Enhancing Soil Environments and Wheat Production through Water Hyacinth Biochar under Deficit Irrigation in Ethiopian Acidic Silty Loam Soil
"> Figure 1
<p>Experimental site map.</p> "> Figure 2
<p>Variation of monthly mean solar radiation (SR), total rainfall (RF), maximum (T<sub>max</sub>), and minimum (T<sub>min</sub>) temperatures of study area during experimental season.</p> "> Figure 3
<p>The effect of water hyacinth biochar (WHB) rates (0, 5, 10, and 20 t ha<sup>−1</sup>) on soil bulk density. Mean separation was performed separately for each day after sowing (DAS) among different treatments. Means that do not share the same letter were significantly different at 5% level of significance. Vertical bars indicate standard deviation of means.</p> "> Figure 4
<p>The effect of water hyacinth biochar (WHB) rates (0, 5, 10, and 20 t ha<sup>−1</sup>) on soil porosity Mean separation was performed separately for each day after sowing (DAS) among different treatments. Means that do not share same letter were significantly different at 5% level of significance. Vertical bars indicate standard deviation of means.</p> "> Figure 5
<p>The effect of water hyacinth biochar (WHB), NPS fertilizer (F), and irrigation (I) on wheat crop dry biomass. Means that do not share same letter were significantly different at 5% level of significance. Vertical bars indicate the standard deviation of means.</p> "> Figure 6
<p>The effect of water hyacinth biochar (WHB), NPS fertilizer (F), and irrigation (I) on wheat crop grain yield. Means that do not share same letter were significantly different at 5% level of significance. Vertical bars indicate the standard deviation of means.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Descriptions
2.2. Experimental Land/Plot Preparation
2.3. Biochar Production
2.4. Field Experimentation
2.5. Sampling and Characterization of Soil and Biochar Samples
2.6. Plant Data Collection
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Soil and Biochar
3.2. Effects of Combined Application of Biochar and Fertilizer on Soil Physical Properties
3.2.1. Bulk Density
3.2.2. Total Porosity
3.2.3. Moisture Content
3.3. Effects of Combined Application of Biochar and Fertilizer on Soil Chemical Properties
3.3.1. Soil pH
3.3.2. Ammonium–Nitrogen
3.3.3. Nitrate–Nitrogen
3.3.4. Available Phosphorus
3.4. Effects of Combined Application of Biochar and Fertilizer on Crop Dry Biomass and Grain Yield
3.4.1. Wheat Dry Biomass
3.4.2. Wheat Grain Yield
4. Discussion
4.1. Effects of Combined Application of Biochar and Fertilizer on Soil Physical Properties
4.1.1. Bulk Density
4.1.2. Total Porosity
4.1.3. Moisture Content
4.2. Effects of Combined Application of Biochar and Fertilizer on Soil Chemical Properties
4.2.1. Soil pH
4.2.2. Ammonium–Nitrogen
4.2.3. Nitrate–Nitrogen
4.2.4. Available Phosphorus
4.3. Effects of Combined Application of Biochar and Fertilizer on Crop Biomass and Grain Yield
4.3.1. Wheat Dry Biomass
4.3.2. Wheat Grain Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
pH | NH4+–N | NO3−–N | ||||||||||||||||
7 | 15 | 30 | 60 | 90 | 130 | 7 | 15 | 30 | 60 | 90 | 130 | 7 | 15 | 30 | 60 | 90 | 130 | |
Effects | ---------------------------- DAS ---------------------------- | ---------------------------- DAS ---------------------------- | ---------------------------- DAS ---------------------------- | |||||||||||||||
B | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
F | ns | ns | ns | ns | ns | ns | ** | ns | ** | *** | ** | *** | *** | *** | *** | *** | *** | *** |
I | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | *** | ns | * | ** | ns | ns | *** | ns |
B*F | * | ns | ns | ns | ns | ns | ns | ns | ns | ** | ** | *** | *** | *** | * | *** | *** | ns |
B*I | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | *** | ns | * | ** | ns | ns | *** | ns |
