Dietary Lipid Profile in Spanish Children with Overweight or Obesity: A Longitudinal Study on the Impact of Children’s Eating Behavior and Sedentary Habits
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Participants, Recruitment, and Ethics
2.3. Sociodemographic Characteristics and Anthropometric Measurements
2.4. Children’s Eating Behavior
2.5. Screen Time—Sedentary Behavior
2.6. Dietary Lipid Profile: 24 h Recall
2.7. Statistics
3. Results
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Obesity and Overweight. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 December 2024).
- Ward, Z.J.; Long, M.W.; Resch, S.C.; Giles, C.M.; Cradock, A.L.; Gortmaker, S.L. Simulation of Growth Trajectories of Childhood Obesity into Adulthood. N. Engl. J. Med. 2017, 377, 2145–2153. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 US Obesity Forecasting Collaborators. National-level and state-level prevalence of overweight and obesity among children, adolescents, and adults in the USA, 1990–2021, and forecasts up to 2050. Lancet 2024, 404, 2278–2298. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Bronsky, J.; Embleton, N.; Gerasmidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Moltu, S.J.; Norsa, L.; et al. Role of Dietary Factors, Food Habits, and Lifestyle in Childhood Obesity Development: A Position Paper from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 769–783.83. [Google Scholar] [CrossRef]
- ESPGHAN Committee on Nutrition; Agostoni, C.; Braegger, C.; Decsi, T.; Kolakec, S.; Koletzko, S.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Role of dietary factors and food habits in the development of childhood obesity: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 662–669. [Google Scholar]
- Zock, P.L.; Blom, W.A.; Nettleton, J.A.; Hornstra, G. Progressing Insights into the Role of Dietary Fats in the Prevention of Cardiovascular Disease. Curr. Cardiol. Rep. 2016, 18, 111. [Google Scholar] [CrossRef]
- Reynolds, A.; Hodson, L.; de Souza, R.; Tran Diep Pham, H.; Vlietstra, L.; Mann, J. Saturated Fat and Trans-Fat Intakes and Their Replacement with Other Macronutrients: A Systematic Review and Meta-Analysis of Prospective Observational Studies; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization (WHO). Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children: WHO Guideline; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Varela, P.; De Rosso, S.; Ferreira Moura, A.; Galler, M.; Philippe, K.; Pickard, A.; Rageliene, T.; Sick, J.; van Nee, R.; Almli, V.L.; et al. Bringing down barriers to children’s healthy eating: A critical review of opportunities, within a complex food system. Nutr. Res. Rev. 2024, 37, 331–351. [Google Scholar] [CrossRef]
- Birch, L.L.; Ventura, A.K. Preventing childhood obesity: What works? Int. J. Obes. 2009, 33 (Suppl. S1), S74–S81. [Google Scholar] [CrossRef]
- Lafraire, J.; Rioux, C.; Giboreau, A.; Picard, D. Food rejections in children: Cognitive and social/environmental factors involved in food neophobia and picky/fussy eating behavior. Appetite 2016, 96, 347–357. [Google Scholar] [CrossRef]
- Schmidt, R.; Vogel, M.; Hiemisch, A.; Kiess, W.; Hilbert, A. Pathological and non-pathological variants of restrictive eating behaviors in middle childhood: A latent class analysis. Appetite 2018, 127, 257–265. [Google Scholar] [CrossRef]
- Chao, H.C.; Chang, H.L. Picky Eating Behaviors Linked to Inappropriate Caregiver-Child Interaction, Caregiver Intervention, and Impaired General Development in Children. Pediatr. Neonatol. 2017, 58, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Gao, M.; Yang, R.; Li, N.; Liu, Z.; Cao, W.; Huang, T. Association of physical activity, sedentary behaviours and sleep duration with cardiovascular diseases and lipid profiles: A Mendelian randomization analysis. Lipids Health Dis. 2020, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Stiglic, N.; Viner, R.M. Effects of screentime on the health and well-being of children and adolescents: A systematic review of reviews. BMJ Open 2019, 9, e023191. [Google Scholar] [CrossRef]
