Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing?
"> Figure 1
<p>Dietary sources of resveratrol and their respective content (mg/100 g or mg/L) [<a href="#B68-nutrients-17-00837" class="html-bibr">68</a>].</p> "> Figure 2
<p>Biological and health effects of Resveratrol. AMPK, AMP-activated protein kinase; AP-1, activator protein-1; CAT, catalase; GLP-1, glucagon-like peptide 1; IGF-1, insulin-like growth factor 1; IL, interleukin; MAPK, mitogen-activated protein kinase; NF-κb, nuclear factor-Κb; NO, nitric oxide; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator 1α; ROS, reactive oxygen species; SOD1, superoxide dismutase 1; TNF-α, tumor necrosis factor α; VSMC, vascular smooth muscle cell; <tt>↑, </tt>induce; <tt>↓,</tt> reduce.</p> ">
Abstract
:1. Introduction
2. Resveratrol
2.1. Health Outcomes
2.1.1. RES, Oxidative Stress, and Inflammation
2.1.2. RES and the Cardiovascular System
2.1.3. RES and Neuroinflammation
2.1.4. RES, Diabetes, and Metabolism
2.1.5. RES and Gut
2.1.6. RES, Muscle Strength, and Endurance
2.1.7. RES and Cancer
2.2. Sirtuins: Molecular Targets of RES and PA
3. Resveratrol and Physical Activity: Pre-Clinical and Clinical Trials
3.1. Pre-Clinical Trials
3.2. Clinical Trials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGEs | advanced glycation end-products |
AgRP | agouti-related peptide |
AhR | aryl hydrocarbon receptor |
AKT | protein kinase B |
ALT | alanine aminotransferase |
AMPK | AMP-activated protein kinase |
AST | aspartate aminotransferase |
CAT | catalase |
CDK9 | cyclin dependent kinase 9 |
CK | creatine kinase |
CRP | C-reactive protein |
CRTC2 | CREB-regulated transcription coactivator 2 |
DDX21 | DExD-box helicase 21 |
eNOS | endothelial nitric oxide synthase |
FBL | fibrillarin |
FoxOs | forkhead box O |
FXR | farnesoid X receptor |
GABPB1 | GA binding protein transcription factor subunit beta 1 |
GGT | gamma-glutamyl transpeptidase |
GLP-1 | glucagon like peptide 1 |
GLUT4 | glucose transporter 4 |
GPX | glutathione peroxidase |
H | histone |
HDL | high-density lipoprotein |
HIIT | swimming high-intensity interval training |
HOMA-IR | homeostatic model assessment of insulin resistance |
IGF-1 | insulin-like growth factor 1 |
IL-6 | interleukin-6 |
IL-8 | interleukin-8 |
K | lysine |
LCN2 | lipocalin-2 |
LDH | lactate dehydrogenase |
LDL | low-density lipoprotein |
LKB1 | liver kinase B1 |
MDA | malondialdehyde |
MAPK | mitogen-activated protein kinase |
MMP | matrix metalloproteinase |
mTOR | mechanistic target of rapamycin |
NAD+ | nicotinamide adenine dinucleotide |
NAFLD | non-alcoholic fatty liver disease |
NF-Κb | nuclear factor-Κb |
NO | nitric oxide |
PA | physic activity |
PGAM-1 | phosphoglycerate mutase 1 |
PGC-1α | peroxisome proliferator-activated receptor-γ coactivator 1α |
PI3K | phosphatidylinositol-3-kinase |
POLR1e | RNA polymerase I subunit E |
POMC | pro-opiomelanocortin |
PPAR | peroxisome proliferator-activated receptor |
Prdm16 | PR domain containing 16 |
RES | resveratrol |
ROS | reactive oxygen species |
rrp9 | ribosomal RNA processing 9 |
r-TPA | recombinant tissue plasminogen activator |
SESN2 | sestrin 2 |
SIRT1 | sirtuin 1 |
SOD | superoxide dismutase |
SREBP1c | sterol regulatory element binding protein 1c |
UCP2 | uncoupling protein 2 |
TIMP-1 | tissue inhibitor of metalloproteinase-1 |
TNF-α | tumor necrosis factor α |
VEGF | vascular endothelial growth factor |
VSMC | vascular smooth muscle cell |
References
- Kapoor, G.; Chauhan, P.; Singh, G.; Malhotra, N.; Chahal, A. Physical Activity for Health and Fitness: Past, Present and Future. J. Lifestyle Med. 2022, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J. An Overview of Current Physical Activity Recommendations in Primary Care. Korean J. Fam. Med. 2019, 40, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of Exercise Is a Major Cause of Chronic Diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar] [CrossRef]
- Crimmins, E.M.; Preston, S.H.; Cohen, B. (Eds.) Causes of Death, Health Indicators, and Divergence in Life Expectancy. In Explaining Divergent Levels of Longevity in High-Income Countries; National Academies Press: Washington, DC, USA, 2011; pp. 26–42. [Google Scholar]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int. J. Environ. Res. Public Health 2020, 17, 4065. [Google Scholar] [CrossRef] [PubMed]
- Vina, J.; Sanchis-Gomar, F.; Martinez-Bello, V.; Gomez-Cabrera, M.C. Exercise Acts as a Drug; the Pharmacological Benefits of Exercise. Br. J. Pharmacol. 2012, 167, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M. Antioxidants and Physical Performance. Crit. Rev. Food Sci. Nutr. 1995, 35, 131–141. [Google Scholar] [CrossRef]
- Alayev, A.; Berger, S.M.; Kramer, M.Y.; Schwartz, N.S.; Holz, M.K. The Combination of Rapamycin and Resveratrol Blocks Autophagy and Induces Apoptosis in Breast Cancer Cells. J. Cell. Biochem. 2015, 116, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Bustamante-Sanchez, Á.; Mielgo-Ayuso, J.; Martínez-Guardado, I.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Antioxidants and Sports Performance. Nutrients 2023, 15, 2371. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Mazzeo, F.; Raiola, G. An Investigation of Drugs Abuse in Sport Performance. J. Hum. Sport Exerc. 2018, 13, 309–319. [Google Scholar] [CrossRef]
- Montesano, P.; Masala, D.; Silvestro, M.; Cipriani, G.; Tafuri, D.; Mazzeo, F. Effects of Combined Training Program, Controlled Diet and Drugs on Middle-Distance Amateur Runners: A Pilot Study. Sport Sci. 2020, 13, 17–22. [Google Scholar]
- Hadi, A.; Pourmasoumi, M.; Kafeshani, M.; Karimian, J.; Maracy, M.R.; Entezari, M.H. The Effect of Green Tea and Sour Tea (Hibiscus Sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. J. Diet. Suppl. 2017, 14, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Panza, V.S.P.; Wazlawik, E.; Ricardo Schütz, G.; Comin, L.; Hecht, K.C.; da Silva, E.L. Consumption of Green Tea Favorably Affects Oxidative Stress Markers in Weight-Trained Men. Nutr. Burbank 2008, 24, 433–442. [Google Scholar] [CrossRef]
- Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; et al. Impact of Dietary Fats on Brain Functions. Curr. Neuropharmacol. 2018, 16, 1059–1085. [Google Scholar] [CrossRef]
- D’Angelo, S.; Motti, M.L.; Meccariello, R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients 2020, 12, 2751. [Google Scholar] [CrossRef]
- Motti, M.L.; D’Angelo, S.; Meccariello, R. MicroRNAs, Cancer and Diet: Facts and New Exciting Perspectives. Curr. Mol. Pharmacol. 2018, 11, 90–96. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.; Scafuro, M.; Meccariello, R. BPA and Nutraceuticals, Simultaneous Effects on Endocrine Functions. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 594–604. [Google Scholar] [CrossRef]
- Marino, M.; Mele, E.; Pastorino, G.M.G.; Meccariello, R.; Operto, F.F.; Santoro, A.; Viggiano, A. Neuroinflammation: Molecular Mechanisms And Therapeutic Perspectives. Cent. Nerv. Syst. Agents Med. Chem. 2022, 22, 160–174. [Google Scholar] [CrossRef]
- Motti, M.L.; Tafuri, D.; Donini, L.; Masucci, M.T.; De Falco, V.; Mazzeo, F. The Role of Nutrients in Prevention, Treatment and Post-Coronavirus Disease-2019 (COVID-19). Nutrients 2022, 14, 1000. [Google Scholar] [CrossRef]
- Meccariello, R.; D’Angelo, S. Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants 2021, 10, 507. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; Rogerson, D.; Soltani, H.; Costello, J.T. Antioxidants for Preventing and Reducing Muscle Soreness after Exercise: A Cochrane Systematic Review. Br. J. Sports Med. 2020, 54, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Peternelj, T.-T.; Coombes, J.S. Antioxidant Supplementation during Exercise Training: Beneficial or Detrimental? Sports Med. 2011, 41, 1043–1069. [Google Scholar] [CrossRef] [PubMed]