F*I | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | ** | ns | ns | ns | ** | ns |
B*F*I | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | ** | ns | ns | ns | ** | ns |
Available P | Soil moisture content | Bulk density | Soil porosity | |||||||||||||||
7 | 15 | 30 | 60 | 90 | 130 | 7 | 15 | 30 | 60 | 90 | 130 | 70 | 130 | 70 | 130 | |||
Effects | ---------------------------- DAS ---------------------------- | ---------------------------- DAS ---------------------------- | ------ DAS ----- | ----- DAS ----- | ||||||||||||||
B | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | *** | *** | ** | ** | ** | ** | ||
F | *** | *** | *** | ** | *** | *** | ns | ns | *** | ns | ns | ns | ns | ns | ns | ns | ||
I | *** | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | * | ns | ns | ns | ns | ||
B*F | *** | ns | ns | ** | ns | *** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
B*I | *** | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | * | ns | ns | ns | ns | ||
F*I | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
B*F*I | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
References
- Prasad, S.; Malav, L.C.; Choudhary, J.; Kannojiya, S.; Kundu, M.; Kumar, S.; Yadav, A.N. Soil Microbiomes for Healthy Nutrient Recycling BT—Current Trends in Microbial Biotechnology for Sustainable Agriculture; Yadav, A.N., Singh, J., Singh, C., Yadav, N., Eds.; Springer: Singapore, 2021; pp. 1–21. [Google Scholar]
- Iqbal, M.S.; Singh, A.K.; Ansari, M.I. Effect of Drought Stress on Crop Production BT—New Frontiers in Stress Management for Durable Agriculture; Rakshit, A., Singh, H.B., Singh, A.K., Singh, U.S., Fraceto, L., Eds.; Springer: Singapore, 2020; pp. 35–47. [Google Scholar]
- Ahmad, S.; Wang, G.-Y.; Muhammad, I.; Chi, Y.-X.; Zeeshan, M.; Nasar, J.; Zhou, X.-B. Interactive Effects of Melatonin and Nitrogen Improve Drought Tolerance of Maize Seedlings by Regulating Growth and Physiochemical Attributes. Antioxidants 2022, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, M.; Li, R.; Rasul, F.; Shahzad, S.; Wu, C.; Shao, J.; Huang, G.; Li, R.; Almari, S.; et al. Soil Acidification and Salinity: The Importance of Biochar Application to Agricultural Soils. Front. Plant Sci. 2023, 14, 1206820. [Google Scholar] [CrossRef] [PubMed]
- Haile, W.; Boke, S.; Box, P. Mitigation of Soil Acidity and Fertility Decline Challenges for Sustainable Livelihood Improvement: Research Findings from Southern Region of Ethiopia and Its Policy Implications. Awassa Agric. Res. Inst. 2009. Available online: http://www.ethiopianreview.com/pdf/001/SULMPA-workshop-12.pdf (accessed on 8 April 2024).
- Diatta, A.A.; Fike, J.H.; Battaglia, M.L.; Galbraith, J.M.; Baig, M.B. Effects of Biochar on Soil Fertility and Crop Productivity in Arid Regions: A Review. Arab. J. Geosci. 2020, 13, 595. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.; Liu, S.; Chen, Y.; Jia, B. Effects of Biochar on Soil Chemical Properties: A Global Meta-Analysis of Agricultural Soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar Applications Influence Soil Physical and Chemical Properties, Microbial Diversity, and Crop Productivity: A Meta-Analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Jalal, F.; Khan, Z.H.; Imtiz, M.; Khan, M.A.; Said, F.; Hussain, S.; Shah, F.; Adnan, M. Biochar for Improving Crop Productivity and Soil Fertility BT—Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress under a Changing Climate; Fahad, S., Danish, S., Datta, R., Saud, S., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 75–98. [Google Scholar]
- Wondie, A.; Seid, A.; Molla, E.; Goshu, G.; Gkidan, W.; Shibabaw, A.; Genanew, M. Preliminary Assessment of Water Hyacinth (Eichornia crassipes) in Lake Tana. In Proceedings of the National Workshop (Biological Society of Ethiopia), Addis Ababa, Ethiopia, March 2012. [Google Scholar]
