Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain
Abstract
:1. Traumatic Brain Injury—Epidemiological Data and Impact
2. Present Management of TBI
3. Neuropathological Mechanisms of TBI
4. Omega-3 and Omega-6 Fatty Acids and Derivatives
5. Dynamics of PUFAs and Oxylipins Following Neurotrauma
6. Cellular Targets of Long-Chain O3 PUFAs
7. Interventions with O3 PUFAs
7.1. Effects of Acute Single or Repeated Interventions
Reference | Animal Model | Omega-3 Administration | Effects on Neuropathological Changes and Brain Marker Expression * | Effects on Behaviour * | ||
---|---|---|---|---|---|---|
Wu et al., 2004 [154] | Male Sprague-Dawley rats, FPI | Diet with 8% fish oil (12.4% DHA and 13.5% EPA of total fat content (vs. 0.9% DHA and 1% EPA) for 4 weeks prior and 1 week after injury | 7 d | ↑ BDNF, synapsin I, CREB ↓ Protein oxidation (protein carbonyl) | 5–7 d | ↑ Spatial learning and memory (MWM) |
Wu et al., 2007 [174] | Sprague-Dawley rats, FPI | Diet with 8% fish oil (12.4% DHA and 13.5% EPA of total fat content) (vs. 0.9% DHA and 1% EPA) for 4 weeks before injury | 7 d | ↑ Sir2, AMPK, p-AMPK, uMtCK ↓ Protein oxidation (protein carbonyl) | ||
Bailes et al., 2010 [175] | Adult male Sprague-Dawley rats, M-WD | 10 or 40 mg/kg DHA by gavage 1 day after injury and daily after | 30 d | ↓ APP, caspase-3 | ||
Mills et al., 2011 [176] | Adult male Sprague-Dawley rats, M-WD | 10 or 40 mg/kg of fish oil (6 mg/kg or 24 mg/kg, DHA and EPA) by gavage, 1 day after injury and daily after | 30 d | = NF-M, CytC ↓ APP, caspase-3 | ||
Mills et al., 2011 [177] | Adult male Sprague-Dawley rats, M-WD | 3, 12, or 40 mg/kg DHA by gavage for 30 days prior to injury | 7 d | ↓ APP, CD68, caspase-3 | 14 d | ↑ Spatial learning and memory (MWM) |
Wu et al., 2011 [178] | Sprague-Dawley rats, FPI | Diet with 1.2% DHA of total diet content (vs. standard †) after surgery and daily after | 12 d | ↑ BDNF, CaMKII, SYN1, CREB, SOD, Sir2, iPLA2, STX-3 ↓ 4-HNE | 8–12 d | ↑ Spatial learning and memory (MWM) |
Ying et al., 2012 [179] | 14-week-old male Sprague-Dawley rats, FPI | Diet with 0.5% flaxseed oil, 1.2% DHA, and 0.24% EPA of total diet content (480 mg/kg/day DHA) (vs. 0%); initiated on pregnant dams and carried on in pups daily after weaning | 7 d | ↑ BDNF, p-TrkB, p-CREB, iPLA2, STX-3 ↓ 4-HNE | ||
Pu et al., 2013 [180] | 3-month-old male C57BL/6J mice, CCI | 15 g/kg fish oil for 2 months before injury | 35 d | ↑ MBP, cell viability (Nissl staining), signal conduction and myelinated axon preservation (compound action potential) = Lesion size (Nissl staining) ↓ Iba1, IL-1α, IL-1β, TNF-α, COX-2, iNOS | ≤14 d 22–26 d | ↑ Motor function (WH) ↑ Spatial learning and memory (MWM) |
≤35 d | ↑ Sensorimotor coordination (G) ↓ Locomotor asymmetry (C) | |||||
Russell et al., 2013 [181] | 17-day-old male Long-Evans rats, CCI | Diet with 70 g/kg soybean oil (vs. 66.5 g/kg safflower oil and 3.5 g/kg soybean oil); initiated on pregnant dams and carried on in pups daily after weaning | 1 d | ↑ MMP9 = CCL2, GFAP, MMP9, TIMP-1 | 1 d ≤28 d | = Locomotor function (FPA) = Locomotor asymmetry (C) |
28 d | = Lesion size (cresyl violet staining) | |||||
Diet with 70 g/kg soybean oil (vs. 66.5 g/kg safflower oil and 3.5 g/kg soybean oil); initiated on pregnant dams and carried on in pups daily for two litters | 1 d | ↑ CCL2, TIMP-1 = GFAP, MMP9 | 1 d ≤28 d | ↑ Locomotor function (FPA) ↓ Locomotor asymmetry (C) | ||
28 d | = Lesion size (cresyl violet staining) | |||||
Wang et al., 2013 [182] | Male Sprague-Dawley rats, FPI | Diet with 6% fish oil (0.4% ALA, 0.6% DHA, and 0.9% EPA of total diet content) (vs. soybean oil; 0.7% ALA and 0% DHA and EPA) 4 weeks before injury onwards | 14 d | = Neuronal survival (cresyl violet staining) | 10–14 d | = Spatial learning and memory (MWM) |
Wu et al., 2013 [183] | Sprague-Dawley rats, FPI | Diet with 1.2% DHA of total diet content (vs. standard †) after surgery and daily after | 12 d | ↑ Acox1, 17β-HSD4, Sir2, iPLA2, STX-3, BDNF, p-TrkB ↓ 4-HHE | 8–12 d | ↑ Spatial learning and memory (MWM) |
Agrawal et al., 2014 [184] | 17-week-old male Sprague-Dawley rats, FPI | Diet with 0.48% flaxseed oil, 1.2% DHA, and 0.24% EPA of total diet content (vs. 0% flaxseed oil, DHA, and EPA); initiated on pregnant dams and carried on in pups daily after weaning | 7 d | ↑ p-AMPK, COII, PGC-1α, SOD2, TFAM, BDNF, p-TrkB, p-CREB, NPY1R ↓ 4-HNE | 7 d | ↓ Anxiety (EPM) |