- Thivel, D.; Tremblay, M.S.; Chaput, J.P. Modern Sedentary Behaviors Favor Energy Consumption in Children and Adolescents. Curr. Obes. Rep. 2013, 2, 50–57. [Google Scholar] [CrossRef]
- Hale, L.; Guan, S. Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Med. Rev. 2015, 21, 50–58. [Google Scholar] [CrossRef]
- Marsh, S.; Ni Mhurchu, C.; Maddison, R. The non-advertising effects of screen-based sedentary activities on acute eating behaviours in children, adolescents, and young adults. A systematic review. Appetite 2013, 71, 259–273. [Google Scholar] [CrossRef]
- Chong, K.H.; Suesse, T.; Cross, P.L.; Ryan, S.T.; Aadland, E.; Aoko, O.; Byambaa, A.; Carson, V.; Chaput, J.-P.; Christian, H.; et al. Pooled Analysis of Physical Activity, Sedentary Behavior, and Sleep Among Children From 33 Countries. JAMA Pediatr. 2024, 178, 1199–1207. [Google Scholar] [CrossRef]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41 (Suppl. S3), S197–S239. [Google Scholar] [CrossRef]
- Agbaje, A.O. Associations of Sedentary Time and Physical Activity from Childhood with Lipids: A 13-Year Mediation and Temporal Study. J. Clin. Endocrinol. Metab. 2024, 109, e1494–e1505. [Google Scholar] [CrossRef]
- Miguel-Berges, M.L.; Santaliestra-Pasias, A.; Moreno Aznar, L. Comportamientos sedentarios en niños europeos en edad preescolar y su relación con la ingesta de alimentos. Rev. Esp. Nutr Hum. Diet. 2019, 23 (Suppl. S1), 147–148. [Google Scholar]
- Rosa Guillamon, A.; Garcia Canto, E.; Rodríguez García, P.L.; Pérez Soto, J.J.; Tárraga Marcos, M.L.; Tárraga López, P.J. Actividad física, condición física y calidad de la dieta en escolares de 8 a 12 años [Physical activity, physical fitness and quality of diet in school children from 8 to 12 years]. Nutr. Hosp. 2017, 34, 1292–1298. [Google Scholar]
- Neta, A.D.C.P.A.; Steluti, J.; Ferreira, F.E.L.L.; Farias Junior, J.C.; Marchioni, D.M.L. Dietary patterns among adolescents and associated factors: Longitudinal study on sedentary behavior, physical activity, diet and adolescent health. Padrões alimentares de adolescentes e fatores associados: Estudo longitudinal sobre comportamento sedentário, atividade física, alimentação e saúde dos adolescentes. Cienc. Saude Colet. 2021, 26 (Suppl. S2), 3839–3851. [Google Scholar]
- Tambalis, K.D.; Panagiotakos, D.B.; Psarra, G.; Sidossis, L.S. Exclusive olive oil consumption was favorably associated with metabolic indices and lifestyle factors in schoolchildren. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Jamerson, T.; Sylvester, R.; Jiang, Q.; Corriveau, N.; DuRussel-Weston, J.; Kline-Rogers, E.; Jackson, E.A.; Eagle, K.A. Differences in Cardiovascular Disease Risk Factors and Health Behaviors Between Black and Non-Black Students Participating in a School-Based Health Promotion Program. Am. J. Health Promot. 2017, 31, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Rocka, A.; Jasielska, F.; Madras, D.; Krawiec, P.; Pac-Kożuchowska, E. The Impact of Digital Screen Time on Dietary Habits and Physical Activity in Children and Adolescents. Nutrients 2022, 14, 2985. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Wang, J.; O’Loughlin, J.; Tremblay, A.; Mathieu, M.È.; Henderson, M.; Gray-Donald, K. Screen time is associated with dietary intake in overweight Canadian children. Prev. Med. Rep. 2015, 2, 265–269. [Google Scholar] [CrossRef]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef]
- Chirita-Emandi, A.; Ek, A.; Tur, J.A.; Nordin, K.; Bouzas, C.; Argelich, E.; Serban, C.L.; Simina, I.-E.; Martínez, J.A.; Frost, G.; et al. Science & Technology in childhood Obesity Policy D8.2: The More and Less Europe Study, a Randomized Controlled Trial (RCT) for Overweight and Obesity in Pre-Schoolers: Report on Design of the RCT, Recruitment, Measurements, Staff Training and Intervention Delivery. 27/11/2022. EC Framework Programme for Research and Innovation Horizon 2020, H2020-SFS-2017-2-RIA-774548-STOP. Available online: https://www.stopchildobesity.eu/wp-content/uploads/2023/07/STOP_D8.3_Report-on-the-evaluation-of-the-Randomized-Control-Trial.pdf (accessed on 10 December 2024).