- Ginebra, M.; Muñoz, C.; Calvelo-Pereira, R.; Doussoulin, M.; Zagal, E. Biochar Impacts on Soil Chemical Properties, Greenhouse Gas Emissions and Forage Productivity: A Field Experiment. Sci. Total Environ. 2022, 806, 150465. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, Y.; Ma, J.; Jiang, J.; You, X.; Lv, R.; Zhou, S.; Pan, C.; Liu, B.; Xu, Q.; et al. How Does Biochar Influence Soil Nitrification and Nitrification-Induced N2O Emissions? Sci. Total Environ. 2024, 908, 168530. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.J.; Wang, M.K.; Fu, M.L.; Ci, E. Enhancing Phosphorus Availability in Phosphorus-Fertilized Zones by Reducing Phosphate Adsorbed on Ferrihydrite Using Rice Straw-Derived Biochar. J. Soils Sediments 2011, 11, 1135–1141. [Google Scholar] [CrossRef]
- Ng, J.F.; Ahmed, O.H.; Jalloh, M.B.; Omar, L.; Kwan, Y.M.; Musah, A.A.; Poong, K.H. Soil Nutrient Retention and PH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate. Agronomy 2022, 12, 219. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Olayanju, T.M.A.; Ejue, S.W.; Alori, E.T.; Adegbite, K.A. Contribution of Biochar in Improving Soil Health BT—Soil Health; Giri, B., Varma, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 99–113. [Google Scholar]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.Y.; et al. Combined Effects of Biochar and Fertilizer Applications on Yield: A Review and Meta-Analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef] [PubMed]
- Baiamonte, G.; Minacapilli, M.; Crescimanno, G. Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil. Sustainability 2020, 12, 7678. [Google Scholar] [CrossRef]
- Martí, E.; Sierra, J.; Domene, X.; Mumbrú, M.; Cruañas, R.; Garau, M.A. One-Year Monitoring of Nitrogen Forms after the Application of Various Types of Biochar on Different Soils. Geoderma 2021, 402, 115178. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, H.; Zheng, H.; Liu, G.; Chen, L.; Xing, B. Reduced Nitrification and Abundance of Ammonia-Oxidizing Bacteria in Acidic Soil Amended with Biochar. Chemosphere 2015, 138, 576–583. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Yang, J.; Zhu, W.; Yin, C.; Wang, X.; Xie, W.; Zhang, X. Combined Application of Biochar and N Fertilizer Shifted Nitrification Rate and AmoA Gene Abundance of Ammonia-Oxidizing Microorganisms in Salt-Affected Anthropogenic-Alluvial Soil. Appl. Soil Ecol. 2022, 171, 104348. [Google Scholar] [CrossRef]
- DeLuca, T.H.; MacKenzie, M.D.; Gundale, M.J.; Holben, W.E. Wildfire-Produced Charcoal Directly Influences Nitrogen Cycling in Ponderosa Pine Forests. Soil Sci. Soc. Am. J. 2006, 70, 448–453. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar Effects on Crop Yields with and without Fertilizer: A Meta-Analysis of Field Studies Using Separate Controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Effects of Biochar and Inorganic Fertiliser Applications on Growth, Yield and Water Use Efficiency of Maize under Deficit Irrigation. Agric. Water Manag. 2019, 217, 165–178. [Google Scholar] [CrossRef]
- Sorensen, R.B.; Lamb, M.C. Crop Yield Response to Increasing Biochar Rates. J. Crop. Improv. 2016, 30, 703–712. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Habtie, A.; Mezgebu, G.; Esubalew, S.; Bainesagn, W. Screening of Napier Grass (Pennisetum purpureum) Accessions Tolerant to Acid Soils in Some Areas of Ethiopia. Int. J. Sci. 2020, 4, 1–6. [Google Scholar]
- Gezahegn, A.; G Selassie, Y.; Agegnehu, G.; Addisu, S.; Asargew Mihretie, F.; Kohira, Y.; Sato, S. Pyrolysis Temperature Changes the Physicochemical Characteristics of Water Hyacinth-Based Biochar as a Potential Soil Amendment. Biomass Convers. Biorefin. 2024, 1–16. [Google Scholar] [CrossRef]
- Alemayehu, M.; Jemberie, M. Optimum Rates of NPS Fertilizer Application for Economically Profitable Production of Potato Varieties at Koga Irrigation Scheme, Northwestern Ethiopia. Cogent Food Agric. 2018, 4. [Google Scholar] [CrossRef]
