 | 3′-methtoxy puerarin | [22] | |
10 | 3′-methoxy daidzein | [25] | |
11 | Ononin | [26] | |
12 | 3′-methoxy daidzin | [27] | |
13 | Daidzein 7,4′-O-diglucoside | [28] | |
14 | Genistein 8-C-glucoside | [22] | |
15 | Daidzein 8-C-apiosyl(1→6)glucoside | [22] | |
16 | Malonyl-daidzin | [27] | |
17 | 3′-hydroxypuerarin-4′-O-deoxyhexoside | [24] | |
18 | 8-prenyl daidzein | [24] | |
19 | Isoliquiritigenin | [22] | |
20 | Tuberosin | [29] | |
Triterpenoids and Saponins | 21 | Sophoradiol | [30] |
22 | Cantoniensisitriol | [30] | |
23 | Soyasapogenol B | [30] | |
24 | Soyasapogenol A | [30] | |
25 | Kudzusapogenol C | [30] | |
26 | Kudzusapogenol A | [30] | |
27 | Kudzusapogenol B methyl ester | [30] | |
28 | Kudzusaponin SA1 | [31] | |
29 | Kudzusaponin SA2 | [31] | |
30 | Kudzusaponin SA3 | [31] | |
31 | Kudzusaponin C1 | [31] | |
32 | Kudzusaponin A1 | [32] | |
33 | Kudzusaponin A2 | [32] | |
34 | Kudzusaponin A3 | [32] | |
35 | Kudzusaponin A4 | [32] | |
36 | Kudzusaponin A5 | [32] | |
37 | Kudzusaponin SA4 | [32] | |
38 | Kudzusaponin SB1 | [32] | |
39 | Soyasaponin A3 | [32] | |
40 | Soyasaponin I | [32] | |
Coumarins | 41 | Coumestrol | [23] |
42 | Puerarol | [24] | |
43 | Sophoracoumestan A | [28] | |
44 | Puerarol dimethylether | [33] | |
45 | Psorali dindimetherylether | [33] | |
Other Compounds | 46 | Diisobutyl phthalate | [25] |
47 | Dihexyl phthalate | [25] | |
48 | Gallic acid | [34] | |
49 | β-sitosterol | [35] | |
50 | Allantoin | [35] | |
51 | Roseoside | [36] |
Method | Advantages | Disadvantages |
---|---|---|
Water decoction | Mature process and widely applicable, and part of the medicinal value of the herbs itself can be retained and utilized | Relatively poor for water-insoluble ingredients, not suitable for thermally unstable components |
Solvent extraction | More commonly used, high extraction efficiency | Large solvent consumption, not suitable for the extraction of thermally unstable components |
Ultrasonic-assisted extraction | Short extraction time (generally only 10 min or a dozen minutes), high extraction efficiency, and higher temperature heating unnecessary | Not suitable for some macromolecular substances and for target ingredients with too low content, and some substances may undergo chemical changes during the extraction process due to ultrasonic action |
Microwave-assisted extraction | Short extraction time, low energy and solvent consumption, high extraction efficiency, small environmental pollution | Only suitable for thermally stable substances |
Pressurized solvent extraction | High extraction efficiency, short extraction time, good reproducibility, the chemical components of the herbs can be better dissolved in the solvent by increasing the pressure and temperature | Difficulty of industrial production in a continuous mode, and only suitable for routine quantitative analysis of heat-stable fractions on a small scale |
Supercritical CO2 extraction | Non-toxic, non-flammable, non-explosive, cheap, easy to obtain and remove from the extraction products | Not suitable for substances with large polar and relative molecular mass |
Cyclodextrin-assisted extraction | Protects and stabilizes those unstable or volatile substances (volatile oil components, pigments, etc.) and enhances the extraction efficiency of hydrophobic natural products due to the large surface area and hydrophilicity of CDs | α-CD molecules have small cavities and pores and can usually only encapsulate smaller molecules of guest substances; β-CD has a limited hydrophobic region and catalytic activity; γ-CD has a large molecular cavity, but its production cost is high |
Molecularly imprinted solid-phase extraction | Low preparation cost and good extraction effect in organic solvents | The preparation of MIPs with good reproducibility and a high degree of crosslinking is difficult and the reaction is confined to non-polar or weakly polar solvents due to MIPs being mostly bound by hydrogen bonds to the target molecule |
Macroporous resin adsorption | Structural stability, high adsorption capacity, and feasible regeneration | Short service life, poor selectivity, and high production cost |
High-performance liquid chromatography | High sensitivity, high resolution, high separation effect | Complex equipment, slow separation speed |
High-speed counter-current chromatography | Wide range of application, flexible operation, high efficiency, rapidity, large preparation volume, and low cost | Demanding experimental conditions, expensive equipment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, E.; Wang, W.; Huang, Y.; Luo, Z.; Chen, B.; Xiao, S.; Li, D. Puerariae lobatae Radix: Progress in Extraction, Separation Methods and Pharmacological Activities Research. Separations 2024, 11, 195. https://doi.org/10.3390/separations11070195
Gao E, Wang W, Huang Y, Luo Z, Chen B, Xiao S, Li D. Puerariae lobatae Radix: Progress in Extraction, Separation Methods and Pharmacological Activities Research. Separations. 2024; 11(7):195. https://doi.org/10.3390/separations11070195
Chicago/Turabian StyleGao, Erjian, Wei Wang, Yuanyuan Huang, Zhijie Luo, Bangzheng Chen, Siqiu Xiao, and Dewen Li. 2024. "Puerariae lobatae Radix: Progress in Extraction, Separation Methods and Pharmacological Activities Research" Separations 11, no. 7: 195. https://doi.org/10.3390/separations11070195
APA StyleGao, E., Wang, W., Huang, Y., Luo, Z., Chen, B., Xiao, S., & Li, D. (2024). Puerariae lobatae Radix: Progress in Extraction, Separation Methods and Pharmacological Activities Research. Separations, 11(7), 195. https://doi.org/10.3390/separations11070195