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Ek, A.; Delisle Nyström, C.; Chirita-Emandi, A.; Tur, J.A.; Nordin, K.; Bouzas, C.; Argelich, E.; Martínez, J.A.; Frost, G.; Garcia-Perez, I.; et al. A randomized controlled trial for overweight and obesity in preschoolers: The More and Less Europe study—An intervention within the STOP project. BMC Public Health 2019, 19, 945. [Google Scholar] [CrossRef]
- Wardle, J.; Guthrie, C.A.; Sanderson, S.; Rapoport, L. Development of the Children’s Eating Behaviour Questionnaire. J. Child. Psychol. Psychiatry 2001, 42, 963–970. [Google Scholar] [CrossRef]
- Carnell, S.; Wardle, J. Measuring behavioural susceptibility to obesity: Validation of the child eating behaviour questionnaire. Appetite 2007, 48, 104–113. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.A.; Landry, D.; Little, J.; Minelli, C. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology. BMC Med. Res. Methodol. 2017, 17, 146. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th Edition. December 2020. Available online: https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf (accessed on 10 December 2024).
- Liu, Y.; Gu, X.; Li, Y.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B.; Wang, D.D. Changes in fatty acid intake and subsequent risk of all-cause and cause-specific mortality in males and females: A prospective cohort study. Am. J. Clin. Nutr. 2025, 141, 150. [Google Scholar]
- Li, D. Overview of dietary lipids and human health. In Advances in Dietary Lipids and Human Health; Li, D., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–12. [Google Scholar]
- UNICEF. State of the World’s Children 2019. Children, Food and Nutrition: Growing Up Well in a Changing World; UNICEF: New York, NY, USA, 2019. [Google Scholar]
- Liu, L.; Shu, X.; Xu, Z.; Jiang, H. Joint effect of docosahexaenoic acid intake and tobacco smoke exposure on learning disability in children and adolescents: A cross-sectional study from the NHANES database. Ital. J. Pediatr. 2024, 50, 197. [Google Scholar] [CrossRef]
- Tsuji, S.; Adachi, Y.; Tsuchida, A.; Hamazaki, K.; Matsumura, K.; Inadera, H.; Kamijima, M.; Yamazaki, S.; Ohya, Y.; Kishi, R.; et al. Association of allergies in children younger than 3 years with levels of maternal intake of n-3 polyunsaturated fatty acids or fish during pregnancy: A nationwide birth cohort study, the Japan Environment and Children’s Study. Allergol. Int. 2024, 73, 282–289. [Google Scholar] [CrossRef]
- Guo, X.F.; Sinclair, A.J.; Kaur, G.; Li, D. Differential effects of EPA, DPA and DHA on cardio-metabolic risk factors in high-fat diet fed mice. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 47–55. [Google Scholar] [CrossRef]
- Ford, C.; Ward, D.; White, M. Television viewing associated with adverse dietary outcomes in children ages 2-6. Obes. Rev. 2012, 13, 1139–1147. [Google Scholar] [CrossRef]
- Pearson, N.; Biddle, S.J. Sedentary behavior and dietary intake in children, adolescents, and adults. A systematic review. Am. J. Prev. Med. 2011, 41, 178–188. [Google Scholar] [CrossRef]