- Derebe, B.; Bitew, Y.; Asargew, F.; Chakelie, G. Optimizing Time and Split Application of Nitrogen Fertilizer to Harness Grain Yield and Quality of Bread Wheat (Triticum aestivum L.) in Northwestern Ethiopia. PLoS ONE 2022, 17, e0279193. [Google Scholar] [CrossRef] [PubMed]
- Deo, K.; Singh, A.; Mishra, S.R.; Singh, A.K.; Mishra, A.N. Water Requirement of Wheat Crop for Optimum Production Using CROPWAT Model. J. Med. Plants Stud. 2017, 5, 338–342. [Google Scholar]
- Desalegn, T.; Abera, D.; Indris, S.; Tolcha, W.; Hordofa, T. Proceedings of the Natural Resources Management Research Completed Research Activities Workshop; EIAR-HQ: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Tewabe, D.; Abebe, A.; Tsige, A.; Enyew, A.; Worku, M. Determination of Crop Water Requirements and Irrigation Scheduling of Wheat Using Cropwat at Koga and Rib Irrigation Scheme, Ethiopia. Indian J. Ecol. 2022, 363–371. [Google Scholar] [CrossRef]
- Robinson, J.B.D. Tropical Soil Biology and Fertility: A Handbook of Methods. Edited By JM Anderson and JSI Ingram, with 13 Appendices by Various Authors. Wallingford, Oxfordshire: CAB International (1993), pp. 221,£ 19.95. ISBN 0-85198-821-0. Exp. Agric. 1994, 30, 487. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. Carbon and Nitrogen Analysis of Soils by Automated Combustion Techniques. Commun. Soil Sci. Plant Anal. 1991, 22, 843–850. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1983; pp. 643–698. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. Manual for Soil Analysis-Monitoring and Assessing Soil Bioremediation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; p. 5. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Schad, P. The International Soil Classification System WRB, 3rd ed.; FAO: Rome, Italy, 2016. [Google Scholar]
- Beyene, S.; Regassa, A.; Mishra, B.B.; Haile, M. The Soils of Ethiopia; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Blanco-Canqui, H. Does Biochar Application Alleviate Soil Compaction? Review and Data Synthesis. Geoderma 2021, 404, 115317. [Google Scholar] [CrossRef]
- Bolan, S.; Sharma, S.; Mukherjee, S.; Kumar, M.; Rao, C.S.; Nataraj, K.C.; Singh, G.; Vinu, A.; Bhowmik, A.; Sharma, H.; et al. Biochar Modulating Soil Biological Health: A Review. Sci. Total Environ. 2024, 914, 169585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, X.; Yan, H.; Ullah, I.; Zuo, Z.; Li, L.; Yu, J. Effects of Irrigation Quantity and Biochar on Soil Physical Properties, Growth Characteristics, Yield and Quality of Greenhouse Tomato. Agric. Water Manag. 2020, 241, 106263. [Google Scholar] [CrossRef]
- Jin, L.; Wei, D.; Yin, D.; Zhou, B.; Ding, J.L.; Wang, W.; Zhang, J.; Qiu, S.; Zhang, C.; Li, Y.; et al. Investigations of the Effect of the Amount of Biochar on Soil Porosity and Aggregation and Crop Yields on Fertilized Black Soil in Northern China. PLoS ONE 2020, 15, e0238883. [Google Scholar] [CrossRef] [PubMed]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of Biochar Effects on Soil Hydrological Properties Using Meta-Analysis of Literature Data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of Biochar Application and Re-application on Soil Bulk Density, Porosity, Saturated Hydraulic Conductivity, Water Content and Soil Water Availability in a Silty Loam Haplic Luvisol. Agronomy 2020, 10, 1005. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- de Jesus Duarte, S.; Cerri, C.E.P.; Rittl, T.F.; Abbruzzin, T.F.; Pano, B.L.P. Biochar Physical and Hydrological Characterization to Improve Soil Attributes for Plant Production. J. Soil Sci. Plant Nutr. 2023, 23, 3051–3057. [Google Scholar] [CrossRef]