Begum et al., 2014 [162] | Male Sprague-Dawley rats, CCI | 16 mg/kg DHA intraperitoneally 5 min after surgery and daily after | 3 d | = GRP-78 ↓ p-eIF2α, IRE1α, XBP1, ATF4, CHOP, ubiquitin, APP, p-Tau | ≤5 d | ↑ Motor coordination & balance (BB), fine locomotor coordination (BW) |
7 d | = GRP-78 ↓ p-eIF2α, IRE1α, XBP1, ATF4, CHOP, ubiquitin, APP, p-Tau | |||||
21 d | = CHOP, GRP-78 ↓ p-eIF2α, IRE1α, XBP1, ATF4, APP, p-Tau | |||||
Desai et al., 2014 [185] | 3/4-month-old C57BL/6J mice, CCI | Diet with 2.5% ALA and 0.9% DHA of total diet content (vs. 0.09% ALA and 0% DHA); initiated on pregnant dams two generations prior and carried on in pups daily after weaning | 1 d | ↓ αII-spectrin breakdown products | 5 d | ↓ Anxiety (OF) |
7 d | ↑ Synapsin I | 7 d | ↑ Memory (NOR) | |||
N/A | ↑ NeuN | ≤7 d | ↑ Fine locomotor coordination (BW), vestibulomotor function (R) | |||
Russell et al., 2014 [186] | 17-day-old male Long-Evans rats, CCI | Fish oil (1.34 g/kg DHA and 2.01 g/kg EPA) (vs. soybean oil), by gavage 30 min before injury and daily after | 1 d | = CCL2, GFAP ↓ MMP9 | ≤7 d | ↑ Fine locomotor coordination (BW) |
4 d | = CCL2, GFAP, MMP9 | |||||
7 d | ↓ IgG | |||||
Tyagi et al., 2014 [187] | 14-week-old male and female Sprague-Dawley rats, FPI | Diet with 1.2% DHA and 0.24% EPA of total diet content (vs. 0%); initiated on pregnant dams and carried on in pups daily after weaning | 7 d | ↑ NPY1R, BDNF, GAP-43, STX-3, iPLA2 = Nogo-A ↓ MAG, 4-HNE, s-PLA2 | 7 d | ↓ Anxiety (EPM) |
Wu et al., 2014 [188] | Male Sprague-Dawley rats, FPI | Diet with 1.2% DHA of total diet content (vs. standard †) after surgery and daily after | 14 d | ↑ BDNF, p-TrkB, FADS2, 17β-HSD4 ↓ 4-HNE, 4-HHE | 8–12 d | ↑ Spatial learning and memory (BM) |
Harvey et al., 2015 [163] | Male Sprague-Dawley rats, CCI | 16 mg/kg DHA intraperitoneally 5–15 min after injury and daily after | 3 d | ↑ CD206, neuronal survival (Fluoro Jade-C) = Iba1, CHOP, IL-1β ↓ CD16/32, LAMP1, NF-κB, TNF-α | ||
7 d | ↑ CD206, neuronal survival (Fluoro Jade-C) = Iba1, CD16/32, CHOP, NF-κB | |||||
21 d | ↑ CD206, neuronal survival (Fluoro Jade-C) = Iba1 ↓ CD16/32 | |||||
Desai et al., 2016 [189] | 3/4-month-old C57BL6/N male mice, CCI | Diet with 3.08% ALA of total fat content (vs. 0.04%); initiated on pregnant dams and carried on in pups daily after weaning | 4 h | = IL-6, IL-10, CCL2, CD16, CD32, CD206, Arg1, Ym1/2 ↓ TNF-α, IL-1β | ≤7 d 21 d | ↑ Fine locomotor coordination (BW), vestibulomotor function (R) ↑ Memory (FC) |
1 d | = TNF-α, IL-1β, IL-10, CD16, CD32, Arg1, Ym1/2 ↓ IL-6, CCL2, CD206 | |||||
3 d | = Iba1 ↓ GFAP | |||||
4 d | = TNF-α, IL-1β, IL-6, IL-10, CCL2, CD16, CD32, CD206, Arg1, Ym1/2 | |||||
Lucke-Wold et al., 2016 [164] | Young adult male Sprague-Dawley rats, single bTBI | 16 mg/kg DHA intraperitoneally 5 min after injury and every other day after for 2 weeks | 1 d | ↓ GADD34, p-JNK, CHOP | ||
Young adult male Sprague-Dawley rats, repeated bTBI | 21 d | ↓ PHF, p-Tau, BiP, p-GSK-3β | 15–20 d | ↑ Spatial learning and memory (MWM) | ||
Schober et al., 2016 [190] | 17-day-old male Sprague-Dawley rats, CCI | Diet with 0.1% DHA of total diet content (vs. soybean oil) or 1.8% DHA of total fat content; initiated on pregnant dams 1 day before injury and carried on in dams and pups daily after weaning | 1 d | = TNF-α, IL-1β, CCL2, IL-6, IL-10, IL-2, NOx (hippocampus) ↓ NOx (cortex) | 12 d 14 d 35 d | = Vestibulomotor function (R) = Memory (NOR) = Vestibulomotor function (R) |
2 d | ↑ IL-6, IL-10 and IL-2 (hippocampus) = IL-6, IL-10 and IL-2 (cortex), TNF-α, IL-1β, CCL2, NOx | 41–47 d | ↑ Spatial learning and memory (MWM) | |||
3 d | = Lesion size (H&E) | |||||
12 d | = WM damage (MRI) ↓ Cerebral oedema (MRI), axonal injury (MRI) | |||||
28 d | = Axonal injury (MRI), WM damage (MRI) | |||||
50 d | ↓ Lesion size (H&E) | |||||
Butt et al., 2017 [191] | 84–96-day-old male Sprague-Dawley rats, mFPI | Diet with 0.92% DHA of total fat content (vs. 0%) initiated 28 days before injury | 23–24 d | = IL-6, IL-1β, microglia/macrophage activation ([3H]PK11195 autoradiography) ↓ TNF-α, IL-10 | 15–18 d | = Spatial learning and memory (MWM) |