- Nicol, L.M.; Rowlands, D.S.; Fazakerly, R.; Kellett, J. Curcumin Supplementation Likely Attenuates Delayed Onset Muscle Soreness (DOMS). Eur. J. Appl. Physiol. 2015, 115, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Kalske, A. Plant Secondary Metabolite Diversity and Species Interactions. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 115–138. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Beconcini, D.; Felice, F.; Fabiano, A.; Sarmento, B.; Zambito, Y.; Di Stefano, R. Antioxidant and Anti-Inflammatory Properties of Cherry Extract: Nanosystems-Based Strategies to Improve Endothelial Function and Intestinal Absorption. Foods 2020, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous Determination of All Polyphenols in Vegetables, Fruits, and Teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Koszowska, A.; Dittfeld, A.; Puzo, A.; Nowak, J. Polifenole w Profilaktyce Chorób Cywilizacyjnych. Postępy Fitoter. 2013, 4, 263–266. [Google Scholar]
- Szaniawska, M.; Taraba, A.; Szymczyk, K.S. Properties and Application of Anthocyanins. Eng. Sci. Technol. 2015, 2, 63–78. [Google Scholar]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Lakey-Beitia, J.; Burillo, A.M.; La Penna, G.; Hegde, M.L.; Rao, K.S. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer’s Disease. J. Alzheimers Dis. JAD 2021, 82, S335–S357. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Enaru, B.; Socaci, S.; Farcas, A.; Socaciu, C.; Danciu, C.; Stanila, A.; Diaconeasa, Z. Novel Delivery Systems of Polyphenols and Their Potential Health Benefits. Pharmaceuticals 2021, 14, 946. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ballon, A.; Schroën, K.; de Lamo-Castellví, S.; Ferrando, M.; Güell, C. Polyphenol Loaded W1/O/W2 Emulsions Stabilized with Lesser Mealworm (Alphitobius diaperinus) Protein Concentrate Produced by Membrane Emulsification: Stability under Simulated Storage, Process, and Digestion Conditions. Foods 2021, 10, 2997. [Google Scholar] [CrossRef]
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-In-Oil Pickering Emulsions Stabilized by Water-Insoluble Polyphenol Crystals. Langmuir ACS J. Surf. Colloids 2018, 34, 10001–10011. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Higaki, N.T.F.; Montrucchio, D.P.; Oliveira, C.F.d.; Gomes, M.L.S.; Miguel, M.D.; Miguel, O.G.; Zanin, S.M.W.; Dias, J.d.F.G. Development of W1/O/W2 Emulsion with Gallic Acid in the Internal Aqueous Phase. Food Chem. 2020, 314, 126174. [Google Scholar] [CrossRef] [PubMed]
- Pralhad, T.; Rajendrakumar, K. Study of Freeze-Dried Quercetin-Cyclodextrin Binary Systems by DSC, FT-IR, X-Ray Diffraction and SEM Analysis. J. Pharm. Biomed. Anal. 2004, 34, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hunt, L.E.; Bourne, S.A.; Caira, M.R. Inclusion of Hydroxycinnamic Acids in Methylated Cyclodextrins: Host-Guest Interactions and Effects on Guest Thermal Stability. Biomolecules 2020, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; Hernández-García, S.; García-Carmona, F.; López-Nicolás, J.M. An Integral Study of Cyclodextrins as Solubility Enhancers of _-Methylstilbene, a Resveratrol Analogue. Food Funct. 2017, 8, 270–277. [Google Scholar] [CrossRef]
- Nguyen Thi, D.P.; Tran, D.L.; Le Thi, P.; Park, K.D.; Hoang Thi, T.T. Supramolecular Gels Incorporating Cordyline Terminalis Leaf Extract as a Polyphenol Release Scaffold for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 8759. [Google Scholar] [CrossRef] [PubMed]
- Boyacı, D.; Kavur, P.B.; Gulec, S.; Yemenicioğlu, A. Physicochemical and Active Properties of Gelatine-Based Composite Gels Loaded with Lysozyme and Green Tea Polyphenols. Food Technol. Biotechnol. 2021, 59, 337–348. [Google Scholar] [CrossRef]
- Stanciauskaite, M.; Marksa, M.; Ivanauskas, L.; Perminaite, K.; Ramanauskiene, K. Ophthalmic In Situ Gels with Balsam Poplar Buds Extract: Formulation, Rheological Characterization, and Quality Evaluation. Pharmaceutics 2021, 13, 953. [Google Scholar] [CrossRef] [PubMed]
- Niknam, S.M.; Kashaninejad, M.; Escudero, I.; Sanz, M.T.; Beltrán, S.; Benito, J.M. Preparation of Water-in-Oil Nanoemulsions Loaded with Phenolic-Rich Olive Cake Extract Using Response Surface Methodology Approach. Foods 2022, 11, 279. [Google Scholar] [CrossRef]
- Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion Formulation of Fisetin Improves Bioavailability and Antitumour Activity in Mice. Int. J. Pharm. 2012, 427, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, C.A.S.; Taarji, N.; Khalid, N.; Kobayashi, I.; Nakajima, M.; Neves, M.A. Formulation and Characterization of Water-in-Oil Nanoemulsions Loaded with Açaí Berry Anthocyanins: Insights of Degradation Kinetics and Stability Evaluation of Anthocyanins and Nanoemulsions. Food Res. Int. 2018, 106, 542–548. [Google Scholar] [CrossRef]
- Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal Encapsulation of the Natural Flavonoid Fisetin Improves Bioavailability and Antitumor Efficacy. Int. J. Pharm. 2013, 444, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Sultana, F.; Neog, M.K.; Rasool, M. Targeted Delivery of Morin, a Dietary Bioflavanol Encapsulated Mannosylated Liposomes to the Macrophages of Adjuvant-Induced Arthritis Rats Inhibits Inflammatory Immune Response and Osteoclastogenesis. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV 2017, 115, 229–242. [Google Scholar] [CrossRef]
- Wei, X.-Q.; Zhu, J.-F.; Wang, X.-B.; Ba, K. Improving the Stability of Liposomal Curcumin by Adjusting the Inner Aqueous Chamber pH of Liposomes. ACS Omega 2020, 5, 1120–1126. [Google Scholar] [CrossRef]
- Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]
- Davis, J.A.; Horn, D.L.; Marr, K.A.; Fishman, J.A. Central Nervous System Involvement in Cryptococcal Infection in Individuals after Solid Organ Transplantation or with AIDS. Transpl. Infect. Dis. Off. J. Transplant. Soc. 2009, 11, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Lafay, S.; Jan, C.; Nardon, K.; Lemaire, B.; Ibarra, A.; Roller, M.; Houvenaeghel, M.; Juhel, C.; Cara, L. Grape Extract Improves Antioxidant Status and Physical Performance in Elite Male Athletes. J. Sports Sci. Med. 2009, 8, 468–480. [Google Scholar] [PubMed]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Enhances Muscle Contractile Efficiency during Knee-Extensor Exercise in Humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and Chronic Effects of Dietary Nitrate Supplementation on Blood Pressure and the Physiological Responses to Moderate-Intensity and Incremental Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [PubMed]
- Lansley, K.E.; Winyard, P.G.; Fulford, J.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Reduces the O2 Cost of Walking and Running: A Placebo-Controlled Study. J. Appl. Physiol. 2011, 110, 591–600. [Google Scholar] [CrossRef]
- Wang, F.; Chatterjee, S. Dominant Carbons in Trans- and Cis-Resveratrol Isomerization. J. Phys. Chem. B 2017, 121, 4745–4755. [Google Scholar] [CrossRef]
- Balanov, P.E.; Smotraeva, I.V.; Abdullaeva, M.S.; Volkova, D.A.; Ivanchenko, O.B. Study on Resveratrol Content in Grapes and Wine Products. E3S Web Conf. 2021, 247, 01063. [Google Scholar] [CrossRef]
- Bavaresco, L.; Petegolli, D.; Cantù, E.; Fergoni, M.; Chiusa, G.; Trevisan, M. Elicitation and Accumulation of Stilbene Phytoalexins in Grapevine Berries Infected by Botrytis Cinerea. VITIS J. Grapevine Res. 2015, 36, 77. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer Res. 2004, 24, 2783–2840. [Google Scholar]
- Abo-Kadoum, M.A.; Abouelela, M.E.; Al Mousa, A.A.; Abo-Dahab, N.F.; Mosa, M.A.; Helmy, Y.A.; Hassane, A.M.A. Resveratrol Biosynthesis, Optimization, Induction, Bio-Transformation and Bio-Degradation in Mycoendophytes. Front. Microbiol. 2022, 13, 1010332. [Google Scholar] [CrossRef]