- Robinson, T.N.; Banda, J.A.; Hale, L.; Lu, A.S.; Fleming-Milici, F.; Calvert, S.L.; Wartella, E. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics 2017, 140 (Suppl. S2), S97–S101. [Google Scholar] [CrossRef]
- Xue, H.; Wang, X.; Lai, L.; Li, Y.; Huang, F.; Ni, X.; Tian, Y.; Li, M.; Fan, L.; Yang, J.; et al. An Instrumental Analysis of the Triad Association Between Sugar-Sweetened Beverages, Screen Time, and Dental Caries in Adolescents. Future 2024, 2, 149–163. [Google Scholar] [CrossRef]
- Rodríguez-Barniol, M.; Pujol-Busquets, G.; Bach-Faig, A. Screen Time Use and Ultra-Processed Food Consumption in Adolescents: A Focus Group Qualitative Study. J. Acad. Nutr. Diet. 2024, 124, 1336–1346. [Google Scholar] [CrossRef]
- Rocha, L.L.; Gratão, L.H.A.; do Carmo, A.S.; Costa, A.B.P.; Cunha, C.d.F.; de Oliveira, T.R.P.R.; Mendes, L.L. School Type, Eating Habits, and Screen Time are Associated with Ultra-Processed Food Consumption Among Brazilian Adolescents. J. Acad. Nutr. Diet. 2021, 121, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Descarpentrie, A.; Calas, L.; Cornet, M.; Heude, B.; Charles, M.; Avraam, D.; Brescianini, S.; Cadman, T.; Elhakeem, A.; Fernández-Barrés, S.; et al. Lifestyle patterns in European preschoolers: Associations with socio-demographic factors and body mass index. Pediatr. Obes. 2023, 18, e13079. [Google Scholar] [CrossRef]
- Talens, P.; Cámara, M.; Daschner, A.; López, E.; Marín, S.; Martínez, J.A.; Navas, F.J.M. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre el impacto del consumo de alimentos “ultra-procesados” en la salud de los consumidores. Rev. Com. Cient. AESAN 2020, 31, 49–76. [Google Scholar]
- Hahn, H.; Friedel, M.; Niessner, C.; Zipfel, S.; Mack, I. Impact of physical activity on caloric and macronutrient intake in children and adolescents: A systematic review and meta-analysis of randomized controlled trials. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 105. [Google Scholar] [CrossRef]
- Verjans-Janssen, S.R.B.; van de Kolk, I.; Van Kann, D.H.H.; Kremers, S.P.J.; Gerards, S.M.P.L. Effectiveness of school-based physical activity and nutrition interventions with direct parental involvement on children’s BMI and energy balance-related behaviors—A systematic review. PLoS ONE 2018, 13, e0204560. [Google Scholar] [CrossRef]
- Ayer, J.; Charakida, M.; Deanfield, J.E.; Celermajer, D.S. Lifetime risk: Childhood obesity and cardiovascular risk. Eur. Heart J. 2015, 36, 1371–1376. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Friedenreich, C.; Shiroma, E.J.; Lee, I.M. Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. Br. J. Sports Med. 2022, 56, 101–106. [Google Scholar] [CrossRef]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef]
- Maneschy, I.; Jimeno-Martínez, A.; Miguel-Berges, M.L.; Rupérez, A.I.; Ortega-Ramirez, A.D.; Masip, G.; Moreno, L.A. Eating Behaviours and Dietary Intake in Children and Adolescents: A Systematic Review. Curr. Nutr. Rep. 2024, 13, 363–376. [Google Scholar] [CrossRef]