- Qian, Z.; Tang, L.; Zhuang, S.; Zou, Y.; Fu, D.; Chen, X. Effects of Biochar Amendments on Soil Water Retention Characteristics of Red Soil at South China. Biochar 2020, 2, 479–488. [Google Scholar] [CrossRef]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Martinsen, V.; Schmidt, H.P.; Cornelissen, G. Biochar Improves Maize Growth by Alleviation of Nutrient Stress in a Moderately Acidic Low-Input Nepalese Soil. Sci. Total Environ. 2018, 625, 1380–1389. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of Soil Amendments on Soil Acidity and Crop Yields in Acidic Soils: A World-Wide Meta-Analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef]
- Mbabazize, D.; Mungai, N.W.; Ouma, J.P. Effect of Biochar and Inorganic Fertilizer on Soil Biochemical Properties in Njoro Sub-County, Nakuru County, Kenya. Open J. Soil Sci. 2023, 13, 275–294. [Google Scholar] [CrossRef]
- Adhikari, S.; Moon, E.; Timms, W. Identifying Biochar Production Variables to Maximise Exchangeable Cations and Increase Nutrient Availability in Soils. J. Clean. Prod. 2024, 446, 141454. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Ma, J.; Zhang, X.; Wang, C.; Zhou, S. Effect of Straw Biochar Application on Soil Carbon, Greenhouse Gas Emissions and Nitrogen Leaching: A Vegetable Crop Rotation Field Experiment. Soil Use Manag. 2023, 39, 729–741. [Google Scholar] [CrossRef]
- Llovet, A.; Vidal-Durà, A.; Alcañiz, J.M.; Ribas, A.; Domene, X. Biochar Addition to Organo-Mineral Fertilisers Delays Nutrient Leaching and Enhances Barley Nutrient Content. Arch. Agron. Soil Sci. 2023, 69, 2537–2551. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Tong, L.; Hao, X.; Wu, X.; Ding, R.; Kang, S.; Li, S. Effects of Biochar Addition and Deficit Irrigation with Brackish Water on Yield-Scaled N2O Emissions under Drip Irrigation with Mulching. Agric. Water Manag. 2023, 277, 108129. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, J.B.; Müller, C.; Cai, Z.C. Effects of PH and Mineralisation on Nitrification in a Subtropical Acid Forest Soil. Soil Res. 2018, 56, 275–283. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Wang, Y.; An, W.; Jin, J.; Sun, K.; Wang, X. Effects of Biochar Addition on the Abundance, Speciation, Availability, and Leaching Loss of Soil Phosphorus. Sci. Total Environ. 2021, 758, 143657. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Biochar for Crop Production: Potential Benefits and Risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Zou, Z.; Fu, J.; Li, X.; Zhang, L.; Zhang, L.; Han, W.; Fan, L. Biochar Stimulates Tea Growth by Improving Nutrients in Acidic Soil. Sci. Hortic. 2021, 283, 110078. [Google Scholar] [CrossRef]
- Olmo, M.; Alburquerque, J.A.; Barrón, V.; del Campillo, M.C.; Gallardo, A.; Fuentes, M.; Villar, R. Wheat Growth and Yield Responses to Biochar Addition under Mediterranean Climate Conditions. Biol. Fertil. Soils 2014, 50, 1177–1187. [Google Scholar] [CrossRef]
- Cong, X.; Zhou, S.; Wang, T.; Pang, G.; Xu, Z. Effects of Biochar Application and Irrigation on Soil Preferential Flow and Winter Wheat Productivity. Polish J. Environ. Stud. 2022, 31, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Souri, M.K.; Mousavi, A. Biochar and Vermicompost Improve Growth and Physiological Traits of Eggplant (Solanum melongena L.) under Deficit Irrigation. Chem. Biol. Technol. Agric. 2021, 8, 19. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, B.; Wu, S.; Feng, H.; Gao, M.; Zhang, B.; Liu, Y. After-Effects of Straw and Straw-Derived Biochar Application on Crop Growth, Yield, and Soil Properties in Wheat (Triticum aestivum L.)-Maize (Zea mays L.) Rotations: A Four-Year Field Experiment. Sci. Total Environ. 2021, 780, 146560. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Parkash, V.; Ritchie, G.; Wallace, R.W.; Deb, S.K. Biochar Implications Under Limited Irrigation for Sweet Corn Production in a Semi-Arid Environment. Front. Plant Sci. 2022, 13, 853746. [Google Scholar] [CrossRef]
Biochar (t ha−1) | Fertilizer (kg ha −1) | Irrigation Water (%) | Treatments | Definition |