- Thapa, S.B.; Pandey, R.P.; Park, Y.I.; Kyung Sohng, J. Biotechnological Advances in Resveratrol Production and Its Chemical Diversity. Molecules 2019, 24, 2571. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.E.; Sandeep, B.V.; Rao, B.G.; Kalpana, V.L. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front. Pharmacol. 2020, 11, 583777. [Google Scholar] [CrossRef]
- Hou, C.-Y.; Tain, Y.-L.; Yu, H.-R.; Huang, L.-T. The Effects of Resveratrol in the Treatment of Metabolic Syndrome. Int. J. Mol. Sci. 2019, 20, 535. [Google Scholar] [CrossRef] [PubMed]
- Chachay, V.S.; Kirkpatrick, C.M.J.; Hickman, I.J.; Ferguson, M.; Prins, J.B.; Martin, J.H. Resveratrol--Pills to Replace a Healthy Diet? Br. J. Clin. Pharmacol. 2011, 72, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Shukla, Y.; Singh, R. Resveratrol and Cellular Mechanisms of Cancer Prevention. Ann. N. Y. Acad. Sci. 2011, 1215, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; de Lorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Kopp, P. Resveratrol, a Phytoestrogen Found in Red Wine. A Possible Explanation for the Conundrum of the “French Paradox”? Eur. J. Endocrinol. 1998, 138, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.-A.; Rezaei-Tavirani, M. Resveratrol: A Miraculous Natural Compound for Diseases Treatment. Food Sci. Nutr. 2018, 6, 2473–2490. [Google Scholar] [CrossRef] [PubMed]
- Domi, E.; Hoxha, M.; Kolovani, E.; Tricarico, D.; Zappacosta, B. The Importance of Nutraceuticals in COVID-19: What’s the Role of Resveratrol? Molecules 2022, 27, 2376. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. Biol. Fate Chem. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical Trials of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Bioavailability of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Bansal, M.; Singh, N.; Pal, S.; Dev, I.; Ansari, K.M. Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. Adv. Mol. Toxic 2018, 12, 69. [Google Scholar] [CrossRef]
- Zortea, K.; Franco, V.C.; Francesconi, L.P.; Cereser, K.M.M.; Lobato, M.I.R.; Belmonte-de-Abreu, P.S. Resveratrol Supplementation in Schizophrenia Patients: A Randomized Clinical Trial Evaluating Serum Glucose and Cardiovascular Risk Factors. Nutrients 2016, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, A.; Carpéné, C.; Mercader, J. Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients 2018, 10, 1651. [Google Scholar] [CrossRef] [PubMed]
- Sadi, G.; Şahin, G.; Bostancı, A. Modulation of Renal Insulin Signaling Pathway and Antioxidant Enzymes with Streptozotocin-Induced Diabetes: Effects of Resveratrol. Medicina 2018, 55, 3. [Google Scholar] [CrossRef]
- Malhotra, A.; Bath, S.; Elbarbry, F. An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol. Oxid. Med. Cell. Longev. 2015, 2015, 803971. [Google Scholar] [CrossRef] [PubMed]
- Szekeres, T.; Fritzer-Szekeres, M.; Saiko, P.; Jäger, W. Resveratrol and Resveratrol Analogues--Structure-Activity Relationship. Pharm. Res. 2010, 27, 1042–1048. [Google Scholar] [CrossRef]
- Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; et al. Specific Structural Determinants Are Responsible for the Antioxidant Activity and the Cell Cycle Effects of Resveratrol. J. Biol. Chem. 2001, 276, 22586–22594. [Google Scholar] [CrossRef] [PubMed]
- Konyalioglu, S.; Armagan, G.; Yalcin, A.; Atalayin, C.; Dagci, T. Effects of Resveratrol on Hydrogen Peroxide-Induced Oxidative Stress in Embryonic Neural Stem Cells. Neural Regen. Res. 2013, 8, 485–495. [Google Scholar] [CrossRef]
- Means, J.C.; Gerdes, B.C.; Koulen, P. Distinct Mechanisms Underlying Resveratrol-Mediated Protection from Types of Cellular Stress in C6 Glioma Cells. Int. J. Mol. Sci. 2017, 18, 1521. [Google Scholar] [CrossRef] [PubMed]
- Motola, G.; Russo, F.; Mazzeo, F.; Rinaldi, B.; Capuano, A.; Rossi, F.; Filippelli, A. Over-the-Counter Oral Nonsteroidal Anti-Inflammatory Drugs: A Pharmacoepidemiologic Study in Southern Italy. Adv. Ther. 2001, 18, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, F.; Wang, F.; Li, J.; Lin, C.; Du, J. Resveratrol Inhibits the Proliferation of A549 Cells by Inhibiting the Expression of COX-2. OncoTargets Ther. 2018, 11, 2981–2989. [Google Scholar] [CrossRef] [PubMed]
- Adhami, V.M.; Afaq, F.; Ahmad, N. Suppression of Ultraviolet B Exposure-Mediated Activation of NF-kappaB in Normal Human Keratinocytes by Resveratrol. Neoplasia 2003, 5, 74–82. [Google Scholar] [CrossRef]
- Pirola, L.; Fröjdö, S. Resveratrol: One Molecule, Many Targets. IUBMB Life 2008, 60, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.K.; Mukhopadhyay, A.; Aggarwal, B.B. Resveratrol Suppresses TNF-Induced Activation of Nuclear Transcription Factors NF-Kappa B, Activator Protein-1, and Apoptosis: Potential Role of Reactive Oxygen Intermediates and Lipid Peroxidation. J. Immunol. 2000, 164, 6509–6519. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xu, Y.X.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Immunomodulatory Activity of Resveratrol: Suppression of Lymphocyte Proliferation, Development of Cell-Mediated Cytotoxicity, and Cytokine Production. Biochem. Pharmacol. 2001, 62, 1299–1308. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Gorodnichev, P.V. The Role of the Aromatic Hydrocarbon Receptor in the Pathogenesis of Atopic Dermatitis. Vestn. Dermatol. Venerol. 2023, 99, 11–22. [Google Scholar] [CrossRef]
- Ahn, Y.M.; Shin, S.; Jang, J.-H.; Jung, J. Bojungikgi-Tang Improves Skin Barrier Function and Immune Response in Atopic Dermatitis Mice Fed a Low Aryl Hydrocarbon Receptor Ligand Diet. Chin. Med. 2023, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Hashimoto-Hachiya, A.; Tsuji, G. Antioxidative Phytochemicals Accelerate Epidermal Terminal Differentiation via the AHR-OVOL1 Pathway: Implications for Atopic Dermatitis. Acta Derm. Venereol. 2018, 98, 918–923. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, J. Resveratrol Exerts Therapeutic Effects on Mice with Atopic Dermatitis. Wounds Compend. Clin. Res. Pract. 2019, 31, 279–284. [Google Scholar]
- Gorabi, A.M.; Aslani, S.; Imani, D.; Razi, B.; Sathyapalan, T.; Sahebkar, A. Effect of Resveratrol on C-Reactive Protein: An Updated Meta-Analysis of Randomized Controlled Trials. Phytother. Res. PTR 2021, 35, 6754–6767. [Google Scholar] [CrossRef]
- Cho, S.; Namkoong, K.; Shin, M.; Park, J.; Yang, E.; Ihm, J.; Thu, V.T.; Kim, H.K.; Han, J. Cardiovascular Protective Effects and Clinical Applications of Resveratrol. J. Med. Food 2017, 20, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Magyar, K.; Halmosi, R.; Palfi, A.; Feher, G.; Czopf, L.; Fulop, A.; Battyany, I.; Sumegi, B.; Toth, K.; Szabados, E. Cardioprotection by Resveratrol: A Human Clinical Trial in Patients with Stable Coronary Artery Disease. Clin. Hemorheol. Microcirc. 2012, 50, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, S.; Michaels, H.A.; Quadros, A.S.; Qian, Y.; Rabovsky, A.B.; Badger, R.S.; Jalili, T. A Combination of Isolated Phytochemicals and Botanical Extracts Lowers Diastolic Blood Pressure in a Randomized Controlled Trial of Hypertensive Subjects. Eur. J. Clin. Nutr. 2016, 70, 10–16. [Google Scholar] [CrossRef]
- Agarwal, B.; Campen, M.J.; Channell, M.M.; Wherry, S.J.; Varamini, B.; Davis, J.G.; Baur, J.A.; Smoliga, J.M. Resveratrol for Primary Prevention of Atherosclerosis: Clinical Trial Evidence for Improved Gene Expression in Vascular Endothelium. Int. J. Cardiol. 2013, 166, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Ciccone, G.; Castiglione, A.; Gambino, R.; De Michieli, F.; Villois, P.; Durazzo, M.; Cavallo-Perin, P.; Cassader, M. Anti-Inflammatory and Antioxidant Effects of Resveratrol in Healthy Smokers a Randomized, Double-Blind, Placebo-Controlled, Cross-over Trial. Curr. Med. Chem. 2013, 20, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- van der Made, S.M.; Plat, J.; Mensink, R.P. Resveratrol Does Not Influence Metabolic Risk Markers Related to Cardiovascular Health in Overweight and Slightly Obese Subjects: A Randomized, Placebo-Controlled Crossover Trial. PLoS ONE 2015, 10, e0118393. [Google Scholar] [CrossRef]