- Dalrymple, K.V.; Flynn, A.C.; Seed, P.T.; Briley, A.L.; O’Keeffe, M.; Godfrey, K.M.; Poston, L. Associations between dietary patterns, eating behaviours, and body composition and adiposity in 3-year-old children of mothers with obesity. Pediatr. Obes. 2020, 15, e12608. [Google Scholar] [CrossRef]
- Albuquerque, G.; Lopes, C.; Durão, C.; Severo, M.; Moreira, P.; Oliveira, A. Dietary patterns at 4 years old: Association with appetite-related eating behaviours in 7 year-old children. Clin. Nutr. 2018, 37, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Cena, H.; Magenes, V.C.; Vincenti, A.; Comola, G.; Beretta, A.; Di Napoli, I.; Zuccotti, G. Sugar-Sweetened Beverages and Metabolic Risk in Children and Adolescents with Obesity: A Narrative Review. Nutrients. 2023, 15, 702. [Google Scholar] [CrossRef] [PubMed]
- Chouraqui, J.P.; Thornton, S.N.; Seconda, L.; Kavouras, S.A. Total water intake and its contributors in infants and young children. Br. J. Nutr. 2022, 127, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Hübner, H.L.; Bartelmeß, T. Associations of sugar-related food parenting practices and parental feeding styles with prospective dietary behavior of children and adolescents: A systematic review of the literature from 2017 to 2023. Front. Public Health 2024, 12, 1382437. [Google Scholar] [CrossRef]
- Clément, S.; Tereno, S. Attachment, Feeding Practices, Family Routines and Childhood Obesity: A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2023, 20, 5496. [Google Scholar] [CrossRef]
- Burnett, A.J.; Downing, K.L.; Russell, C.G. Understanding bidirectional and transactional processes of child eating behaviours and parental feeding practices explaining poor health outcomes across infancy and early childhood in Australia: Protocol for the Longitudinal Assessment of Children’s Eating (LACE) study. BMJ Open 2024, 14, e082435. [Google Scholar]
- Gray, H.L.; Buro, A.W.; Sinha, S. Associations Among Parents’ Eating Behaviors, Feeding Practices, and Children’s Eating Behaviors. Matern. Child. Health J. 2023, 27, 202–209. [Google Scholar] [CrossRef]
- Loth, K.A. Associations Between Food Restriction and Pressure-to-Eat Parenting Practices and Dietary Intake in Children: A Selective Review of the Recent Literature. Curr. Nutr. Rep. 2016, 5, 61–67. [Google Scholar] [CrossRef]
- Mahmood, L.; Flores-Barrantes, P.; Moreno, L.A.; Manios, Y.; Gonzalez-Gil, E.M. The Influence of Parental Dietary Behaviors and Practices on Children’s Eating Habits. Nutrients 2021, 13, 1138. [Google Scholar] [CrossRef]
- Bleich, S.N.; Segal, J.; Wu, Y.; Wilson, R.; Wang, Y. Systematic review of community-based childhood obesity prevention studies. Pediatrics 2013, 132, e201–e210. [Google Scholar] [CrossRef]
