Assessment of Water Retention and Absorption of Organic Mulch Under Simulated Rainfall for Soil and Water Conservation
<p>Photographs of coconut leaf (cc), cashew leaf (ca), elephant grass (el), corn leaf (co), <span class="html-italic">Brachiaria</span> grass (br), and sugar cane leaf (su).</p> "> Figure 2
<p>(<b>a</b>) Sketch of the laboratory setup: 1—constant head reservoir; 2—valves; 3—pump; 4—manometer; 5—oscillating nozzle; 6—weighing device; 7—mulch support; and 8—support structure of the rainfall simulator. (<b>b</b>) View of the measuring device.</p> "> Figure 3
<p>Sketch with variables involved in water retention and absorption processes in time for a given organic mulching cover for a rainfall with 10 min duration. α—angle referring to initial retention intensity and ∆—drained seepage depth. Tp is rainfall duration and Td is drainage time after rainfall. A is the maximum water retention value and B is the stabilized value of retained water.</p> "> Figure 4
<p>Water retention and absorption by the different mulch covers for different mulch sizes and densities: coconut leaf (CC), cashew leaf (CA), elephant grass (EL), corn leaf (CO), <span class="html-italic">Brachiaria</span> grass (BR), and sugar cane leaf (SU) (see <a href="#soilsystems-09-00004-f001" class="html-fig">Figure 1</a>). In the graphs, vertical scales change with mulch density.</p> "> Figure 5
<p>Initial water retention angle α (°) for 10 min after rainfall start, and 5 min after rainfall stop as a function of mulch type (<b>a</b>), size (<b>b</b>), and density (<b>c</b>) for coconut leaf (CC), cashew leaf (CA), elephant grass (EL), corn leaf (CO), <span class="html-italic">brachiaria</span> grass (BR), and sugar cane leaf (SU). The letters above the columns represent the statistical result of the Tukey test.</p> "> Figure 6
<p>Water retention (after 10 min) and absorption (after 15 min). Depth in mm (on <b>top</b>) and as a percentage of rainfall (on <b>bottom</b>) for all mulch types (all mulch sizes and all densities). In the figure, the red asterisks correspond to outlier values. The letters above the columns represent the statistical result of the Tukey test.</p> "> Figure 7
<p>Depth retained (after 10 min) and absorbed (after 15 min), in mm (<b>top</b>) and as percentage of rainfall (<b>bottom</b>), for different mulch sizes (all mulch types and all densities). In the figure, the red asterisks correspond to outlier values. The significant regression coefficients are for <span class="html-italic">p</span> < 0.05 (*) (black).</p> "> Figure 8
<p>Depth retained (after 10 min) and absorbed (after 15 min) in mm (<b>top</b>) and as percentage of rainfall (<b>bottom</b>) for mulch densities (all mulch type and all sizes).</p> "> Figure 9
<p>Difference in water retention between 10 min and 15 min depths (5 min after rainfall ends) as a function of mulch type, size, and density. In the figure, the red asterisks correspond to outlier values. The letters above the columns represent the statistical result of the Tukey test. The significant regression coefficients are for <span class="html-italic">p</span> < 0.05 (*) (black).</p> "> Figure 10
<p>Principal Component Analysis for absorption and retention depths (<b>a</b>) considering separately the variables densities (1, 2, 4, 8 t ha<sup>−1</sup> mulch) (<b>b</b>), sizes (200, 100, 50 mm) (<b>c</b>), types (coconut leaf (CC), cashew leaf (CA), elephant grass (EL), corn leaf (CO), <span class="html-italic">Brachiaria</span> grass (BR), and sugar cane leaf (SU)) (<b>d</b>), and type with their sizes (<b>e</b>), distributed by clusters.</p> "> Figure 11