- Baltaci, S.B.; Mogulkoc, R.; Baltaci, A.K. Resveratrol and Exercise. Biomed. Rep. 2016, 5, 525–530. [Google Scholar] [CrossRef]
- Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol Regulates Neuro-Inflammation and Induces Adaptive Immunity in Alzheimer’s Disease. J. Neuroinflamm. 2017, 14, 1. [Google Scholar] [CrossRef]
- Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Resveratrol for Alzheimer Disease. Neurology 2015, 85, 1383–1391. [Google Scholar] [CrossRef]
- Thordardottir, S.; Kinhult Ståhlbom, A.; Almkvist, O.; Thonberg, H.; Eriksdotter, M.; Zetterberg, H.; Blennow, K.; Graff, C. The Effects of Different Familial Alzheimer’s Disease Mutations on APP Processing in Vivo. Alzheimers Res. Ther. 2017, 9, 9. [Google Scholar] [CrossRef]
- Maiuolo, J.; Costanzo, P.; Masullo, M.; D’Errico, A.; Nasso, R.; Bonacci, S.; Mollace, V.; Oliverio, M.; Arcone, R. Hydroxytyrosol-Donepezil Hybrids Play a Protective Role in an In Vitro Induced Alzheimer’s Disease Model and in Neuronal Differentiated Human SH-SY5Y Neuroblastoma Cells. Int. J. Mol. Sci. 2023, 24, 13461. [Google Scholar] [CrossRef] [PubMed]
- Arcone, R.; D’Errico, A.; Nasso, R.; Rullo, R.; Poli, A.; Di Donato, P.; Masullo, M. Inhibition of Enzymes Involved in Neurodegenerative Disorders and Aβ1-40 Aggregation by Citrus Limon Peel Polyphenol Extract. Molecules 2023, 28, 6332. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bai, Q.; Zhao, Z.; Sui, H.; Xie, X. Resveratrol Improves Delayed R-tPA Treatment Outcome by Reducing MMPs. Acta Neurol. Scand. 2016, 134, 54–60. [Google Scholar] [CrossRef]
- Jiang, H.; Duan, J.; Xu, K.; Zhang, W. Resveratrol Protects against Asthma-Induced Airway Inflammation and Remodeling by Inhibiting the HMGB1/TLR4/NF-κB Pathway. Exp. Ther. Med. 2019, 18, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T.; Szkudelska, K. Anti-Diabetic Effects of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol Improves Health and Survival of Mice on a High-Calorie Diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef]
- Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol Supplementation Improves Glycemic Control in Type 2 Diabetes Mellitus. Nutr. Res. 2012, 32, 537–541. [Google Scholar] [CrossRef]
- Thazhath, S.S.; Wu, T.; Bound, M.J.; Checklin, H.L.; Standfield, S.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Administration of Resveratrol for 5 Wk Has No Effect on Glucagon-like Peptide 1 Secretion, Gastric Emptying, or Glycemic Control in Type 2 Diabetes: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2016, 103, 66–70. [Google Scholar] [CrossRef]
- Brasnyó, P.; Molnár, G.A.; Mohás, M.; Markó, L.; Laczy, B.; Cseh, J.; Mikolás, E.; Szijártó, I.A.; Mérei, A.; Halmai, R.; et al. Resveratrol Improves Insulin Sensitivity, Reduces Oxidative Stress and Activates the Akt Pathway in Type 2 Diabetic Patients. Br. J. Nutr. 2011, 106, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Charytoniuk, T.; Drygalski, K.; Konstantynowicz-Nowicka, K.; Berk, K.; Chabowski, A. Alternative Treatment Methods Attenuate the Development of NAFLD: A Review of Resveratrol Molecular Mechanisms and Clinical Trials. Nutrition 2017, 34, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Heebøll, S.; Kreuzfeldt, M.; Hamilton-Dutoit, S.; Kjær Poulsen, M.; Stødkilde-Jørgensen, H.; Møller, H.J.; Jessen, N.; Thorsen, K.; Kristina Hellberg, Y.; Bønløkke Pedersen, S.; et al. Placebo-Controlled, Randomised Clinical Trial: High-Dose Resveratrol Treatment for Non-Alcoholic Fatty Liver Disease. Scand. J. Gastroenterol. 2016, 51, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, J.; Yin, N.; Wele, P.; Li, F.; Dave, S.; Lin, J.; Xiao, H.; Wu, X. Resveratrol in Disease Prevention and Health Promotion: A Role of the Gut Microbiome. Crit. Rev. Food Sci. Nutr. 2024, 64, 5878–5895. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Li, D.; Ke, W.; Chen, F.; Hu, X. Targeting the Gut Microbiota with Resveratrol: A Demonstration of Novel Evidence for the Management of Hepatic Steatosis. J. Nutr. Biochem. 2020, 81, 108363. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, J.; Wang, L.; Yang, X.; Gao, K.; Zhu, C.; Jiang, Z. Dietary Resveratrol Attenuation of Intestinal Inflammation and Oxidative Damage Is Linked to the Alteration of Gut Microbiota and Butyrate in Piglets Challenged with Deoxynivalenol. J. Anim. Sci. Biotechnol. 2021, 12, 71. [Google Scholar] [CrossRef]
- Bostanghadiri, N.; Pormohammad, A.; Chirani, A.S.; Pouriran, R.; Erfanimanesh, S.; Hashemi, A. Comprehensive Review on the Antimicrobial Potency of the Plant Polyphenol Resveratrol. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 95, 1588–1595. [Google Scholar] [CrossRef]
- Nakata, R.; Takahashi, S.; Inoue, H. Recent Advances in the Study on Resveratrol. Biol. Pharm. Bull. 2012, 35, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol Alleviates Heat Stress-Induced Impairment of Intestinal Morphology, Microflora, and Barrier Integrity in Broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.-E.; Huang, W.-C.; Liao, C.-C.; Chang, Y.-K.; Kan, N.-W.; Huang, C.-C. Resveratrol Protects against Physical Fatigue and Improves Exercise Performance in Mice. Molecules 2013, 18, 4689–4702. [Google Scholar] [CrossRef]
- Bagherniya, M.; Mahdavi, A.; Shokri-Mashhadi, N.; Banach, M.; Von Haehling, S.; Johnston, T.P.; Sahebkar, A. The Beneficial Therapeutic Effects of Plant-Derived Natural Products for the Treatment of Sarcopenia. J. Cachexia Sarcopenia Muscle 2022, 13, 2772–2790. [Google Scholar] [CrossRef]
- Hsu, Y.-J.; Ho, C.-S.; Lee, M.-C.; Ho, C.-S.; Huang, C.-C.; Kan, N.-W. Protective Effects of Resveratrol Supplementation on Contusion Induced Muscle Injury. Int. J. Med. Sci. 2020, 17, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-Induced Cancer: Crosstalk between Tumours, Immune Cells and Microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef]
- Hussain, S.P.; Harris, C.C. Inflammation and Cancer: An Ancient Link with Novel Potentials. Int. J. Cancer 2007, 121, 2373–2380. [Google Scholar] [CrossRef] [PubMed]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-Related Inflammation, the Seventh Hallmark of Cancer: Links to Genetic Instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol Nanoformulation for Cancer Prevention and Therapy. Ann. N. Y. Acad. Sci. 2015, 1348, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Stella, L.; D’Ambra, C.; Mazzeo, F.; Capuano, A.; Del Franco, F.; Avolio, A.; Ambrosino, F. Naltrexone plus Benzodiazepine Aids Abstinence in Opioid-Dependent Patients. Life Sci. 2005, 77, 2717–2722. [Google Scholar] [CrossRef]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef]
- Sethi, G.; Tergaonkar, V. Potential Pharmacological Control of the NF-κB Pathway. Trends Pharmacol. Sci. 2009, 30, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Kim, J.H.; Kannappan, R.; Reuter, S.; Dougherty, P.M.; Aggarwal, B.B. Role of Nuclear Factor κB-Mediated Inflammatory Pathways in Cancer-Related Symptoms and Their Regulation by Nutritional Agents. Exp. Biol. Med. 2011, 236, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Sanda, T.; Asamitsu, K. NF-Kappa B Signaling and Carcinogenesis. Curr. Pharm. Des. 2007, 13, 447–462. [Google Scholar] [CrossRef]
- Yu, C.; Shin, Y.G.; Chow, A.; Li, Y.; Kosmeder, J.W.; Lee, Y.S.; Hirschelman, W.H.; Pezzuto, J.M.; Mehta, R.G.; van Breemen, R.B. Human, Rat, and Mouse Metabolism of Resveratrol. Pharm. Res. 2002, 19, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Ku, B.M.; Lee, Y.K.; Jeong, J.Y.; Kang, S.; Choi, J.; Yang, Y.; Lee, D.H.; Roh, G.S.; Kim, H.J.; et al. Resveratrol Reduces TNF-α-Induced U373MG Human Glioma Cell Invasion through Regulating NF-κB Activation and uPA/uPAR Expression. Anticancer Res. 2011, 31, 4223–4230. [Google Scholar] [PubMed]