22 d | = Sensory sensitivity (WNT) | |||||
Diet with 0.92% DHA of total fat content (vs. 0%) initiated after injury | 23–24 d | = IL-6, IL-1β ↓ TNF-α, IL-10, microglia/macrophage activation ([3H]PK11195 autoradiography) | 15–18 d | = Spatial learning and memory (MWM) | ||
22 d | = Sensory sensitivity (WNT) | |||||
Chen et al., 2017 [170] | Adult male Sprague-Dawley rats, F-WD | 2 mL/kg DHA † intraperitoneally 30 min after surgery and daily after | 1 d | = Cerebral oedema (water content) | 1–3 d | = Neurological function (mNSS) |
3 d | ↑ SIRT1 = GFAP, nuclear HMGB1 ↓ Iba1, TNF-α, IL-1β, IL-6, IFN-γ, cytoplasmic HMGB1, cleaved caspase-3, Bax, p65, p-IκB, TLR4, cerebral oedema (water content), apoptosis (TUNEL) | 7 d | ↑ Neurological function (mNSS) | |||
7 d | ↓ Cerebral oedema (water content) | |||||
Lin et al., 2017 [192] | 8-week-old male Sprague-Dawley rats, CCI | Diet with 23.8% DHA and 5.3% EPA of total fat content (vs. <0.02% DHA and <0.02% EPA); initiated on pregnant dams and carried on in pups daily after weaning | 8 h | ↓ IL-1β, IL-18, IL-6, caspase-1, cleaved caspase-3, apoptotic cells (TUNEL), cerebral oedema (water content), lesion size (imaging) | ≤5 d | ↑ Motor coordination & balance (BB) |
≤15 d | ↑ Spatial learning and memory (MWM) | |||||
Pu et al., 2017 [169] | 10/12-week-old male C57BL/6J mice, CCI | 3 mg/kg DHA and 7 mg/kg EPA intraperitoneally 2 h after injury and daily for 14 days | 35 d | = NeuN (cortex, striatum, hippocampus), cell proliferation (cortex, striatum, hippocampus) (BrdU) | 29–35 d | = Spatial learning and memory (MWM) |
Fish oil for 4% O3 PUFA of total diet content (vs. 0.36%) 1 day after injury and daily for 35 days | 35 d | ↑ NeuN (striatum), cell proliferation (cortex, striatum) (BrdU) = NeuN (cortex, hippocampus), cell proliferation (hippocampus) (BrdU) | 29–35 d | ↑ Spatial learning and memory (MWM) | ||
Zhu et al., 2017 [161] | 8-week-old male and female Sprague-Dawley rats, LFP | 370 or 740 mg/kg DHA intragastrically 30 min after injury and daily after | 15 d | ↑ Bcl-2 ↓ caspase-3, Bax | ≤15 d | ↑ Fine locomotor coordination (BW) |
16–17 d | ↑ Spatial learning and memory (MWM) | |||||
Chen et al., 2018 [171,172] | Adult male Sprague-Dawley rats, F-WD | 2 mL/kg omega-3 PUFA † intraperitoneally 30 min after injury and daily for 7 days | 3 d | ↑ Bcl-2, CD206, IL-10, SIRT1 = HMGB1 (in astrocytes) ↓ Cleaved caspase-3, Bax, Iba1, CD16, TNF-α, IL-1β, IL-6, HMGB1 (neurons and microglia), p65, apoptotic cells (Nissl staining, TUNEL), BBB permeability (Evans blue), cerebral oedema (water content) | ≤14 d | ↑ Neurological function (mNSS), vestibulomotor function (R) |
7 d | ↑ LC3, LC3-II, beclin-1, ATG-3, ATG-7, p62, HO-1, NQO-1, UGT1A1, SIRT1 ↓ ROS, cerebral oedema (water content) | |||||
14 d | ↓ Cerebral oedema (water content) | |||||
Figueiredo et al., 2018 [193] | 5/6-week-old male Sprague-Dawley rats, CCI | 1500 nmol/kg ALA subcutaneously 30 min, 3 days and 7 days after injury | 10 d | ↓ Lesion size (stereological analysis) | 30 d | ↓ Anxiety (OF) |
30 d | ↑ GAD 67 (in interneurons) = Neuron count (Nissl staining) ↓ lesion size (stereological analysis) | |||||
Ghazale et al., 2018 [167] | 7/8-week-old male C57BL/6 mice, CCI | 12 mg/kg DHA intraperitoneally 1 day after injury and daily after | 26 d | = DCX, Iba1, GFAP, TH, GFAP, αII-spectrin breakdown products | ≤24 d | = Vestibulomotor function (R) |
24 d | = Locomotor coordination (PC) | |||||
Tang et al., 2018 [165] | Male Sprague-Dawley rats, CCI | 16 mg/kg DHA intraperitoneally 30 min after injury and daily after | 1 d | ↓ TLR4, p65, IL-1β, TNF-α, CD11b, GFAP, apoptotic cells (TUNEL), cerebral oedema (water content) | ≤5 d | ↑ Fine locomotor coordination (BW), vestibulomotor function (R), neurological function (NSS) |
Yin et al., 2018 [166] | Adult male Sprague-Dawley rats, CCI | 16 mg/kg DHA intraperitoneally 10 min after injury and daily after | 3 d | = Cathepsin D, p62, Lamp2, hippocampus volume (MRI) ↓ Lamp1, lesion volume (MRI), WM damage (MRI) | 14–20 d | ↑ Spatial learning and memory (MWM) |
7 d | = p62, Lamp1, Lamp2, cathepsin D | |||||