---|---|---|---|---|
0 | 0 | 100 | WHB0F0I100 | No biochar + No fertilizer + 100% irrigation |
0 | 200 | 100 | WHB0F200I100 | No biochar + 200 kg ha−1 fertilizer + 100% irrigation |
5 | 200 | 50 | WHB5F200I50 | 5 t ha−1 biochar + 200 kg ha−1 fertilizer + 50% irrigation |
5 | 200 | 100 | WHB5F200I100 | 5 t ha−1 biochar + 200 kg ha−1 fertilizer + 100% irrigation |
10 | 200 | 50 | WHB10F200I50 | 10 t ha−1 biochar + 200 kg ha−1 fertilizer + 50% irrigation |
10 | 200 | 100 | WHB10F200I100 | 10 t ha−1 biochar + 200 kg ha−1 fertilizer + 100% irrigation |
20 | 0 | 50 | WHB20F0I50 | 20 t ha−1 biochar + No fertilizer + 50% irrigation |
20 | 0 | 100 | WHB20F0F100 | 20 t ha−1 biochar + No fertilizer + 100% irrigation |
20 | 100 | 50 | WHB20F100I50 | 20 t ha−1 biochar + 100 kg ha−1 fertilizer + 50% irrigation |
20 | 100 | 100 | WHB20F100I100 | 20 t ha−1 biochar + 100 kg ha−1 fertilizer + 100% irrigation |
20 | 200 | 50 | WHB20F200I50 | 20 t ha−1 biochar + 200 kg ha−1 fertilizer + 50% irrigation |
20 | 200 | 100 | WHB20F200I100 | 20 t ha−1 biochar + 200 kg ha−1 fertilizer + 100% irrigation |
Sand | Silt | Clay | Bulk Density | pH | T-C | T-N | NH4+-N | NO3−-N | Available P § | CEC # |
---|---|---|---|---|---|---|---|---|---|---|
--------------- % --------------- | g cm−3 | ------------- % ------------ | ------------ mg kg−1 ------------ | cmolc kg−1 | ||||||
20.4 | 65.9 | 13.7 | 1.21 | 4.42 | 3.71 | 0.483 | 1.52 | 15.7 | 0.392 | 18.2 |
Yield | pH | T-C | T-H | T-N | T-O | H/C | O/C | C/N | Organic Carbon | NH4+-N | NO3−-N |
% | --------------- % ---------------- | % | ------- mg kg−1 ------- | ||||||||
28.9 | 10.7 | 35.2 | 0.76 | 0.930 | 42.6 | 0.02 | 1.21 | 37.8 | 16.8 | 0.748 | 0.676 |
Available P § | CEC # | Fix carbon | Volatile matter | Ash | SBET | Smicro | Smeso and Smacro | Vmicro | Vmeso and Vmacro | Vtotal | Pore width |
mg kg−1 | cmolc kg−1 | ------------- % ------------- | ------------- m2 g−1 ------------- | ------------- cm3 g−1 ------------- | nm | ||||||
837 | 33.4 | 20.3 | 59.2 | 20.5 | 53.2 | 25.9 | 27.3 | 0.012 | 0.047 | 0.059 | 4.45 |
Moisture Content (%) | ||||||
---|---|---|---|---|---|---|
7 | 15 | 30 | 60 | 90 | 130 | |
Treatment | ------------------------------------- Days after Sowing (DAS) ----------------------------------------- | |||||
WHB0F0I100 | 31.6 ± 0.003 a | 26.7 ± 0.002 c | 24.8 ± 0.013 h | 25.9 ± 0.006 a | 24.8 ± 0.004 a | 30.2 ± 0.004 c |
WHB0F200I100 | 32.7 ± 0.010 a | 27.3 ± 0.001 bc | 27.1 ± 0.002 g | 26.6 ± 0.015 a | 25.2 ± 0.002 a | 30.9 ± 0.006 bc |
WHB5F200I50 | 32.3 ± 0.003 a | 27.1 ± 0.007 bc | 27.6 ± 0.001 g | 26.5 ± 0.013 a | 25.2 ± 0.013 a | 31.3 ± 0.006 abc |
WHB5F200I100 | 33.1 ± 0.007 a | 27.9 ± 0.001 abc | 28.1 ± 0.003 fg | 26.9 ± 0.006 a | 25.5 ± 0.013 a | 31.5 ± 0.005 abc |
WHB10F200I50 | 32.5 ± 0.016 a | 27.4 ± 0.007 bc | 28.4 ± 0.000 efg | 27.2 ± 0.007 a | 25.4 ± 0.007 a | 31.7 ± 0.003 abc |
WHB10F200I100 | 33.0 ± 0.017 a | 28.4 ± 0.011 abc | 29.1 ± 0.001 def | 27.6 ± 0.010 a | 25.6 ± 0.032 a | 32.1 ± 0.014 abc |
WHB20F0I50 | 34.0 ± 0.008 a | 28.0 ± 0.010 abc | 29.4 ± 0.001 cdef | 26.8 ± 0.012 a | 25.9 ± 0.006 a | 32.6 ± 0.003 abc |
WHB20F0I100 | 34.9 ± 0.011 a | 29.0 ± 0.005 ab | 29.8 ± 0.000 cde | 29.1 ± 0.003 a | 28.1 ± 0.011 a | 33.3 ± 0.009 ab |
WHB20F100I50 | 33.1 ± 0.012 a | 27.9 ± 0.001 abc | 30.1 ± 0.001 cd | 27.7 ± 0.002 a | 25.7 ± 0.025 a | 33.1 ± 0.014 ab |
WHB20F100I100 | 33.4 ± 0.011 a | 29.5 ± 0.009 a | 30.8 ± 0.003 bc | 28.2 ± 0.012 a | 27.2 ± 0.009 a | 31.9 ± 0.001 abc |
WHB20F200I50 | 33.6 ± 0.004 a | 27.8 ± 0.002 abc | 31.6 ± 0.001 ab | 27.7 ± 0.005 a | 26.7 ± 0.005 a | 31.8 ± 0.002 abc |
WHB20F200I100 | 34.1 ± 0.017 a | 28.8 ± 0.003 ab | 32.6 ± 0.007 a | 28.1 ± 0.006 a | 26.6 ± 0.008 a | 33.9 ± 0.007 a |
Soil pH | ||||||
---|---|---|---|---|---|---|
7 | 15 | 30 | 60 | 90 | 130 | |