- Tino, A.B.; Chitcholtan, K.; Sykes, P.H.; Garrill, A. Resveratrol and Acetyl-Resveratrol Modulate Activity of VEGF and IL-8 in Ovarian Cancer Cell Aggregates via Attenuation of the NF-κB Protein. J. Ovarian Res. 2016, 9, 84. [Google Scholar] [CrossRef]
- Osaki, M.; Oshimura, M.; Ito, H. PI3K-Akt Pathway: Its Functions and Alterations in Human Cancer. Apoptosis Int. J. Program. Cell Death 2004, 9, 667–676. [Google Scholar] [CrossRef]
- Bai, D.; Ueno, L.; Vogt, P.K. Akt-Mediated Regulation of NFkappaB and the Essentialness of NFkappaB for the Oncogenicity of PI3K and Akt. Int. J. Cancer 2009, 125, 2863–2870. [Google Scholar] [CrossRef]
- Bai, Y.; Mao, Q.-Q.; Qin, J.; Zheng, X.-Y.; Wang, Y.-B.; Yang, K.; Shen, H.-F.; Xie, L.-P. Resveratrol Induces Apoptosis and Cell Cycle Arrest of Human T24 Bladder Cancer Cells in Vitro and Inhibits Tumor Growth in Vivo. Cancer Sci. 2010, 101, 488–493. [Google Scholar] [CrossRef]
- Parekh, P.; Motiwale, L.; Naik, N.; Rao, K.V.K. Downregulation of Cyclin D1 Is Associated with Decreased Levels of P38 MAP Kinases, Akt/PKB and Pak1 during Chemopreventive Effects of Resveratrol in Liver Cancer Cells. Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol. 2011, 63, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-S.; Lim, Y.; Hong, J.-T.; Yoo, H.-S.; Lee, C.-K.; Pyo, M.-Y.; Yun, Y.-P. Pterostilbene, a Natural Dimethylated Analog of Resveratrol, Inhibits Rat Aortic Vascular Smooth Muscle Cell Proliferation by Blocking Akt-Dependent Pathway. Vascul. Pharmacol. 2010, 53, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Li, H.; Liu, Y.; Guo, A.; Xu, X.; Qu, X.; Wang, S.; Zhao, J.; Li, Y.; Cao, Y. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway. Nutrients 2015, 7, 4383–4402. [Google Scholar] [CrossRef] [PubMed]
- Alayev, A.; Berger, S.M.; Holz, M.K. Resveratrol as a Novel Treatment for Diseases with mTOR Pathway Hyperactivation. Ann. N. Y. Acad. Sci. 2015, 1348, 116–123. [Google Scholar] [CrossRef]
- Baek, S.H.; Ko, J.-H.; Lee, H.; Jung, J.; Kong, M.; Lee, J.; Lee, J.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; et al. Resveratrol Inhibits STAT3 Signaling Pathway through the Induction of SOCS-1: Role in Apoptosis Induction and Radiosensitization in Head and Neck Tumor Cells. Phytomed. Int. J. Phytother. Phytopharm. 2016, 23, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef]
- Paller, C.J.; Rudek, M.A.; Zhou, X.C.; Wagner, W.D.; Hudson, T.S.; Anders, N.; Hammers, H.J.; Dowling, D.; King, S.; Antonarakis, E.S.; et al. A Phase I Study of Muscadine Grape Skin Extract in Men with Biochemically Recurrent Prostate Cancer: Safety, Tolerability, and Dose Determination. Prostate 2015, 75, 1518–1525. [Google Scholar] [CrossRef]
- Kjaer, T.N.; Ornstrup, M.J.; Poulsen, M.M.; Jørgensen, J.O.L.; Hougaard, D.M.; Cohen, A.S.; Neghabat, S.; Richelsen, B.; Pedersen, S.B. Resveratrol Reduces the Levels of Circulating Androgen Precursors but Has No Effect on, Testosterone, Dihydrotestosterone, PSA Levels or Prostate Volume. A 4-Month Randomised Trial in Middle-Aged Men. Prostate 2015, 75, 1255–1263. [Google Scholar] [CrossRef]
- Schneider, Y.; Vincent, F.; Duranton, B.; Badolo, L.; Gossé, F.; Bergmann, C.; Seiler, N.; Raul, F. Anti-Proliferative Effect of Resveratrol, a Natural Component of Grapes and Wine, on Human Colonic Cancer Cells. Cancer Lett. 2000, 158, 85–91. [Google Scholar] [CrossRef]
- Sale, S.; Tunstall, R.G.; Ruparelia, K.C.; Potter, G.A.; Steward, W.P.; Gescher, A.J. Comparison of the Effects of the Chemopreventive Agent Resveratrol and Its Synthetic Analog Trans 3,4,5,4’-Tetramethoxystilbene (DMU-212) on Adenoma Development in the Apc(Min+) Mouse and Cyclooxygenase-2 in Human-Derived Colon Cancer Cells. Int. J. Cancer 2005, 115, 194–201. [Google Scholar] [CrossRef]
- Howells, L.M.; Berry, D.P.; Elliott, P.J.; Jacobson, E.W.; Hoffmann, E.; Hegarty, B.; Brown, K.; Steward, W.P.; Gescher, A.J. Phase I Randomized, Double-Blind Pilot Study of Micronized Resveratrol (SRT501) in Patients with Hepatic Metastases—Safety, Pharmacokinetics, and Pharmacodynamics. Cancer Prev. Res. 2011, 4, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Jazirehi, A.R.; Bonavida, B. Resveratrol Modifies the Expression of Apoptotic Regulatory Proteins and Sensitizes Non-Hodgkin’s Lymphoma and Multiple Myeloma Cell Lines to Paclitaxel-Induced Apoptosis. Mol. Cancer Ther. 2004, 3, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Popat, R.; Plesner, T.; Davies, F.; Cook, G.; Cook, M.; Elliott, P.; Jacobson, E.; Gumbleton, T.; Oakervee, H.; Cavenagh, J. A Phase 2 Study of SRT501 (Resveratrol) with Bortezomib for Patients with Relapsed and or Refractory Multiple Myeloma. Br. J. Haematol. 2013, 160, 714–717. [Google Scholar] [CrossRef]
- Zhu, W.; Qin, W.; Zhang, K.; Rottinghaus, G.E.; Chen, Y.-C.; Kliethermes, B.; Sauter, E.R. Trans-Resveratrol Alters Mammary Promoter Hypermethylation in Women at Increased Risk for Breast Cancer. Nutr. Cancer 2012, 64, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.J. Seven Sirtuins for Seven Deadly Diseases of Aging. Free Radic. Biol. Med. 2013, 56, 133–171. [Google Scholar] [CrossRef]
- Guarente, L. Sir2 Links Chromatin Silencing, Metabolism, and Aging. Genes Dev. 2000, 14, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Haigis, M.C.; Sinclair, D.A. Mammalian Sirtuins: Biological Insights and Disease Relevance. Annu. Rev. Pathol. 2010, 5, 253–295. [Google Scholar] [CrossRef]
- Fabbrizi, E.; Fiorentino, F.; Carafa, V.; Altucci, L.; Mai, A.; Rotili, D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.; Mele, E.; Di Filippo, F.; Viggiano, A.; Meccariello, R. Sirt1 Activity in the Brain: Simultaneous Effects on Energy Homeostasis and Reproduction. Int. J. Environ. Res. Public Health 2021, 18, 1243. [Google Scholar] [CrossRef]
- Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.-L.; et al. Small Molecule Activators of Sirtuins Extend Saccharomyces Cerevisiae Lifespan. Nature 2003, 425, 191–196. [Google Scholar] [CrossRef]
- Hubbard, B.P.; Sinclair, D.A. Small Molecule SIRT1 Activators for the Treatment of Aging and Age-Related Diseases. Trends Pharmacol. Sci. 2014, 35, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Pucci, B.; Villanova, L.; Sansone, L.; Pellegrini, L.; Tafani, M.; Carpi, A.; Fini, M.; Russo, M.A. Sirtuins: The Molecular Basis of Beneficial Effects of Physical Activity. Intern. Emerg. Med. 2013, 8 (Suppl. S1), S23–S25. [Google Scholar] [CrossRef]
- Chang, H.-C.; Guarente, L. SIRT1 and Other Sirtuins in Metabolism. Trends Endocrinol. Metab. TEM 2014, 25, 138–145. [Google Scholar] [CrossRef]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [Google Scholar] [CrossRef]
- Wątroba, M.; Dudek, I.; Skoda, M.; Stangret, A.; Rzodkiewicz, P.; Szukiewicz, D. Sirtuins, Epigenetics and Longevity. Ageing Res. Rev. 2017, 40, 11–19. [Google Scholar] [CrossRef]
- Giblin, W.; Skinner, M.E.; Lombard, D.B. Sirtuins: Guardians of Mammalian Healthspan. Trends Genet. TIG 2014, 30, 271–286. [Google Scholar] [CrossRef]
- UniProt Q96EB6·SIR1_HUMAN 2025. Available online: https://www.uniprot.org/uniprotkb/Q96EB6/entry (accessed on 23 January 2025).
- UniProt Q8IXJ6·SIR2_HUMAN 2025. Available online: https://www.uniprot.org/uniprotkb/Q8IXJ6/entry (accessed on 23 January 2025).
- UniProt Q9NTG7·SIR3_HUMAN 2025. Available online: https://www.uniprot.org/uniprotkb/Q9NTG7/entry (accessed on 23 January 2025).
- UniProt Q9Y6E7·SIR4_HUMAN 2025. Available online: https://www.uniprot.org/uniprotkb/Q9Y6E7/entry (accessed on 23 January 2025).