Zhu et al., 2018 [194] | 7-week-old male Wistar rats, FPI | 370, 555 or 740 mg/kg DHA intragastrically 30 min after injury and daily after | 1 d | ↑ Bcl-2, HO-1, NQO-1, Nrf2, GPx, SOD ↓ caspase-3, Bax, MDA, apoptotic cells (TUNEL), cerebral oedema (water content) | ≤8 d | ↑ Spatial learning and memory (MWM) |
≤21 d | ↑ Neurological function (NSS) | |||||
Ataizi et al., 2019 [195] | Adult male Wistar rats, M-WD | 300 mg/kg omega-3 by gavage for 14 days prior to injury | 0 d ** | ↓ CytC, caspase-3 | ||
Schober et al., 2019 [196] | 17-day-old Sprague-Dawley rats, CCI | Diet with 0.1% DHA of total diet content (vs. 0.1% soybean oil) or 3.3% DHA of total fat content; initiated on milking dams after pups received injury and carried on in pups after weaning. Intraperitoneal injection of 100–150 mg/kg DHA was also administered 30 min after injury. | 1 d | ↓ NOx | 14 d | ↑ Memory (NOR) |
3 d | = Iba1 (hippocampus), GFAP (cortex, hippocampus) ↓ Iba1 (cortex), CD68 (cortex) | |||||
7 d | = Iba1 (cortex, hippocampus), GFAP (cortex, hippocampus), CD68 (cortex) | |||||
Liu et al., 2020 [158] | Young adult male Sprague-Dawley rats, CCI | 250 nmol/kg DHA intravenously 30 min after injury | 1 d | ↓ Cerebral oedema (MRI) | ≤7 d | ↑ Neurological function (mNSS) ↓ Locomotor asymmetry (C) |
3 d | ↓ Cerebral oedema (MRI) | |||||
7 d | ↑ RECA-1, CD31, occludin = GFAP ↓ IgG, AQP-4, MMP9 (in astrocytes), cerebral oedema (MRI) | |||||
Reyes et al., 2020 [197] | 3-/4-month-old male C57BL/6 mice, CHIMERA | Diet with 3.8% ALA of total fat content (vs. 0.04%); initiated in pregnant dams and continued in pups daily after weaning | 3 m | = WM damage (MRI) | ||
Thau-Zuchman et al., 2020 [159] | 10-/12-week-old male and female CD1 and C57BL/6 mice, CCI | 500 nmol/kg DHA intravenously 30 min after surgery | 7 d | ↑ NeuN, cell proliferation (BrdU) ↓ Iba1, GFAP, APP, 8-OHG, lesion size (H&E and MRI) | ≤28 d | ↑ Neurological function (mNSS) |
14 d | = Lesion size (H&E and MRI) | |||||
28 d | = Iba1, GFAP, lesion size (H&E and MRI) | |||||
Zhang et al., 2020 [198] | 3-/4-month-old male C57BL/6 mice, CCI | 15 g/kg fish oil † by gavage for 2 months prior to injury | 7 d | ↑ ZO-1, occludin, glymphatic system function (radioisotope clearance assay) = Lesion size (H&E) ↓ Aβ42, AQP-4, BBB permeability (Evans blue) | ≤7 d | ↑ Neurological function (mNSS), vestibulomotor function (R) |
Zhu et al., 2020 [160] | 3-month-old male C57BL/6 mice, CCI | 200 mg/kg DHA by gavage immediately after injury and every 12 h for 3 days | 1–3 d | ↓ p-JNK, p-Tau | ≤14 d | ↑ Fine locomotor coordination (BW), motor coordination & balance (BB), spatial learning and memory (MWM), vestibulomotor function (R) |
14 d | ↑ Hippocampal long-term potentiation | |||||
Zhu et al., 2020 [157] | 10-/12-week-old male Sprague-Dawley rats, CCI | 55 mg/kg DHA by gavage immediately after injury | 3 d | ↑ Nrf2, HO-1, NQO-1 ↓ NOX2, cerebral oedema (water content) | 7–10 d | ↑ Spatial learning and memory (MWM) |
≤21 d | ↑ Neurological function (NSS) | |||||
Desai et al., 2021 [199] | 3-month-old male and female C57BL/6NCrl mice, CHIMERA | Diet with 3.37% ALA of total fat content (vs. 0.05%); initiated in pregnant dams and carried on in pups after weaning | 60 d | ↓ Iba1, GFAP, axonal degeneration (silver staining) | 60 d | ↑ Spatial learning and memory (MWM), visual function (VEP and ERG) |
Schober et al., 2021 [200] | 17-day-old male Sprague-Dawley rats, CCI | Diet with 0.1% DHA of total diet content (vs. 0.1% soybean oil) or 1.8% DHA of total fat content; initiated in pregnant dams 1 day before injury and carried on in dams, and in pups after weaning | 2 d | = iNOS, IL-18, IL-18rap (hippocampus), TNF-α, IL-1β (cortex), TGF-β ↓ IL-18rap (cortex), IL-1β (hippocampus) | ||
3 d | = iNOS, IL-18, IL-18rap, TNF-α, IL-1β, TGF-β | |||||
3–50 d | = TSPO | |||||
Shi et al., 2022 [168] | C57/BL mice CCI | 50 mg/kg DHA intraperitoneally after injury and daily for 8 d | 8 d | ↑ eNOS, FGF21, VEGFR, β-catenin, MDM2 = IL-1β, IL-6, IL-10, TNF-α, cleaved PARP-1, HIF-1α, Wnt ↓ GSK-3β, p53 | 7 d | = Spatial learning and memory (MWM) |
Wu et al., 2023 [173] | Adult male C57BL/6J mice, F-WD | 2 mL/kg omega-3 PUFA † intraperitoneally 30 min after injury and daily after | 3 d | ↑ PPARγ ↓ TNF-α, IL-1β, IL-6, NF-κB, RIP1, RIP3, MLKL, apoptotic cells (TUNEL), cerebral oedema (water content) | 3 d | ↑ Neurological function (mNSS) |