<p>Top: rainfall interception depth for 1, 2, 4, and 8 t ha<sup>−1</sup> mulch densities and for 50, 100, and 200 mm mulching sizes ((<b>a</b>), (<b>b</b>), (<b>c</b>), respectively). Bottom: drainage for 1, 2, 4, and 8 t ha<sup>−1</sup> mulch densities and 200, 100, and 50 mm mulching sizes ((<b>d</b>), (<b>e</b>), (<b>f</b>), respectively).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Mulch
2.2. Rainfall Simulator
2.3. Water Retention and Absorption Curves
2.4. Statistical Analysis
3. Results
3.1. General Behavior of Retained and Absorbed Depths
3.2. Initial Absorption by Different Mulch Covers
3.3. Absorption and Retention by Different Covers
3.4. Drained Seepage Depth by Different Covers
4. Discussion
4.1. General Behavior of Retained and Absorbed Depths
4.2. Initial Absorption by Different Mulch Covers
4.3. Absorption and Retention by Different Covers
4.4. Depth Drained by Different Covers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunkerley, D. Measuring Interception Loss and Canopy Storage in Dryland Vegetation: A Brief Review and Evaluation of Available Research Strategies. Hydrol. Process. 2000, 14, 669–678. [Google Scholar] [CrossRef]
- Smets, V.; Akkermans, W.; Verbeiren, B.; Hermy, M.; Somers, B. Ex-Situ Estimation of Interception Storage Capacity of Small Urban Plant Species. J. Hydrol. 2019, 572, 869–883. [Google Scholar] [CrossRef]
- Valente, F.; Gash, J.H.; Nóbrega, C.; David, J.S.; Pereira, F.L. Modelling Rainfall Interception by an Olive-Grove/Pasture System with a Sparse Tree Canopy. J. Hydrol. 2020, 581, 124417. [Google Scholar] [CrossRef]
- Geddes, N.; Dunkerley, D. The Influence of Organic Litter on the Erosive Effects of Raindrops and of Gravity Drops Released from Desert Shrubs. Catena 1999, 36, 303–313. [Google Scholar] [CrossRef]
- Putuhena, W.M.; Cordery, I. Estimation of Interception Capacity of the Forest Floor. J. Hydrol. 1996, 180, 283–299. [Google Scholar] [CrossRef]
- Montenegro, A.A.A.; Abrantes, J.R.C.B.; de Lima, J.L.M.P.; Singh, V.P.; Santos, T.E.M. Impact of Mulching on Soil and Water Dynamics under Intermittent Simulated Rainfall. Catena 2013, 109, 139–149. [Google Scholar] [CrossRef]
- Qin, W.; Hu, C.; Oenema, O. Soil Mulching Significantly Enhances Yields and Water and Nitrogen Use Efficiencies of Maize and Wheat: A Meta-Analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef]
- Ribeiro Filho, J.C.; Palácio, H.A.D.Q.; Andrade, E.M.; Santos, J.C.; Brasil, J.B. Rainfall characterization and sedimentological responses of watersheds with different land uses to precipitation in the semiarid region of brazil. Rev. Caatinga 2017, 30, 468–478. [Google Scholar] [CrossRef]
- Ibrahim, M.; Khan, A.; Anjum; Ali, W.; Akbar, H. Mulching Techniques: An Approach for Offsetting Soil Moisture Deficit and Enhancing Manure Mineralization during Maize Cultivation. Soil Tillage Res. 2020, 200, 104631. [Google Scholar] [CrossRef]
- Kodzwa, J.J.; Gotosa, J.; Nyamangara, J. Mulching Is the Most Important of the Three Conservation Agriculture Principles in Increasing Crop Yield in the Short Term, under Sub Humid Tropical Conditions in Zimbabwe. Soil Tillage Res. 2020, 197, 104515. [Google Scholar] [CrossRef]
- Da Silva, F.F.; dos Souza, T.E.M.; de Souza, E.R.; Correa, M.M.; Rolim, M.M. Surface Sealing and Water Erosion of Soils with Mulching in the Semi-Arid Region of Brazil. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 277–284. [Google Scholar] [CrossRef]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of Inorganic and Organic Mulching Materials for Soil Evaporation Control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef]