- UniProt Q9NXA8·SIR5_HUMAN 2025. Available online: https://www.uniprot.org/uniprotkb/Q9NXA8/entry (accessed on 23 January 2025).
- UniProt Q8N6T7·SIR6_HUMAN 2025. Available online: https://www.uniprot.org/uniprotkb/Q8N6T7/entry (accessed on 23 January 2025).
- UniProt Q9NRC8·SIR7_HUMAN 2025. Available online: https://www.uniprot.org/uniprotkb/Q9NRC8/entry (accessed on 23 January 2025).
- Dhillon, R.S.; Qin, Y.A.; van Ginkel, P.R.; Fu, V.X.; Vann, J.M.; Lawton, A.J.; Green, C.L.; Manchado-Gobatto, F.B.; Gobatto, C.A.; Lamming, D.W.; et al. SIRT3 Deficiency Decreases Oxidative Metabolism Capacity but Increases Lifespan in Male Mice under Caloric Restriction. Aging Cell 2022, 21, e13721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Molecular Links between Caloric Restriction and Sir2/SIRT1 Activation. Diabetes Metab. J. 2014, 38, 321. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.G.; Matchett, K.B.; Davison, G.W. A Systematic Review and Meta-Analysis of the SIRT1 Response to Exercise. Sci. Rep. 2023, 13, 14752. [Google Scholar] [CrossRef]
- Zhou, L.; Pinho, R.; Gu, Y.; Radak, Z. The Role of SIRT3 in Exercise and Aging. Cells 2022, 11, 2596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Z.; Xu, Z.; Wan, J.; Hua, T.; Sun, Q. Exercise Ameliorates Insulin Resistance and Improves SIRT6-Mediated Insulin Signaling Transduction in Liver of Obese Rats. Can. J. Physiol. Pharmacol. 2021, 99, 506–511. [Google Scholar] [CrossRef]
- Koltai, E.; Szabo, Z.; Atalay, M.; Boldogh, I.; Naito, H.; Goto, S.; Nyakas, C.; Radak, Z. Exercise Alters SIRT1, SIRT6, NAD and NAMPT Levels in Skeletal Muscle of Aged Rats. Mech. Ageing Dev. 2010, 131, 21–28. [Google Scholar] [CrossRef]
- Li, X. SIRT1 and Energy Metabolism. Acta Biochim. Biophys. Sin. 2013, 45, 51–60. [Google Scholar] [CrossRef]
- Wu, Q.-J.; Zhang, T.-N.; Chen, H.-H.; Yu, X.-F.; Lv, J.-L.; Liu, Y.-Y.; Liu, Y.-S.; Zheng, G.; Zhao, J.-Q.; Wei, Y.-F.; et al. The Sirtuin Family in Health and Disease. Signal Transduct. Target. Ther. 2022, 7, 402. [Google Scholar] [CrossRef] [PubMed]
- Osborne, B.; Bentley, N.L.; Montgomery, M.K.; Turner, N. The Role of Mitochondrial Sirtuins in Health and Disease. Free Radic. Biol. Med. 2016, 100, 164–174. [Google Scholar] [CrossRef]
- Vargas-Ortiz, K.; Pérez-Vázquez, V.; Macías-Cervantes, M.H. Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle. Int. J. Mol. Sci. 2019, 20, 2717. [Google Scholar] [CrossRef]
- Yu, H.; Pan, W.; Huang, H.; Chen, J.; Sun, B.; Yang, L.; Zhu, P. Screening Analysis of Sirtuins Family Expression on Anti-Inflammation of Resveratrol in Endothelial Cells. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 4137–4148. [Google Scholar] [CrossRef]
- Xu, J.; Jackson, C.W.; Khoury, N.; Escobar, I.; Perez-Pinzon, M.A. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection. Front. Endocrinol. 2018, 9, 702. [Google Scholar] [CrossRef]
- Mazucanti, C.H.; Cabral-Costa, J.V.; Vasconcelos, A.R.; Andreotti, D.Z.; Scavone, C.; Kawamoto, E.M. Longevity Pathways (mTOR, SIRT, Insulin/IGF-1) as Key Modulatory Targets on Aging and Neurodegeneration. Curr. Top. Med. Chem. 2015, 15, 2116–2138. [Google Scholar] [CrossRef]
- de Mello, N.P.; Orellana, A.M.; Mazucanti, C.H.; de Morais Lima, G.; Scavone, C.; Kawamoto, E.M. Insulin and Autophagy in Neurodegeneration. Front. Neurosci. 2019, 13, 491. [Google Scholar] [CrossRef] [PubMed]
- Ungurianu, A.; Zanfirescu, A.; Margină, D. Sirtuins, Resveratrol and the Intertwining Cellular Pathways Connecting Them. Ageing Res. Rev. 2023, 88, 101936. [Google Scholar] [CrossRef]
- Huang, C.-C.; Lee, M.-C.; Ho, C.-S.; Hsu, Y.-J.; Ho, C.-C.; Kan, N.-W. Protective and Recovery Effects of Resveratrol Supplementation on Exercise Performance and Muscle Damage Following Acute Plyometric Exercise. Nutrients 2021, 13, 3217. [Google Scholar] [CrossRef] [PubMed]
- Montesano, P.; Mazzeo, F. Pilates Improvement the Individual Basics of Service and Smash in Volleyball. Sport Mont. 2018, 16, 25–30. [Google Scholar] [CrossRef]
- Huang, C.-C.; Liu, C.-C.; Tsao, J.-P.; Hsu, C.-L.; Cheng, I.-S. Effects of Oral Resveratrol Supplementation on Glycogen Replenishment and Mitochondria Biogenesis in Exercised Human Skeletal Muscle. Nutrients 2020, 12, 3721. [Google Scholar] [CrossRef]
- Momken, I.; Stevens, L.; Bergouignan, A.; Desplanches, D.; Rudwill, F.; Chery, I.; Zahariev, A.; Zahn, S.; Stein, T.P.; Sebedio, J.L.; et al. Resveratrol Prevents the Wasting Disorders of Mechanical Unloading by Acting as a Physical Exercise Mimetic in the Rat. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011, 25, 3646–3660. [Google Scholar] [CrossRef] [PubMed]
- Durbin, S.M.; Jackson, J.R.; Ryan, M.J.; Gigliotti, J.C.; Alway, S.E.; Tou, J.C. Resveratrol Supplementation Preserves Long Bone Mass, Microstructure, and Strength in Hindlimb-Suspended Old Male Rats. J. Bone Miner. Metab. 2014, 32, 38–47. [Google Scholar] [CrossRef]
- Alkhouli, M.F.; Hung, J.; Squire, M.; Anderson, M.; Castro, M.; Babu, J.R.; Al-Nakkash, L.; Broderick, T.L.; Plochocki, J.H. Exercise and Resveratrol Increase Fracture Resistance in the 3xTg-AD Mouse Model of Alzheimer’s Disease. BMC Complement. Altern. Med. 2019, 19, 39. [Google Scholar] [CrossRef]
- Dolinsky, V.W.; Jones, K.E.; Sidhu, R.S.; Haykowsky, M.; Czubryt, M.P.; Gordon, T.; Dyck, J.R.B. Improvements in Skeletal Muscle Strength and Cardiac Function Induced by Resveratrol during Exercise Training Contribute to Enhanced Exercise Performance in Rats. J. Physiol. 2012, 590, 2783–2799. [Google Scholar] [CrossRef]
- Hart, N.; Sarga, L.; Csende, Z.; Koltai, E.; Koch, L.G.; Britton, S.L.; Davies, K.J.A.; Kouretas, D.; Wessner, B.; Radak, Z. Resveratrol Enhances Exercise Training Responses in Rats Selectively Bred for High Running Performance. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2013, 61, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.T.; Mohamed, J.S.; Alway, S.E. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats. PLoS ONE 2013, 8, e83518. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-Y.; Huang, W.-C.; Kan, N.-W.; Tung, T.-H.; Huynh, L.B.P.; Huang, S.-Y. Effects of Resveratrol on Muscle Inflammation, Energy Utilisation, and Exercise Performance in an Eccentric Contraction Exercise Mouse Model. Nutrients 2023, 15, 249. [Google Scholar] [CrossRef]
- Gordon, B.S.; Delgado-Diaz, D.C.; Carson, J.; Fayad, R.; Wilson, L.B.; Kostek, M.C. Resveratrol Improves Muscle Function but Not Oxidative Capacity in Young Mdx Mice. Can. J. Physiol. Pharmacol. 2014, 92, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Amirazodi, M.; Mehrabi, A.; Rajizadeh, M.A.; Bejeshk, M.A.; Esmaeilpour, K.; Daryanoosh, F.; Gaeini, A. The Effects of Combined Resveratrol and High Intensity Interval Training on the Hippocampus in Aged Male Rats: An Investigation into Some Signaling Pathways Related to Mitochondria. Iran. J. Basic Med. Sci. 2022, 25, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, A.; Gaeini, A.; Nouri, R.; Daryanoosh, F. The Effect of Six-Week HIIT Swimming Exercise and Resveratrol Supplementation on the Level of SIRT3 in Frontal Lobe of Aged Rats. Shefaye Khatam 2021, 9, 48–59. [Google Scholar] [CrossRef]
- Lou, X.; Hu, Y.; Ruan, R.; Jin, Q. Resveratrol Promotes Mitochondrial Energy Metabolism in Exercise-Induced Fatigued Rats. Nutr. Res. Pract. 2023, 17, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lin, C.-C.; Ting, W.-J.; Pai, P.-Y.; Kuo, C.-H.; Ho, T.-J.; Kuo, W.-W.; Chang, C.-H.; Huang, C.-Y.; Lin, W.-T. Resveratrol Enhanced FOXO3 Phosphorylation via Synergetic Activation of SIRT1 and PI3K/Akt Signaling to Improve the Effects of Exercise in Elderly Rat Hearts. Age 2014, 36, 9705. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Lu, T.; Qin, Y.; He, Y.; Cui, N.; Du, A.; Sun, J. In Vivo Effect of Resveratrol-Loaded Solid Lipid Nanoparticles to Relieve Physical Fatigue for Sports Nutrition Supplements. Molecules 2020, 25, 5302. [Google Scholar] [CrossRef] [PubMed]