7.2. Effects of Dietary Supplementations
7.3. Interventional Studies in Immature Animals
7.4. Interventional Studies in Humans
8. Questions for Clinical Translation
8.1. Would All TBI Patients, or Just a Specific Subpopulation of TBI Patients, Respond to O3 PUFAs?
8.2. How Variable Is the DHA/EPA Status of Patients?
8.3. Which Receptors and Mechanisms Underlie the Effectiveness of DHA?
8.4. Which Other Traumatic Injuries May Benefit Apart from TBI?
Reference | Animal Model | Omega-3 Metabolite Administration | Effects on Neuropathological Changes and Brain Marker Expression * | Effects on Behaviour * | ||
---|---|---|---|---|---|---|
Harrison et al., 2015 [228] | Adult male C57BL/6 mice, mFPI | 100 ng RvD1 intraperitoneally for 3 days before injury and for 4 days after | 7 d | = Ramified microglia ↓ Rod microglia | 1 d | = Sleep (PRS) |
6 d | ↑ Memory (NOR) | |||||
≤7 d | ↑ Vestibulomotor function (R) | |||||
100 ng RvE1 intraperitoneally for 3 days before injury and for 4 days after | 7 d | ↑ Ramified microglia ↓ Rod microglia | 1 d | ↑ Sleep (PRS) | ||
6 d | = Memory (NOR) | |||||
≤7 d | = Vestibulomotor function (R) | |||||
Bisicchia et al., 2018 [229] | Adult male Wistar rats, HCb | 0.4 μg/kg RvD1 intraperitoneally after injury and every other day after | 7 d | ↑ NeuN, miR-146b, miR-219-1-3p = NF-κB, CD200, miR-142-5p, miR-203a, miR-21 ↓ CytC, Iba1, GFAP, TLR4, IL-6R | ≤7 d | ↑ Neurological function (NSS) |
Berg et al., 2019 [230] | Male Sprague-Dawley rats, pTBI | 50 ng NPD1 intralesional and immediately after injury | 1 d | = MnSOD, 3-NT, CD11b, COX-2, NF-κB | ||
3 d | = MnSOD, 3-NT, CD11b, COX-2, NF-κB, apoptotic cells (TUNEL), neuronal degeneration (Fluoro Jade-B) ↓ Lesion area (imaging) | |||||
Ren et al., 2020 [231] | C57BL/6 mice, CCI | 15 µg/kg RvD1 intraperitoneally on the day of injury and daily after | 1 d | = FRP2 | ≤7 d | = Fine locomotor coordination (BW) |
3 d | = FRP2 | 3–14 d | ↑ Memory (FC) | |||
7 d | ↑ NeuN, synaptophysin, NLRP3, ASC, IL-1β, TNF-α, IL-6, MCP-1, ATP, Parkin, BDNF, GLAST, GLAST dimers, GLUT1, GLUT3 = FRP2, LC3I/II ↓ GFAP, Pink, TRX2, BBB permeability (Evans blue) | |||||
Ponomarenko et al., 2021 [232] | 3-month-old male Wistar rats, WD | 10 mg/kg DHEA subcutaneously immediately after injury and daily after | 7 d | ↓ Iba1, IL-1β, IL-6, CD86 | 5 d | = Working memory (YMSA) |
6 d | ↓ Anxiety (EPM) | |||||
7 d | ↑ Long-term memory (PA) | |||||
Ponomarenko et al., 2022 [233] | 3-month-old male Wistar rats, WD | 10 mg/kg DHEA subcutaneously immediately after injury and daily after | 1 d | ↑ SOD ↓ GFAP, S100B, nNOS, BDNF | ||
7 d | ↑ GFAP, BDNF = S100B ↓ nNOS, SOD |
8.5. Which O3 PUFAs Preparations Are Available?
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Akerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef]
- Guan, B.; Anderson, D.B.; Chen, L.; Feng, S.; Zhou, H. Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e075049. [Google Scholar] [CrossRef] [PubMed]
- Susman, M.; DiRusso, S.M.; Sullivan, T.; Risucci, D.; Nealon, P.; Cuff, S.; Haider, A.; Benzil, D. Traumatic brain injury in the elderly: Increased mortality and worse functional outcome at discharge despite lower injury severity. J. Trauma 2002, 53, 219–223; discussion 223–214. [Google Scholar] [CrossRef] [PubMed]
- van der Vlegel, M.; Mikolic, A.; Lee Hee, Q.; Kaplan, Z.L.R.; Retel Helmrich, I.R.A.; van Veen, E.; Andelic, N.; Steinbuechel, N.V.; Plass, A.M.; Zeldovich, M.; et al. Health care utilization and outcomes in older adults after Traumatic Brain Injury: A CENTER-TBI study. Injury 2022, 53, 2774–2782. [Google Scholar] [CrossRef]
- Hammond, F.M.; Corrigan, J.D.; Ketchum, J.M.; Malec, J.F.; Dams-O’Connor, K.; Hart, T.; Novack, T.A.; Bogner, J.; Dahdah, M.N.; Whiteneck, G.G. Prevalence of Medical and Psychiatric Comorbidities Following Traumatic Brain Injury. J. Head Trauma Rehabil. 2019, 34, E1–E10. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Horton, L.; Kunzmann, K.; Sahakian, B.J.; Newcombe, V.F.; Stamatakis, E.A.; von Steinbuechel, N.; Cunitz, K.; Covic, A.; Maas, A.; et al. Understanding the relationship between cognitive performance and function in daily life after traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 2020, 92, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Gasco, V.; Cambria, V.; Bioletto, F.; Ghigo, E.; Grottoli, S. Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment. Front. Endocrinol. 2021, 12, 634415. [Google Scholar] [CrossRef] [PubMed]
- Fordington, S.; Manford, M. A review of seizures and epilepsy following traumatic brain injury. J. Neurol. 2020, 267, 3105–3111. [Google Scholar] [CrossRef]