- Karuku, G.N. Soil and Water Conservation Measures and Challenges in Kenya; A Review. Curr. Investig. Agric. Curr. Res. 2018, 2, 1–21. [Google Scholar] [CrossRef]
- Montenegro, A.A.A.; Lopes, I.; de Carvalho, A.A.; de Lima, J.L.M.P.; de Souza, T.E.M.S.; Araújo, H.L.; Lins, F.A.C.; Almeida, T.A.B.; Montenegro, H.G.L.A. Spatio Temporal Soil Moisture Dynamics and Runoff under Different Soil Cover Conditions in a Semiarid Representative Basin in Brazil. Adv. Geosci. 2019, 48, 19–30. [Google Scholar] [CrossRef]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Ranjan, P.; Patle, G.T.; Prem, M.; Solanke, K.R. Organic Mulching—A Water Saving Technique to Increase the Production of Fruits and Vegetables. Curr. Agric. Res. J. 2017, 5, 371–380. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic Characteristics of the 2010–2016 Drought in the Semiarid Northeast Brazil Region. Acad. Bras. Ciências 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An Economic, Perception and Biophysical Approach to the Use of Oat Straw as Mulch in Mediterranean Rainfed Agriculture Land. Ecol. Eng. 2017, 108, 162–171. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of Soil Management Techniques on Soil Water Erosion in Apricot Orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; González-Romero, J.; Plaza-Álvarez, P.A.; Sagra, J.; Gómez, M.E.; Moya, D.; Cerdà, A.; de las Heras, J. The Impact of Straw Mulching and Salvage Logging on Post-Fire Runoff and Soil Erosion Generation under Mediterranean Climate Conditions. Sci. Total Environ. 2019, 654, 441–451. [Google Scholar] [CrossRef]
- De Carvalho, A.A.; de Montenegro, A.A.A.; de Assis, F.M.V.; Tabosa, J.N.; Cavalcanti, R.Q.; Almeida, T.A.B. Spatial Dependence of Attributes of Rainfed Maize under Distinct Soil Cover Conditions. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 33–39. [Google Scholar] [CrossRef]
- Shen, J.Y.; Zhao, D.D.; Han, H.F.; Zhou, X.B.; Li, Q.Q. Effects of Straw Mulching on Water Consumption Characteristics and Yield of Different Types of Summer Maize Plants. Plant Soil Environ. 2012, 58, 161–166. [Google Scholar] [CrossRef]
- Stuart, G.W.; Edwards, P.J. Concepts about Forests and Water. North. J. Appl. For. 2006, 23, 11–19. [Google Scholar] [CrossRef]
- David, J.S.; Valente, F.; Gash, J.H. Evaporation of Intercepted Rainfall. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-47-084894-4. [Google Scholar]
- Lopes, I.; Montenegro, A.A.A.; de Lima, J.L.M.P. Performance of Conservation Techniques for Semiarid Environments: Field Observations with Caatinga, Mulch, and Cactus Forage Palma. Water 2019, 11, 792. [Google Scholar] [CrossRef]
- de Lima, J.L.M.P.; Santos, L.; Mujtaba, B.; de Lima, M.I.P. Laboratory Assessment of the Influence of Rice Straw Mulch Size on Soil Loss. Adv. Geosci. 2019, 48, 11–18. [Google Scholar] [CrossRef]
- Araya, T.; Ochsner, T.E.; Mnkeni, P.N.S.; Hounkpatin, K.O.L.; Amelung, W. Challenges and Constraints of Conservation Agriculture Adoption in Smallholder Farms in Sub-Saharan Africa: A Review. Int. Soil Water Conserv. Res. 2024, 12, 828–843. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Pereira, M.G.; Andrioli, I.; Polidoro, J.C.; Fabian, A.J. Decomposição e Liberação de Nitrogênio de Resíduos Culturais de Plantas de Cobertura Em Um Solo de Cerrado. Rev. Bras. Ciência Solo 2005, 29, 609–618. [Google Scholar] [CrossRef]
- Souza, L.S.; Velini, E.D.; Maimoni-Rodella, R.C.S.; Martins, D. Teores de Macro e Micronutrientes e a Relação c/n de Várias Espécies de Plantas Daninhas. Planta Daninha 1999, 17, 163–167. [Google Scholar] [CrossRef]