Treatment | ------------------------------------- Days after Sowing (DAS) ----------------------------------------- | |||||
WHB0F0I100 | 4.65 ± 0.059 c | 4.85 ± 0.079 a | 4.90 ± 0.117 a | 4.97 ± 0.064 b | 4.67 ± 0.124 c | 5.03 ± 0.062 c |
WHB0F200I100 | 4.60 ± 0.052 c | 4.73 ± 0.087 a | 4.85 ± 0.066 a | 4.97 ± 0.084 b | 4.73 ± 0.044 bc | 5.12 ± 0.091 bc |
WHB5F200I50 | 4.65 ± 0.030 c | 4.78 ± 0.143 a | 4.83 ± 0.085 a | 5.08 ± 0.143 ab | 4.96 ± 0.018 abc | 5.42 ± 0.118 abc |
WHB5F200I100 | 4.67 ± 0.023 c | 4.86 ± 0.065 a | 4.96 ± 0.135 a | 5.23 ± 0.100 ab | 5.02 ± 0.058 abc | 5.58 ± 0.196 ab |
WHB10F200I50 | 4.78 ± 0.102 c | 4.82 ± 0.062 a | 4.93 ± 0.113 a | 5.21 ± 0.134 ab | 5.15 ± 0.083 ab | 5.48 ± 0.007 abc |
WHB10F200I100 | 4.71 ± 0.047 c | 4.92 ± 0.145 a | 5.05 ± 0.068 a | 5.24 ± 0.123 ab | 5.19 ± 0.036 ab | 5.73 ± 0.062 a |
WHB20F0I50 | 4.81 ± 0.044 c | 4.95 ± 0.149 a | 5.19 ± 0.082 a | 5.28 ± 0.066 ab | 5.14 ± 0.237 ab | 5.73 ± 0.289 a |
WHB20F0I100 | 4.94 ± 0.144 abc | 5.12 ± 0.137 a | 5.14 ± 0.175 a | 5.19 ± 0.116 ab | 5.26 ± 0.165 a | 5.73 ± 0.190 a |
WHB20F100I50 | 4.88 ± 0.166 bc | 4.96 ± 0.171 a | 5.23 ± 0.165 a | 5.14 ± 0.138 ab | 5.28 ± 0.257 a | 5.70 ± 0.243 a |
WHB20F100I100 | 5.29 ± 0.138 a | 5.11 ± 0.296 a | 5.24 ± 0.241 a | 5.47 ± 0.154 a | 5.31 ± 0.258 a | 5.90 ± 0.332 a |
WHB20F200I50 | 4.94 ± 0.072 abc | 4.99 ± 0.094 a | 5.33 ± 0.211 a | 5.30 ± 0.024 ab | 5.29 ± 0.039 a | 5.75 ± 0.060 a |
WHB20F200I100 | 5.20 ± 0.192 ab | 5.15 ± 0.179 a | 5.28 ± 0.068 a | 5.45 ± 0.229 a | 5.33 ± 0.077 a | 5.79 ± 0.139 a |
NH4+–N (mg kg−1) | ||||||
---|---|---|---|---|---|---|
7 | 15 | 30 | 60 | 90 | 130 | |
Treatment | ------------------------------------- Days after Sowing (DAS) ----------------------------------------- | |||||
WHB0F0I100 | 12.5 ± 0.345 f | 17.8 ± 1.21 d | 22.4 ± 3.75 d | 92.0 ± 8.98 b | 58.3 ± 2.62 a | 10.4 ± 1.81 a |
WHB0F200I100 | 21.4 ± 1.49 ef | 19.9 ± 1.06 cd | 26.2 ± 0.070 cd | 98.1 ± 6.26 b | 58.1 ± 0.542 a | 11.0 ± 1.19 a |
WHB5F200I50 | 29.0 ± 2.18 de | 27.3 ± 1.48 bcd | 26.3 ± 6.99 cd | 124 ± 24.6 b | 39.7 ± 0.543 bc | 6.19 ± 0.473 bcde |
WHB5F200I100 | 32.8 ± 2.28 cde | 33.3 ± 4.57 abc | 33.1 ± 0.283 bcd | 121 ± 14.8 b | 31.4 ± 4.08 cd | 8.15 ± 1.23 abcd |
WHB10F200I50 | 37.1 ± 2.34 bcd | 38.6 ± 1.77 ab | 35.6 ± 6.99 bcd | 127 ± 11.3 b | 34.9 ± 1.70 bcd | 5.92 ± 1.08 cde |
WHB10F200I100 | 38.3 ± 0.773 bcd | 38.7 ± 5.02 ab | 35.0 ± 6.70 bcd | 134 ± 18.8 b | 33.3 ± 4.02 cd | 4.86 ± 0.168 de |
WHB20F0I50 | 43.5 ± 7.26 abc | 41.7 ± 8.20 ab | 47.6 ± 6.19 ab | 123 ± 13.1 b | 45.7 ± 6.86 b | 9.81 ± 1.46 ab |
WHB20F0I100 | 45.0 ± 2.14 ab | 42.4 ± 4.75 a | 43.5 ± 7.37 abc | 121 ± 5.29 b | 29.1 ± 0.962 cd | 9.48 ± 0.578 abc |
WHB20F100I50 | 41.3 ± 1.55 abc | 42.8 ± 2.71 a | 48.2 ± 7.66 ab | 127 ± 10.5 b | 34.3 ± 4.76 bcd | 7.76 ± 0.729 abcd |
WHB20F100I100 | 52.2 ± 1.08 a | 42.9 ± 3.42 a | 45.5 ± 3.01 ab | 194 ± 33.0 a | 24.3 ± 3.01 d | 4.6 ± 0.662 de |
WHB20F200I50 | 45.4 ± 4.96 ab | 40.7 ± 1.28 ab | 48.3 ± 0.469 ab | 192 ± 24.6 a | 32.7 ± 3.07 cd | 3.02 ± 0.180 e |
WHB20F200I100 | 47.2 ± 4.11 ab | 43.3 ± 1.80 a | 61.1 ± 5.02 a | 138 ± 7.82 b | 23.5 ± 0.280 d | 2.87 ± 0.405 e |
NO3−–N (mg kg−1) | ||||||
---|---|---|---|---|---|---|
7 | 15 | 30 | 60 | 90 | 130 | |
Treatment | ------------------------------------- Days after Sowing (DAS) ----------------------------------------- | |||||
WHB0F0I100 | 1.36 ± 0.154 g | 2.05 ± 0.350 f | 3.93 ± 0.597 d | 16.8 ± 2.75 d | 58.3 ± 5.18 a | 13.4 ± 0.284 a |
WHB0F200I100 | 2.17 ± 0.011 fg | 2.92 ± 0.074 ef | 6.98 ± 0.697 d | 17.7 ± 3.16 d | 57.6 ± 2.39 a | 10.3 ± 0.521 b |
WHB5F200I50 | 2.57 ± 0.310 efg | 5.60 ± 0.175 de | 7.27 ± 2.17 cd | 17.8 ± 0.562 d | 52.9 ± 0.438 a | 9.52 ± 0.608 bc |
WHB5F200I100 | 2.60 ± 0.104 efg | 5.76 ± 0.575 d | 7.75 ± 1.51 cd | 23.5 ± 1.79 cd | 40.9 ± 4.61 bc | 7.56 ± 0.129 cde |
WHB10F200I50 | 2.88 ± 0.515 def | 5.77 ± 1.11 d | 9.59 ± 2.15 bcd | 22.3 ± 0.192 cd | 38.7 ± 0.548 c | 7.75 ± 0.210 cde |