- Defrin, R. Chronic post-traumatic headache: Clinical findings and possible mechanisms. J. Man. Manip. Ther. 2014, 22, 36–44. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.N.S.D. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Delic, V.; Beck, K.D.; Pang, K.C.H.; Citron, B.A. Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol. Commun. 2020, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Andrew, A.S.; Bradley, W.G.; Peipert, D.; Butt, T.; Amoako, K.; Pioro, E.P.; Tandan, R.; Novak, J.; Quick, A.; Pugar, K.D.; et al. Risk factors for amyotrophic lateral sclerosis: A regional United States case-control study. Muscle Nerve 2021, 63, 52–59. [Google Scholar] [CrossRef]
- Liu, G.; Ou, S.; Cui, H.; Li, X.; Yin, Z.; Gu, D.; Wang, Z. Head Injury and Amyotrophic Lateral Sclerosis: A Meta-Analysis. Neuroepidemiology 2021, 55, 11–19. [Google Scholar] [CrossRef]
- Washington, P.M.; Villapol, S.; Burns, M.P. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Exp. Neurol. 2016, 275 Pt 3, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Omalu, B.I.; DeKosky, S.T.; Minster, R.L.; Kamboh, M.I.; Hamilton, R.L.; Wecht, C.H. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 2005, 57, 128–134; discussion 128–134. [Google Scholar] [CrossRef] [PubMed]
- Montenigro, P.H.; Corp, D.T.; Stein, T.D.; Cantu, R.C.; Stern, R.A. Chronic traumatic encephalopathy: Historical origins and current perspective. Annu. Rev. Clin. Psychol. 2015, 11, 309–330. [Google Scholar] [CrossRef]
- Kelly, J.P.; Priemer, D.S.; Perl, D.P.; Filley, C.M. Sports Concussion and Chronic Traumatic Encephalopathy: Finding a Path Forward. Ann. Neurol. 2023, 93, 222–225. [Google Scholar] [CrossRef]
- Araki, T.; Yokota, H.; Morita, A. Pediatric Traumatic Brain Injury: Characteristic Features, Diagnosis, and Management. Neurol. Med. Chir. 2017, 57, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Eyolfson, E.; Salberg, S.; Mychasiuk, R. Traumatic brain injury in adolescence: A review of the neurobiological and behavioural underpinnings and outcomes. Dev. Rev. 2021, 59, 100943. [Google Scholar] [CrossRef]
- Figaji, A. An update on pediatric traumatic brain injury. Childs Nerv. Syst. 2023, 39, 3071–3081. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill Summ 2017, 66, 1–16. [Google Scholar] [CrossRef]
- Dewan, M.C.; Mummareddy, N.; Wellons, J.C.; Bonfield, C.M. Epidemiology of Global Pediatric Traumatic Brain Injury: Qualitative Review. World Neurosurg. 2016, 91, 497–509.e1. [Google Scholar] [CrossRef]
- Blackwell, L.S.; Grell, R. Pediatric Traumatic Brain Injury: Impact on the Developing Brain. Pediatr. Neurol. 2023, 148, 215–222. [Google Scholar] [CrossRef]
- Barlow, K.M.; Crawford, S.; Stevenson, A.; Sandhu, S.S.; Belanger, F.; Dewey, D. Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury. Pediatrics 2010, 126, e374–e381. [Google Scholar] [CrossRef]
- Eisenberg, M.A.; Meehan, W.P., 3rd; Mannix, R. Duration and course of post-concussive symptoms. Pediatrics 2014, 133, 999–1006. [Google Scholar] [CrossRef]
- Zemek, R.; Barrowman, N.; Freedman, S.B.; Gravel, J.; Gagnon, I.; McGahern, C.; Aglipay, M.; Sangha, G.; Boutis, K.; Beer, D.; et al. Clinical Risk Score for Persistent Postconcussion Symptoms Among Children with Acute Concussion in the ED. JAMA 2016, 315, 1014–1025. [Google Scholar] [CrossRef] [PubMed]
- Lefevre-Dognin, C.; Cogne, M.; Perdrieau, V.; Granger, A.; Heslot, C.; Azouvi, P. Definition and epidemiology of mild traumatic brain injury. Neurochirurgie 2021, 67, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Karlin, A.M. Concussion in the pediatric and adolescent population: “different population, different concerns”. PM&R 2011, 3, S369–S379. [Google Scholar] [CrossRef]
- Bey, T.; Ostick, B. Second impact syndrome. West. J. Emerg. Med. 2009, 10, 6–10. [Google Scholar] [PubMed]
- Hiskens, M.I. Targets of Neuroprotection and Review of Pharmacological Interventions in Traumatic Brain Injury. J. Pharmacol. Exp. Ther. 2022, 382, 149–166. [Google Scholar] [CrossRef]
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T.; Workshop Scientific, T.; Advisory Panel, M. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.; Tan, T.; Rosenfeld, J.V.; Noonan, M.; Tee, J.; Ng, E.; Mathew, J.; Broderick, S.; Kim, Y.; Groombridge, C.; et al. An initial Glasgow Coma Scale score of 8 or less does not define severe brain injury. Emerg. Med. Australas. 2022, 34, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Bilgi, K.; Gopalakrishna, K.N.; Chakrabarti, D.; Rao, G.S.U. Outcome Prediction of TBI: Are There Parameters That Affect the IMPACT and CRASH Models? World Neurosurg. 2021, 146, e590–e596. [Google Scholar] [CrossRef] [PubMed]
- Hossain, I.; Rostami, E.; Marklund, N. The management of severe traumatic brain injury in the initial postinjury hours—Current evidence and controversies. Curr. Opin. Crit. Care 2023, 29, 650–658. [Google Scholar] [CrossRef]
- Hawryluk, G.W.; Bullock, M.R. Past, Present, and Future of Traumatic Brain Injury Research. Neurosurg. Clin. N. Am. 2016, 27, 375–396. [Google Scholar] [CrossRef]