- Silva, D.J.; Mouco, M.A.C.; Gava, C.A.T.; Giongo, V.; Pinto, J.M. Composto Orgânico Em Mangueiras (Mangifera indica L.) Cultivadas No Semiárido Do Nordeste Brasileiro. Rev. Bras. Frutic. 2013, 35, 875–882. [Google Scholar] [CrossRef]
- Flores, R.A.; Urquiaga, S.; Alves, B.J.R.; Collier, L.S.; Zanetti, J.B.; de Prado, R.M. Nitrogênio e Idade de Corte Na Qualidade Da Biomassa de Capimelefante Para Fins Agroenergéticos Cultivado Em Latossolo. Semin. Ciência Agrar. 2013, 34, 127–136. [Google Scholar] [CrossRef]
- Di Domenico, C.N.B.; Mapelli, G.; De Oliveira, R.B. Uso de Equações Diferenciais Ordinárias Na Simulação Da Relação de Carbono/Nitrogênio Em Um Composto Orgânico. Rev. Eletrônica Científica Inovação Tecnol. 2018, 9, 110. [Google Scholar] [CrossRef]
- Confesor, J.G.; Rodrigues, S.C. Método para calibração, validação e utilização de simuladores de chuvas aplicados a estudos hidrogeomorfológicos em parcelas de erosão. Rev. Bras. Geomorfol. 2018, 19, 221–229. [Google Scholar] [CrossRef]
- Silva, B.; Montenegro, S.; Silva, F.; Filho, P. Chuvas Intensas Em Localidades Do Estado de Pernambuco. Rev. Bras. Recur. Hídricos 2012, 17, 135–147. [Google Scholar] [CrossRef]
- Montenegro, A.A.A.; Almeida, T.A.B.; Lima, C.A.d.; Abrantes, J.R.C.B.; de Lima, J.L.M.P. Evaluating Mulch Cover with Coir Dust and Cover Crop with Palma cactus as Soil and Water Conservation Techniques for Semiarid Environments: Laboratory Soil Flume Study under Simulated Rainfall. Hydrology 2020, 7, 61. [Google Scholar] [CrossRef]
- Niziolomski, J.C.; Simmons, R.W.; Jane Rickson, R.; Hann, M.J. Efficacy of Mulch and Tillage Options to Reduce Runoff and Soil Loss from Asparagus Interrows. Catena 2020, 191, 104557. [Google Scholar] [CrossRef]
- Samba, S.A.N.; Camiré, C.; Margolis, H.A. Allometry and Rainfall Interception of Cordyla pinnata in a Semi-Arid Agroforestry Parkland, Senegal. For. Ecol. Manag. 2001, 154, 277–288. [Google Scholar] [CrossRef]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Camargo, A.P.; Sentelhas, P.C. Avaliação Do Desempenho de Diferentes Métodos de Estimativa Da Evapotranspiração Potencial No Estado de São Paulo, Brasil. Rev. Bras. Agrometeorol. 1997, 5, 89–97. [Google Scholar]
- Da Cunha, P.C.R.; do Nascimento, J.L.; da Silveira, P.M.; Alves Júnior, J. Eficiência de Métodos Para o Cálculo de Coeficientes Do Tanque Classe A Na Estimativa Da Evapotranspiração de Referência. Pesqui. Agropecu. Trop. 2013, 43, 114–122. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.; Wen, T.; Guo, X.; Fan, G. The Combined Effects of Maize Straw Mulch and No-Tillage on Grain Yield and Water and Nitrogen Use Efficiency of Dry-Land Winter Wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Yagi, R.; de Nazareno, N.R.X.; Kawakami, J. Poultry Litter and Fresh Mulch of Elephant Grass Improve the Organic Potato Production. Pesqui. Agropecu. Trop. 2020, 50, e57585. [Google Scholar] [CrossRef]
- Qu, B.; Liu, Y.; Sun, X.; Li, S.; Wang, X.; Xiong, K.; Yun, B.; Zhang, H. Effect of Various Mulches on Soil Physico—Chemical Properties and Tree Growth (Sophora japonica) in Urban Tree Pits. PLoS ONE 2019, 14, e0210777. [Google Scholar] [CrossRef] [PubMed]
Index “c” | Classification |
---|---|
˃0.85 | Great |
0.76–0.85 | Very good |
0.66–0.75 | Good |
0.61–0. 65 | Median |
0.51–0.60 | Sufferable |
0.41–0.50 | Poor |
≤0.40 | Very poor |
SV | DF | SS | MS | CfV | F |
---|---|---|---|---|---|
Type | 5 | 1258.2 | 251.6 | 14.5 | 0.00 |
Size | 2 | 314.9 | 157.4 | 9.1 | 0.00 |