- Pérez-Rodrigo, C.; Aranceta, J. School-based nutrition education: Lessons learned and new perspectives. Public Health Nutr. 2001, 4, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Story, M.; Nanney, M.S.; Schwartz, M.B. Schools and obesity prevention: Creating school environments and policies to promote healthy eating and physical activity. Milbank Q. 2009, 87, 71–100. [Google Scholar] [CrossRef] [PubMed]
- Story, M.; Kaphingst, K.M.; French, S. The role of schools in obesity prevention. Future Child. 2006, 16, 109–142. [Google Scholar] [CrossRef] [PubMed]
- Manini, T.M.; Carr, L.J.; King, A.C.; Marshall, S.; Robinson, T.N.; Rejeski, W.J. Interventions to reduce sedentary behavior. Med. Sci. Sports Exerc. 2015, 47, 1306–1310. [Google Scholar] [CrossRef]
T1: Reduction in Screen/Sedentary Time § n = 30 | T2: Without Changes in Screen/Sedentary Time § n = 30 | T3: Increased Screen/Sedentary Time § n = 30 | p-Value | |
---|---|---|---|---|
n (%) | ||||
Intervention group | ||||
Control | 16 (53.3) | 15 (50.0) | 14 (46.6) | 0.640 |
Intervention | 14 (46.6) | 15 (50.0) | 16 (53.3) | |
Sex of the child | ||||
Male | 9 (30.0) | 8 (26.6) | 13 (46.5) | 0.201 |
Female | 21 (70.0) | 22 (73.3) | 17 (53.5) | |
Child living with | ||||
Mother and father | 25 (83.3) | 20 (66.6) | 22 (73.3) | 0.257 |
Time split between mother and father | 2 (6.6) | 1(3.3) | 3 (10.0) | |
Only mother | 3 (10.0) | 0 (0.0) | 1 (3.3) | |
Only father | 0 (0.0) | 0 (0.0) | 2 (6.6) | |
Others | 0 (0.0) | 9 (30.0) | 2 (6.6) | |
Parents’ educational level | 0.308 | |||
Elementary | 10 (33.3) | 11 (36.6) | 11 (36.6) | |
2 years high school | 8 (26.6) | 6 (20.0) | 2 (6.6) | |
At least 3 years high school | 6 (20.0) | 6 (20.0) | 7 (23.3) | |
University | 5 (16.6) | 5 (16.6) | 7 (23.3) | |
Without studies | 1 (3.3) | 2 (6.6) | 3 (10.0) | |
Parents’ job situation | 0.201 | |||
Working | 15 (50.0) | 14 (46.6) | 20 (66.6) | |
Unemployed | 9 (30.0) | 5 (16.6) | 4 (13.3) | |
Other | 6 (20.0) | 11 (36.6) | 6 (20.0) | |
Monthly salary | 0.750 | |||
None | 8 (26.6) | 5 (16.6) | 2 (6.6) | |
Low income | 4 (13.3) | 3 (10.0) | 5 (16.6) | |
Lower-middle income | 12 (40.0) | 18 (60.0) | 15 (50.0) | |
Upper-middle income | 4 (13.3) | 2 (6.6) | 3 (10.0) | |
High income | 2 (6.6) | 2 (6.6) | 5 (16.6) | |
Mean (SD) | ||||
Age of the child (years) | 5.1 (1.3) | 5.3 (1.4) | 5.5 (1.3) | 0.584 |
BMI of the child (kg(m2) | 23.3 (3.9) | 24.2 (3.6) | 23.1 (3.2) | 0.469 |
T1: Reduction in Screen/Sedentary Time § n = 30 | T2: Without Changes in Screen/Sedentary Time § n = 30 | T3: Increased Screen/Sedentary Time § n = 30 | p-Value | |
---|---|---|---|---|
Mean (SD) | ||||
Dietary total fat (g) | 0.046 | |||
Baseline | 59.4 (15.1) | 54.3 (14.5) | 70.4 (25.1) | |
9 months | 48.2 (13.6) b | 47.4 (19.5) c | 78.6 (41.6) b c | |
▲ | −11.1 (10.6) * e | −6.9 (21.3) | 8.1 (16.5) e | |
Dietary SFA (g) | 0.030 | |||
Baseline | 25.4 (6.6) | 22.3 (4.8) | 26.1 (11.4) | |
9 months | 21.1 (5.8) | 19.9 (7.6) | 28.1 (15.4) | |
▲ | −4.3 (6.1) * | −2.4 (7.9) | 2.1 (3.9) * | |
Dietary MUFA (g) | 0.099 | |||