- Andelic, N.; Roe, C.; Tenovuo, O.; Azouvi, P.; Dawes, H.; Majdan, M.; Ranta, J.; Howe, E.I.; Wiegers, E.J.A.; Tverdal, C.; et al. Unmet Rehabilitation Needs after Traumatic Brain Injury across Europe: Results from the CENTER-TBI Study. J. Clin. Med. 2021, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- Prins, M.; Greco, T.; Alexander, D.; Giza, C.C. The pathophysiology of traumatic brain injury at a glance. Dis. Model. Mech. 2013, 6, 1307–1315. [Google Scholar] [CrossRef]
- Blennow, K.; Brody, D.L.; Kochanek, P.M.; Levin, H.; McKee, A.; Ribbers, G.M.; Yaffe, K.; Zetterberg, H. Traumatic brain injuries. Nat. Rev. Dis. Primers 2016, 2, 16084. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef]
- Manivannan, S.; Wales, E.; Zaben, M. The Role of HMGB1 in Traumatic Brain Injury-Bridging the Gap Between the Laboratory and Clinical Studies. Curr. Neurol. Neurosci. Rep. 2021, 21, 75. [Google Scholar] [CrossRef]
- Moro, N.; Ghavim, S.S.; Sutton, R.L. Massive efflux of adenosine triphosphate into the extracellular space immediately after experimental traumatic brain injury. Exp. Ther. Med. 2021, 21, 575. [Google Scholar] [CrossRef]
- Abdul-Muneer, P.M.; Pfister, B.J.; Haorah, J.; Chandra, N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol. Neurobiol. 2016, 53, 6106–6123. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Muneer, P.M.; Conte, A.A.; Haldar, D.; Long, M.; Patel, R.K.; Santhakumar, V.; Overall, C.M.; Pfister, B.J. Traumatic brain injury induced matrix metalloproteinase2 cleaves CXCL12alpha (stromal cell derived factor 1alpha) and causes neurodegeneration. Brain Behav. Immun. 2017, 59, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery 2014, 75 (Suppl. S4), S24–S33. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.D.; Hylin, M.J.; Zhao, J.; Moore, A.N.; Waxham, M.N.; Dash, P.K. Altered Mitochondrial Dynamics and TBI Pathophysiology. Front. Syst. Neurosci. 2016, 10, 29. [Google Scholar] [CrossRef]
- Dinet, V.; Petry, K.G.; Badaut, J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front. Neurosci. 2019, 13, 1178. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia states and nomenclature: A field at its crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef] [PubMed]
- Donat, C.K.; Scott, G.; Gentleman, S.M.; Sastre, M. Microglial Activation in Traumatic Brain Injury. Front. Aging Neurosci. 2017, 9, 208. [Google Scholar] [CrossRef]
- Gottlieb, A.; Toledano-Furman, N.; Prabhakara, K.S.; Kumar, A.; Caplan, H.W.; Bedi, S.; Cox, C.S., Jr.; Olson, S.D. Time dependent analysis of rat microglial surface markers in traumatic brain injury reveals dynamics of distinct cell subpopulations. Sci. Rep. 2022, 12, 6289. [Google Scholar] [CrossRef]
- Escartin, C.; Guillemaud, O.; Carrillo-de Sauvage, M.A. Questions and (some) answers on reactive astrocytes. Glia 2019, 67, 2221–2247. [Google Scholar] [CrossRef] [PubMed]
- Burda, J.E.; Bernstein, A.M.; Sofroniew, M.V. Astrocyte roles in traumatic brain injury. Exp. Neurol. 2016, 275 Pt 3, 305–315. [Google Scholar] [CrossRef]
- Hausmann, R.; Riess, R.; Fieguth, A.; Betz, P. Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int. J. Legal Med. 2000, 113, 70–75. [Google Scholar] [CrossRef]
- Amlerova, Z.; Chmelova, M.; Anderova, M.; Vargova, L. Reactive gliosis in traumatic brain injury: A comprehensive review. Front. Cell Neurosci. 2024, 18, 1335849. [Google Scholar] [CrossRef]
- O’Brien, W.T.; Pham, L.; Symons, G.F.; Monif, M.; Shultz, S.R.; McDonald, S.J. The NLRP3 inflammasome in traumatic brain injury: Potential as a biomarker and therapeutic target. J. Neuroinflamm. 2020, 17, 104. [Google Scholar] [CrossRef]
- Lian, H.; Shim, D.J.; Gaddam, S.S.; Rodriguez-Rivera, J.; Bitner, B.R.; Pautler, R.G.; Robertson, C.S.; Zheng, H. IkappaBalpha deficiency in brain leads to elevated basal neuroinflammation and attenuated response following traumatic brain injury: Implications for functional recovery. Mol. Neurodegener. 2012, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Ramlackhansingh, A.F.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Gentleman, S.; Heckemann, R.A.; Gunanayagam, K.; Gelosa, G.; et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann. Neurol. 2011, 70, 374–383. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 2013, 136, 28–42. [Google Scholar] [CrossRef]
- Armstrong, R.C.; Sullivan, G.M.; Perl, D.P.; Rosarda, J.D.; Radomski, K.L. White matter damage and degeneration in traumatic brain injury. Trends Neurosci. 2024, 47, 677–692. [Google Scholar] [CrossRef]
- Bouras, M.; Asehnoune, K.; Roquilly, A. Immune modulation after traumatic brain injury. Front. Med. 2022, 9, 995044. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.W.; McGeachy, M.J.; Bayir, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol. 2017, 13, 572. [Google Scholar] [CrossRef]