Density | 3 | 11,286.6 | 3762.2 | 217.3 | 0.00 |
10 | 526.0 | 52.6 | 3.0 | 0.00 | |
Type × Density | 15 | 428.5 | 28.5 | 1.6 | 0.07 |
Size × Density | 6 | 83.8 | 13.9 | 0.8 | 0.57 |
Type × Size × Density | 30 | 648.4 | 21.6 | 1.2 | 0.20 |
error | 150 | 2595.8 | 17.3 | ||
Total | 215 | 17,058.8 |
SV | DF | SS | MS | CfV | F |
---|---|---|---|---|---|
Type | 5 | 4.4 | 0.8 | 23.2 | 0.00 |
Size | 2 | 0.9 | 0.4 | 12.0 | 0.00 |
Density | 3 | 40.9 | 13.6 | 357.8 | 0.00 |
Type × Size | 10 | 1.8 | 0.1 | 4.8 | 0.00 |
Type × Density | 15 | 1.0 | 0.07 | 1.8 | 0.02 |
Size × Density | 6 | 0.4 | 0.07 | 1.9 | 0.07 |
Type × Size × Density | 30 | 1.0 | 0.03 | 0.8 | 0.65 |
Error | 144 | 5.4 | 0.03 | ||
Total | 215 | 56.1 |
SV | DF | SS | MS | CfV | F |
---|---|---|---|---|---|
Type | 5 | 0.5 | 0.1 | 14.9 | 0.00 |
Size | 2 | 0.2 | 0.1 | 14.6 | 0.00 |
Density | 3 | 1.0 | 0.3 | 46.1 | 0.00 |
Type × Size | 10 | 0.3 | 0.0 | 4.9 | 0.00 |
Type × Density | 15 | 0.1 | 0.0 | 1.0 | 0.42 |
Size × Density | 6 | 0.1 | 0.0 | 2.3 | 0.03 |
Type × Size × Density | 30 | 0.3 | 0.0 | 1.3 | 0.13 |
error | 144 | 1.1 | 0.0 | ||
Total | 215 | 3.8 |
Rainfall Interception | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1; 200 | 2; 200 | 4; 200 | 8; 200 | 1; 100 | 2; 100 | 4; 100 | 8; 100 | 1; 50 | 2; 50 | 4; 50 | 8; 50 | |
c1 | 0.41 | 0.64 | 1.05 | 1.60 | 0.45 | 0.85 | 1.05 | 1.55 | 0.55 | 0.83 | 1.14 | 1.75 |
a | 1.90 | 2.20 | 2.30 | 2.70 | 1.90 | 2.20 | 2.30 | 2.60 | 2.00 | 2.20 | 2.50 | 2.80 |
alfa | 0.50 | 0.70 | 0.80 | 0.86 | 0.50 | 0.70 | 0.80 | 0.86 | 0.50 | 0.70 | 0.80 | 0.90 |
R2 | 0.97 | 0.97 | 0.99 | 0.99 | 0.97 | 0.98 | 0.99 | 0.99 | 0.97 | 0.99 | 0.98 | 0.99 |
d | 0.99 | 0.99 | 1.00 | 1.00 | 0.96 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 |
c | 0.98 | 0.98 | 0.99 | 0.99 | 0.95 | 0.98 | 0.99 | 1.00 | 0.97 | 0.99 | 0.98 | 0.99 |
Rainfall Drainage | ||||||||||||
1; 200 | 2; 200 | 4; 200 | 8; 200 | 1; 100 | 2; 100 | 4; 100 | 8; 100 | 1; 50 | 2; 50 | 4; 50 | 8; 50 | |
c1 | 0.23 | 0.27 | 0.37 | 0.45 | 0.26 | 0.36 | 0.43 | 0.43 | 0.30 | 0.34 | 0.46 | 0.58 |
a | 0.70 | 0.80 | 0.90 | 1.00 | 1.00 | 1.00 | 1.20 | 1.40 | 1.00 | 1.00 | 1.20 | 1.50 |
alfa | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.40 | 0.70 | 0.50 | 0.60 |
R2 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 |
d | 0.99 | 0.99 | 1.00 | 1.00 | 0.96 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 |
c | 0.98 | 0.98 | 0.99 | 0.99 | 0.95 | 0.98 | 0.99 | 1.00 | 0.97 | 0.99 | 0.98 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, I.; de Lima, J.L.M.P.; Montenegro, A.A.A.; Carvalho, A.A.d. Assessment of Water Retention and Absorption of Organic Mulch Under Simulated Rainfall for Soil and Water Conservation. Soil Syst. 2025, 9, 4. https://doi.org/10.3390/soilsystems9010004
Lopes I, de Lima JLMP, Montenegro AAA, Carvalho AAd. Assessment of Water Retention and Absorption of Organic Mulch Under Simulated Rainfall for Soil and Water Conservation. Soil Systems. 2025; 9(1):4. https://doi.org/10.3390/soilsystems9010004
Chicago/Turabian StyleLopes, Iug, João L. M. P. de Lima, Abelardo A. A. Montenegro, and Ailton Alves de Carvalho. 2025. "Assessment of Water Retention and Absorption of Organic Mulch Under Simulated Rainfall for Soil and Water Conservation" Soil Systems 9, no. 1: 4. https://doi.org/10.3390/soilsystems9010004
APA StyleLopes, I., de Lima, J. L. M. P., Montenegro, A. A. A., & Carvalho, A. A. d. (2025). Assessment of Water Retention and Absorption of Organic Mulch Under Simulated Rainfall for Soil and Water Conservation. Soil Systems, 9(1), 4. https://doi.org/10.3390/soilsystems9010004