Baseline | 18.4 (4.7) | 19.1 (5.6) | 26.2 (7.2) | |
9 months | 16.4 (4.5) b | 16.2 (7.1) c | 28.8 (13.5) b c | |
▲ | −2.1 (3.7) | −2.9 (7.7) | 2.6 (6.3) | |
Dietary PUFA (g) | 0.135 | |||
Baseline | 8.7 (3.9) | 8.1 (4.2) | 10.9 (2.5) | |
9 months | 6.9 (2.9) b | 7.1 (2.8) c | 12.7 (6.8) b c | |
▲ | −1.8 (2.5) | −1.1 (3.5) | 1.7 (4.3) | |
Dietary cholesterol (mg) | 0.258 | |||
Baseline | 280.6 (91.3) | 234.2 (105.3) | 437.2 (100.2) | |
9 months | 233.4 (72.5) | 218.2 (104.3) | 281.4 (11.5) | |
▲ | −47.1 (104.5) * | −16.1 (87.8) | −155.7 (88.6) | |
Dietary EPA (g) | 0.831 | |||
Baseline | 0.01 0.01 (0.01) | 0.01 (0.02) | 0.1 (0.2) | |
9 months | 0.04 (0.1) | 0.02 (0.05) | 0.1 (0.1) | |
▲ | 0.03 (0.1) | 0.01 (0.06) | −0.06 (0.3) | |
Dietary DHA (g) | 0.880 | |||
Baseline | 0.01 0.02 (0.02) | 0.04 (0.05) | 0.3 (0.4) | |
9 months | 0.09 (0.2) | 0.04 (0.1) | 0.2 (0.1) | |
▲ | 0.06 (0.2) | −0.01 (0.1) | −0.1 (0.5) | |
Dietary total energy (kcal) | 0.177 | |||
Baseline | 1632.1 (339.9) | 1574.9 (361.1) | 1726.5 (513.6) | |
9 months | 1353.9 (321.3) b | 1336.7 (281.1) c | 1997.4 (190.9) b c | |
▲ | −278.1 (334.5) | −238.2 (349.2) | 270.8 (322.7) | |
Dietary fiber (g) | 0.968 | |||
Baseline | 14.7 (5.9) | 14.1 (3.3) | 17.1 (0.1) | |
9 months | 14.5 (3.3) | 13.4 (6.1) | 16.4 (3.1) | |
▲ | −0.2 (5.8) | −0.6 (5.7) | −0.7 (3.1) |
r | p-Value | |
---|---|---|
Food responsiveness | −0.031 | 0.859 |
Enjoyment of food | −0.193 | 0.265 |
Emotional overeating | −0.049 | 0.781 |
Desire to drink | 0.528 | <0.001 |
Satiety responsiveness | 0.179 | 0.304 |
Slowness in eating | 0.129 | 0.467 |
Emotional undereating | 0.193 | 0.267 |
Fussiness | 0.294 | 0.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, S.; Ródenas-Munar, M.; Argelich, E.; Mateos, D.; Ugarriza, L.; Tur, J.A.; Bouzas, C. Dietary Lipid Profile in Spanish Children with Overweight or Obesity: A Longitudinal Study on the Impact of Children’s Eating Behavior and Sedentary Habits. Nutrients 2025, 17, 494. https://doi.org/10.3390/nu17030494
García S, Ródenas-Munar M, Argelich E, Mateos D, Ugarriza L, Tur JA, Bouzas C. Dietary Lipid Profile in Spanish Children with Overweight or Obesity: A Longitudinal Study on the Impact of Children’s Eating Behavior and Sedentary Habits. Nutrients. 2025; 17(3):494. https://doi.org/10.3390/nu17030494
Chicago/Turabian StyleGarcía, Silvia, Marina Ródenas-Munar, Emma Argelich, David Mateos, Lucía Ugarriza, Josep A. Tur, and Cristina Bouzas. 2025. "Dietary Lipid Profile in Spanish Children with Overweight or Obesity: A Longitudinal Study on the Impact of Children’s Eating Behavior and Sedentary Habits" Nutrients 17, no. 3: 494. https://doi.org/10.3390/nu17030494
APA StyleGarcía, S., Ródenas-Munar, M., Argelich, E., Mateos, D., Ugarriza, L., Tur, J. A., & Bouzas, C. (2025). Dietary Lipid Profile in Spanish Children with Overweight or Obesity: A Longitudinal Study on the Impact of Children’s Eating Behavior and Sedentary Habits. Nutrients, 17(3), 494. https://doi.org/10.3390/nu17030494