- Voduc, N.; la Porte, C.; Tessier, C.; Mallick, R.; Cameron, D.W. Effect of Resveratrol on Exercise Capacity: A Randomized Placebo-Controlled Crossover Pilot Study. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2014, 39, 1183–1187. [Google Scholar] [CrossRef]
- Alipour Ghazichaki, N.; Abdi, A.; Barari, A. The Effect of Pilates Training with Resveratrol on Serum Levels of Sestrin 2, Lipocalin 2, Oxidative Stress and Metabolic Syndrome in Obese Middle-Aged Women: A Randomized Clinical Trial. J. Appl. Health Stud. Sport Physiol. 2023, 10, 94–109. [Google Scholar] [CrossRef]
- Macedo, R.C.S.; Vieira, A.; Marin, D.P.; Otton, R. Effects of Chronic Resveratrol Supplementation in Military Firefighters Undergo a Physical Fitness Test--a Placebo-Controlled, Double Blind Study. Chem. Biol. Interact. 2015, 227, 89–95. [Google Scholar] [CrossRef]
- Tsao, J.-P.; Liu, C.-C.; Wang, H.-F.; Bernard, J.R.; Huang, C.-C.; Cheng, I.-S. Oral Resveratrol Supplementation Attenuates Exercise-Induced Interleukin-6 but Not Oxidative Stress after a High Intensity Cycling Challenge in Adults. Int. J. Med. Sci. 2021, 18, 2137–2145. [Google Scholar] [CrossRef]
- Kristoffersen, S.S.; Christensen, A.J.; Oliveira, A.S. Resveratrol Administration Reduces Pain Perception but Does Not Attenuate Force Loss Following Exercise-Induced Muscle Damage. Sport Sci. Health 2022, 18, 1043–1049. [Google Scholar] [CrossRef]
- Laupheimer, M.W.; Perry, M.; Benton, S.; Malliaras, P.; Maffulli, N. Resveratrol Exerts No Effect on Inflammatory Response and Delayed Onset Muscle Soreness after a Marathon in Male Athletes.: A Randomised, Double-Blind, Placebo-Controlled Pilot Feasibility Study. Transl. Med. UniSa 2014, 10, 38–42. [Google Scholar] [PubMed]
- Gliemann, L.; Schmidt, J.F.; Olesen, J.; Biensø, R.S.; Peronard, S.L.; Grandjean, S.U.; Mortensen, S.P.; Nyberg, M.; Bangsbo, J.; Pilegaard, H.; et al. Resveratrol Blunts the Positive Effects of Exercise Training on Cardiovascular Health in Aged Men. J. Physiol. 2013, 591, 5047–5059. [Google Scholar] [CrossRef]
- Alway, S.E.; McCrory, J.L.; Kearcher, K.; Vickers, A.; Frear, B.; Gilleland, D.L.; Bonner, D.E.; Thomas, J.M.; Donley, D.A.; Lively, M.W.; et al. Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women. J. Gerontol. A. Biol. Sci. Med. Sci. 2017, 72, 1595–1606. [Google Scholar] [CrossRef]
- Harper, S.A.; Bassler, J.R.; Peramsetty, S.; Yang, Y.; Roberts, L.M.; Drummer, D.; Mankowski, R.T.; Leeuwenburgh, C.; Ricart, K.; Patel, R.P.; et al. Resveratrol and Exercise Combined to Treat Functional Limitations in Late Life: A Pilot Randomized Controlled Trial. Exp. Gerontol. 2021, 143, 111111. [Google Scholar] [CrossRef]
- Nicolau, A.L.A.; Peres, G.B.; de Souza Silva, J.; Nunes, S.H.; Fortes, T.M.L.; Suffredini, I.B. Pilot Project. Resveratrol Intake by Physical Active and Sedentary Older Adult Women and Blood Pressure. Exp. Gerontol. 2022, 166, 111883. [Google Scholar] [CrossRef]
- Radeva, L.; Yoncheva, K. Resveratrol-A Promising Therapeutic Agent with Problematic Properties. Pharmaceutics 2025, 17, 134. [Google Scholar] [CrossRef]
- Novelle, M.G.; Wahl, D.; Diéguez, C.; Bernier, M.; de Cabo, R. Resveratrol Supplementation: Where Are We Now and Where Should We Go? Ageing Res. Rev. 2015, 21, 1–15. [Google Scholar] [CrossRef]
Sirtuin | Cellular Localization | Enzymatic Activity | Main Biological Functions |
---|---|---|---|
SIRT1 [169] | Nucleus | NAD+-dependent protein deacetylase | Modulation of cell cycle, response to DNA damage and oxidative stress, regulation of glucose metabolism, apoptosis and autophagy, gene expression, tumorigenesis, and aging through the modification of histones (i.e., H1, H3, H4, H1K26, H3K9, H3K14, and H4K16) and non-histone proteins like transcriptional factors and coactivators (e.g., p53, NF-κB, FoxOs, and PGC-1α ) |
SIRT2 [170] | Cytoplasm and nucleus | NAD+-dependent protein deacetylase | Control of cell cycle, mitotic S-phase progression, and prevention of precocious mitotic entry (G2/M transition) Control of genomic integrity, microtubule dynamics, cell differentiation, metabolic networks, and autophagy |
SIRT3 [171] | Mitochondria (i.e., inner membrane), but also cytosol and nucleus | NAD+-dependent protein deacetylase | Regulator of cellular energy metabolism Oxidative stress response Promotes mtDNA transcription following metabolic stress Apoptosis Prevents the formation of cancer cells |
SIRT4 [172] | Mitochondria (i.e., matrix), but also cytosol and nucleus | ADP-ribosyltransferase NAD+-dependent protein lipoamidase, biotinylase, deacetylase, deacylase, and lipoamidase activity | Regulator of mitochondrial function Modulator of the energy metabolism Promoter of DNA damage repair Inhibitor of inflammatory reactions and apoptosis Suggested role in aging and age-related diseases (e.g., cardiovascular, metabolic, and neurodegenerative diseases and cancer) |
SIRT5 [173] | Mitochondria (i.e., matrix) and also cytosol, peroxisomes, and nucleus | NAD+-dependent lysine demalonylase, desuccinylase, and deglutarylase that specifically remove malonyl, succinyl, and glutaryl groups on target proteins Weak NAD+-dependent protein deacetylase activity | Mitochondrial metabolism and cellular respiration Regulation of glucose metabolism and glycolysis Fatty acid oxidation, amino acid degradation and ROS homeostasis Regulation of blood ammonia levels during prolonged fasting Increased production and biological activity of SOD1 and reduction of oxidative stress |
SIRT6 [174] | Nucleus | ADP-ribosyltransferase and NAD+-dependent protein deacetylase | DNA repair Maintenance of telomeric chromatin Inflammation Lipid and glucose metabolism |
SIRT7 [175] | Nucleus and nucleolus | NAD+-dependent protein-lysine deacylase that can act both as a deacetylase or deacylase (desuccinylase, depropionylase, deglutarylase, and dedecanoylase) | Cancer progression Heterochromatin silencing and genomic stability via deacethylation of histones (i.e., H3K18Ac or H3K36) and non-histone proteins (e.g., DDX21, RAN, RRP9, FBL, FKBP5/FKBP51, GABPB1, ATM, CDK9, and POLR1E/PAF53) Transcription of ribosomal RNA (rRNA) at the exit from mitosis DNA damage repair |
Tissue | Molecular Target | Effects |
---|---|---|
Adipose tissue | PPARγ PGC-1 α Prdm16 | ↑ Fat mobilization ↓ Fat storage in white adipose tissue ↑ Browning of white adipose tissue Differentiation of brown adipose tissue |
Brain (i.e., AgRP and POMC neurons) | FoxOs NF-κb | Modulation of: Food intake Leptin signaling Energy expenditure |
Heart | eNOS PPARα | ↓ Ischemic tolerance ↑ Hyperthrophy |
Liver | CRTC2 FoxOs1 FXR LXRα PGAM-1 PGC-1α SREBP1c | ↓ Fatty acid synthesis ↑ Fatty acid use ↑ Gluconeogenesis ↓ Glycolysis ↓ Lipogenesis ↑ Bile acid synthesis Cholesterol homeostasis |
Pancreas (i.e., β-cells) | FoxOs UCP2 | Modulation of insulin secretion |
Skeletal muscle | AMPK LKB1 PGC-1α PPARα | ↑ Fatty acid use ↓ Glycolysis |
Authors (Year) | Sample Group | Dose of RES | Type of Exercise | Biological Site Investigated | Biomarker Changes |
---|---|---|---|---|---|
Momken et al. (2011) [194] | Male Wistar rats (N = 20) adults | 400 mg/kg/day for 6 weeks | Normal ambulation after hindlimb suspension for 15 days | Blood, skeletal muscle, and bones | Prevention of muscle degradation and bone loss during hindlimb suspension Preservation of muscle mass, mitochondrial function, and insulin sensitivity |