WHB10F200I100 | 3.86 ± 0.390 de | 8.68 ± 0.505 bc | 13.9 ± 0.905 ab | 32.3 ± 1.14 bc | 23.7 ± 0.752 de | 6.46 ± 0.712 def |
WHB20F0I50 | 4.13 ± 0.110 d | 5.75 ± 0.448 d | 9.04 ± 0.869 bcd | 27.1 ± 4.89 cd | 50.9 ± 3.11 ab | 9.03 ± 0.580 bc |
WHB20F0I100 | 4.25 ± 0.301 d | 7.57 ± 0.550 cd | 12.9 ± 0.859 abc | 30.6 ± 6.17 c | 26.4 ± 0.589 de | 8.23 ± 1.44 bcd |
WHB20F100I50 | 6.42 ± 0.646 c | 9.19 ± 0.916 abc | 14.0 ± 0.539 ab | 34.2 ± 5.08 abc | 31.5 ± 4.62 cd | 8.15 ± 0.425 bcd |
WHB20F100I100 | 8.62 ± 0.739 b | 10.4 ± 1.88 ab | 14.2 ± 2.79 ab | 30.9 ± 4.73 c | 25.2 ± 0.003 de | 4.0 ± 0.010 g |
WHB20F200I50 | 8.6 ± 0.524 b | 10.7 ± 2.08 ab | 16.3 ± 1.20 a | 43.2 ± 0.002 ab | 24.1 ± 0.572 de | 5.56 ± 0.064 efg |
WHB20F200I100 | 10.7 ± 0.473 a | 11.7 ± 0.530 a | 16.1 ± 2.80 a | 46.4 ± 3.41 a | 21.1 ± 2.32 e | 4.31 ± 0.610 fg |
Available P (mg kg−1) | ||||||
---|---|---|---|---|---|---|
7 | 15 | 30 | 60 | 90 | 130 | |
Treatment | ------------------------------------- Days after Sowing (DAS) ----------------------------------------- | |||||
WHB0F0I100 | 0.412 ± 0.020 f | 0.646 ± 0.024 e | 0.331 ± 0.013 e | 0.729 ± 0.114 d | 0.073 ± 0.002 e | 0.616 ± 0.075 e |
WHB0F200I100 | 0.514 ± 0.012 f | 0.846 ± 0.074 de | 0.734 ± 0.102 de | 0.740 ± 0.104 d | 0.927 ± 0.096 d | 0.942 ± 0.095 de |
WHB5F200I50 | 0.596 ± 0.055 f | 1.47 ± 0.052 cd | 0.838 ± 0.045 de | 0.947 ± 0.056 d | 0.939 ± 0.085 d | 0.994 ± 0.114 de |
WHB5F200I100 | 0.627 ± 0.094 ef | 1.53 ± 0.076 bcd | 1.06 ± 0.020 de | 0.903 ± 0.071 d | 1.04 ± 0.072 cd | 1.10 ± 0.141 cd |
WHB10F200I50 | 0.995 ± 0.174 de | 1.63 ± 0.226 bc | 1.54 ± 0.095 cd | 1.04 ± 0.141 d | 1.58 ± 0.243 bc | 1.29 ± 0.076 cd |
WHB10F200I100 | 1.23 ± 0.144 cd | 1.66 ± 0.258 bc | 1.39 ± 0.204 cd | 1.14 ± 0.069 bcd | 1.09 ± 0.200 cd | 1.25 ± 0.053 cd |
WHB20F0I50 | 1.46 ± 0.129 c | 1.81 ± 0.237 abc | 3.04 ± 0.122 ab | 1.52 ± 0.007 abc | 1.55 ± 0.058 bcd | 1.08 ± 0.036 cd |
WHB20F0I100 | 1.95 ± 0.180 b | 2.05 ± 0.250 abc | 2.31 ± 0.391 bc | 1.09 ± 0.045 cd | 1.34 ± 0.104 cd | 1.13 ± 0.079 cd |
WHB20F100I50 | 1.45 ± 0.021 c | 1.73 ± 0.395 bc | 3.06 ± 0.112 ab | 1.58 ± 0.284 ab | 1.63 ± 0.208 bc | 1.53 ± 0.156 bc |
WHB20F100I100 | 2.58 ± 0.064 a | 1.95 ± 0.321 abc | 3.12 ± 0.592 ab | 1.63 ± 0.170 a | 1.64 ± 0.285 bc | 1.52 ± 0.062 bc |
WHB20F200I50 | 2.02 ± 0.104 b | 2.19 ± 0.000 ab | 3.17 ± 0.414 ab | 1.70 ± 0.189 a | 2.06 ± 0.328 ab | 2.20 ± 0.202 a |
WHB20F200I100 | 2.71 ± 0.140 a | 2.45 ± 0.117 a | 3.37 ± 0.325 a | 1.68 ± 0.187 a | 2.51 ± 0.115 a | 1.75 ± 0.231 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fentie, D.; Mihretie, F.A.; Kohira, Y.; Legesse, S.A.; Lewoyehu, M.; Sato, S. Enhancing Soil Environments and Wheat Production through Water Hyacinth Biochar under Deficit Irrigation in Ethiopian Acidic Silty Loam Soil. Soil Syst. 2024, 8, 72. https://doi.org/10.3390/soilsystems8030072
Fentie D, Mihretie FA, Kohira Y, Legesse SA, Lewoyehu M, Sato S. Enhancing Soil Environments and Wheat Production through Water Hyacinth Biochar under Deficit Irrigation in Ethiopian Acidic Silty Loam Soil. Soil Systems. 2024; 8(3):72. https://doi.org/10.3390/soilsystems8030072
Chicago/Turabian StyleFentie, Desalew, Fekremariam Asargew Mihretie, Yudai Kohira, Solomon Addisu Legesse, Mekuanint Lewoyehu, and Shinjiro Sato. 2024. "Enhancing Soil Environments and Wheat Production through Water Hyacinth Biochar under Deficit Irrigation in Ethiopian Acidic Silty Loam Soil" Soil Systems 8, no. 3: 72. https://doi.org/10.3390/soilsystems8030072
APA StyleFentie, D., Mihretie, F. A., Kohira, Y., Legesse, S. A., Lewoyehu, M., & Sato, S. (2024). Enhancing Soil Environments and Wheat Production through Water Hyacinth Biochar under Deficit Irrigation in Ethiopian Acidic Silty Loam Soil. Soil Systems, 8(3), 72. https://doi.org/10.3390/soilsystems8030072