Durbin et al. (2014) [195] | Male Fischer 344 × Brown Norway rats (N = 27) 33 months old | 12.5 mg/kg bw/day for 21 days | Normal ambulation after hindlimb suspension for 14 days | Blood and bones | Reduction in bone mineral loss and microstructural deterioration in aged rats |
Alkhouli et al. (2019) [196] | Male triple-transgenic mice (N = 41) 3 months old | 146 mg/kg/day for 4 months | Treadmill running | Bones | RES combined with exercise reduced fracture risk by inhibiting AGEs accumulation in bone |
Dolinsky et al. (2012) [197] | Male Wistar rats (N = 50) 8 weeks old | 146 mg/kg/day 12 weeks | Treadmill running | Blood, skeletal muscle, and cardiac muscle | Improved exercise performance, muscle strength, and cardiac function Increased fatty acid oxidation and beneficial changes in cardiac gene expression |
Hart et al. (2013) [198] | Male rats phenotyped for intrinsic treadmill running capacity (N = 48) 13 months old | 100 mg/kg/day for 16 weeks | Treadmill running | Skeletal muscle | Enhanced aerobic performance and upper limb strength Activation of the AMPK-SIRT1-PGC-1α pathway |
Bennet et al. (2013) [199] | Male Fisher 344 × Brown Norway rats (N = 36) 32 months old | 125 mg/kg/day for 14 days | Normal ambulation after hindlimb suspension for 14 days | Blood and skeletal muscle | Improved muscle fiber cross-sectional area and reduced apoptotic signaling No prevention of muscle or body weight loss after hindlimb suspension |
Su et al. (2023) [200] | C57BL/6J mice (N = 24) 6 weeks old | 25 and 150 mg/kg/day for 4 weeks | Treadmill running | Skeletal muscle, liver, and adipose tissue | High-dose RES prolonged endurance, reduced TNF-α, and increased SIRT1, GLUT4, and AMPK expression in muscles |
Gordon et al. (2014) [201] | Male mdx mice (N = 20) 4–5 weeks old | 100 mg/kg/day for 8 weeks | Rotarod performance test | Skeletal muscle | Improved rotarod performance, peak tension, central nucleation, and oxidative stress in mdx mice |
Amirazodi et al. (2022) [202] | Male Wistar rats (N = 45) 20 months old | 10 mg/kg/day for 6 weeks | Swimming high-intensity interval training | Blood and skeletal muscle | Increased NAD+/NADH, SOD2, and AMPK with RES + HIIT RES reduced SIRT3 but increased SIRT4 |
Mehrabi et al. (2021) [203] | Male Wistar rats (N = 30) 20 months old | 10 mg/kg/day for 6 weeks | Swimming high-intensity interval training | Blood and skeletal muscle | Increased SIRT3 in rats combining swimming and RES supplementation |
Lou et al. (2023) [204] | Male Sprague-Dawley rats (N = 48) 6–8 weeks old | 50 mg/kg/day for 6 weeks | Swimming training | Blood and skeletal muscle | Improved fatigue resistance, reduced oxidative stress, and enhanced mitochondrial function |
Lin et al. (2014) [205] | Male Sprague-Dawley rats (N = 24) 18 months old | 15 mg/kg/day for 4 weeks | Swimming training | Cardiac muscle | RES + exercise activated SIRT1 and PI3K-AKT pathways, providing cardioprotective effects |
Wu et al. (2013) [125] | Male ICR mice (N = 32) 6 weeks old | 25, 50, and 125 mg/kg/day for 21 days | Swimming training | Blood, skeletal muscle, cardiac muscle, liver, and kidneys | Enhanced endurance and reduced lactate, ammonia, and CK in a dose-dependent manner |
Qin et al. (2020) [206] | Male C57BL/6J mice (N = 24) Adults | 10 mg/kg/day (as RSV-SLNs) for 8 weeks | Treadmill running | Blood, skeletal muscle, and liver | Nanoparticle-formulated RES provided superior protection against oxidative stress and exercise-induced damage |
References (Year) | Sample Group | Dose of RES | Type of Exercise | Biomarker Changes | Side Effects |
---|---|---|---|---|---|
Voduc et al. (2014) [207] | Healthy sedentary men (N = 6) and women (N = 6) 42.7 ± 9.4 years old | 500 mg/day for 1 week and 1000 mg/day for 3 weeks | Incremental exercise test on an electronically braked cycle ergometer | No significant changes in physical performance, blood parameters, inflammation, or liver and kidney functions | Gastrointestinal with higher dose Small elevations in liver enzymes, triglycerides, and total cholesterol |
Alipour Ghazichaki et al. (2023) [208] | Overweight men (N = 40) 42.74 ± 5.70 years old | 500 mg/day for 8 weeks | Pilates Training | Increase in SESN2 and GPX, decrease in LCN2, HOMA-IR, and MDA | Not detected |
Huang et al. (2021) [191] | Young non-athletic males (N = 36) 21.09 ± 1.33 years old | 500 e 1000 mg/day for 7 days before exercise | Plyometric exercise protocol | Improvement in recovery, reduction in post-exercise pain, and lower muscle damage markers (CK, LDH), with better results in the 1000 mg group | Not detected |
Macedo et al. (2015) [209] | Military firefighters (N = 60) 19–24 years old | 100 mg/day for 90 days | Fitness test: chin-up; abdominal sit-up; speed test: 50 m sprint; aerobic exercise: running for 12 min | Reduction in IL-6 and TNF-α in the RES group, with no effects on CK levels post-exercise | Slightly increased the glucose level |
Tsao et al., (2021) [210] | Physically active male students (N = 8) 19.2 ± 0.5 years old | 480 mg/day for 4 days | Cycling challenge (Monark Exercise, Varberg, and Sweden) | Reduction in IL-6 levels, but no other significant changes in blood parameters or performance | Not detected |
Kristoffersen et al. (2022) [211] | Healthy young men (N = 10) and women (N = 8) 22.8 ± 1.1 years old | 500 mg/day for 3 days prior to the first measurement | Maximal dorsiflexors voluntary isometric test | Reduced muscle pain perception in the RES group, with no effects on strength or muscle activity | Not detected |
Laupheimer et al. (2014) [212] | Healthy male athletes (N = 7) 40–55 years old | 600 mg/day for 7 days before the marathon | London Marathon | No significant differences in inflammatory response or muscle soreness post-marathon | Not detected |
Gliemann et al. (2013) [213] | Inactive aged med (N = 27) 65 ± 1 years old | 250 mg/day for 8 weeks | High-intensity interval training (cycle ergometer) and full body circuit training (Crossfit) | No significant improvement in muscle angiogenesis or VEGF protein | RES resulted in a lower increase in maximal oxygen uptake |
Alway et al. (2017) [214] | Healthy older men (N = 12) and women (N = 18) ≥65 years old | 10 mg/kg/day for 6 weeks | Swimming high-intensity interval training | Improvement in mitochondrial density and muscle fatigue resistance | RES had adverse effects on improvements in maximal oxygen uptake, on blood pressure reduction and on the lowering of blood lipids induced by PA |
Harper et al. (2021) [215] | Older adults (N = 60) ≥65 years old | 500 e 1000 mg/day for 12 weeks | Walking and whole-body resistance exercise training program | Improvement in mitochondrial function and mobility in a dose-dependent manner | Gastrointestinal with higher dose |
Nicolau et al. (2022) [216] | Women (N = 43) 60–80 years old | 300 mg/day for 60 days | General exercise in a community center | Mild anti-inflammatory effect | RES increased blood pressure in women not doing exercise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggiero, M.; Motti, M.L.; Meccariello, R.; Mazzeo, F. Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing? Nutrients 2025, 17, 837. https://doi.org/10.3390/nu17050837
Ruggiero M, Motti ML, Meccariello R, Mazzeo F. Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing? Nutrients. 2025; 17(5):837. https://doi.org/10.3390/nu17050837
Chicago/Turabian StyleRuggiero, Mario, Maria Letizia Motti, Rosaria Meccariello, and Filomena Mazzeo. 2025. "Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing?" Nutrients 17, no. 5: 837. https://doi.org/10.3390/nu17050837
APA StyleRuggiero, M., Motti, M. L., Meccariello, R., & Mazzeo, F. (2025). Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing? Nutrients, 17(5), 837. https://doi.org/10.3390/nu17050837