- Alam, A.; Thelin, E.P.; Tajsic, T.; Khan, D.Z.; Khellaf, A.; Patani, R.; Helmy, A. Cellular infiltration in traumatic brain injury. J. Neuroinflamm. 2020, 17, 328. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Lin, Y.; Chen, Z. The Peripheral Immune System and Traumatic Brain Injury: Insight into the role of T-helper cells. Int. J. Med. Sci. 2021, 18, 3644–3651. [Google Scholar] [CrossRef]
- Thelin, E.P.; Tajsic, T.; Zeiler, F.A.; Menon, D.K.; Hutchinson, P.J.A.; Carpenter, K.L.H.; Morganti-Kossmann, M.C.; Helmy, A. Monitoring the Neuroinflammatory Response Following Acute Brain Injury. Front. Neurol. 2017, 8, 351. [Google Scholar] [CrossRef] [PubMed]
- Frugier, T.; Morganti-Kossmann, M.C.; O’Reilly, D.; McLean, C.A. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J. Neurotrauma 2010, 27, 497–507. [Google Scholar] [CrossRef]
- Cetin, M.; Yip, P.; Leung, W.S.; Liu, Z.H. Temporal profile of cerebrospinal fluid galactin-3 and associated cytokine responses after severe traumatic brain injury in patients: A retrospective study. Clin. Med. 2023, 23, 81. [Google Scholar] [CrossRef] [PubMed]
- Amick, J.E.; Yandora, K.A.; Bell, M.J.; Wisniewski, S.R.; Adelson, P.D.; Carcillo, J.A.; Janesko, K.L.; DeKosky, S.T.; Carlos, T.M.; Clark, R.S.; et al. The Th1 versus Th2 cytokine profile in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr. Crit. Care Med. 2001, 2, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Fesharaki-Zadeh, A. Oxidative Stress in Traumatic Brain Injury. Int. J. Mol. Sci. 2022, 23, 13000. [Google Scholar] [CrossRef]
- Figaji, A.A. Anatomical and Physiological Differences between Children and Adults Relevant to Traumatic Brain Injury and the Implications for Clinical Assessment and Care. Front. Neurol. 2017, 8, 685. [Google Scholar] [CrossRef]
- Ewing-Cobbs, L.; Prasad, M.R.; Kramer, L.; Cox, C.S., Jr.; Baumgartner, J.; Fletcher, S.; Mendez, D.; Barnes, M.; Zhang, X.; Swank, P. Late intellectual and academic outcomes following traumatic brain injury sustained during early childhood. J. Neurosurg. 2006, 105, 287–296. [Google Scholar] [CrossRef]
- Catroppa, C.; Anderson, V.; Godfrey, C.; Rosenfeld, J.V. Attentional skills 10 years post-paediatric traumatic brain injury (TBI). Brain Inj. 2011, 25, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Ryan, N.P.; Catroppa, C.; Godfrey, C.; Noble-Haeusslein, L.J.; Shultz, S.R.; O’Brien, T.J.; Anderson, V.; Semple, B.D. Social dysfunction after pediatric traumatic brain injury: A translational perspective. Neurosci. Biobehav. Rev. 2016, 64, 196–214. [Google Scholar] [CrossRef]
- Ryan, N.P.; Anderson, V.; Godfrey, C.; Beauchamp, M.H.; Coleman, L.; Eren, S.; Rosema, S.; Taylor, K.; Catroppa, C. Predictors of very-long-term sociocognitive function after pediatric traumatic brain injury: Evidence for the vulnerability of the immature “social brain”. J. Neurotrauma 2014, 31, 649–657. [Google Scholar] [CrossRef]
- Arif, H.; Troyer, E.A.; Paulsen, J.S.; Vaida, F.; Wilde, E.A.; Bigler, E.D.; Hesselink, J.R.; Yang, T.T.; Tymofiyeva, O.; Wade, O.; et al. Long-Term Psychiatric Outcomes in Adults with History of Pediatric Traumatic Brain Injury. J. Neurotrauma 2021, 38, 1515–1525. [Google Scholar] [CrossRef]
- Serpa, R.O.; Ferguson, L.; Larson, C.; Bailard, J.; Cooke, S.; Greco, T.; Prins, M.L. Pathophysiology of Pediatric Traumatic Brain Injury. Front. Neurol. 2021, 12, 696510. [Google Scholar] [CrossRef]
- Fraunberger, E.; Esser, M.J. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci. 2019, 9, 319. [Google Scholar] [CrossRef]
- Bayir, H.; Kagan, V.E.; Tyurina, Y.Y.; Tyurin, V.; Ruppel, R.A.; Adelson, P.D.; Graham, S.H.; Janesko, K.; Clark, R.S.; Kochanek, P.M. Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr. Res. 2002, 51, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Mink, R.B.; Madikians, A. Pediatric traumatic brain injury: Not just little adults. Curr. Opin. Crit. Care 2007, 13, 143–152. [Google Scholar] [CrossRef]
- Hayes, J.P.; Bigler, E.D.; Verfaellie, M. Traumatic Brain Injury as a Disorder of Brain Connectivity. J. Int. Neuropsychol. Soc. 2016, 22, 120–137. [Google Scholar] [CrossRef]
- van der Horn, H.J.; Ling, J.M.; Wick, T.V.; Dodd, A.B.; Robertson-Benta, C.R.; McQuaid, J.R.; Zotev, V.; Vakhtin, A.A.; Ryman, S.G.; Cabral, J.; et al. Dynamic Functional Connectivity in Pediatric Mild Traumatic Brain Injury. Neuroimage 2024, 285, 120470. [Google Scholar] [CrossRef]
- Kinnunen, K.M.; Greenwood, R.; Powell, J.H.; Leech, R.; Hawkins, P.C.; Bonnelle, V.; Patel, M.C.; Counsell, S.J.; Sharp, D.J. White matter damage and cognitive impairment after traumatic brain injury. Brain 2011, 134, 449–463. [Google Scholar] [CrossRef]
- Hulkower, M.B.; Poliak, D.B.; Rosenbaum, S.B.; Zimmerman, M.E.; Lipton, M.L. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am. J. Neuroradiol. 2013, 34, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
- Bartnik-Olson, B.; Holshouser, B.; Ghosh, N.; Oyoyo, U.E.; Nichols, J.G.; Pivonka-Jones, J.; Tong, K.; Ashwal, S. Evolving White Matter Injury following Pediatric Traumatic Brain Injury. J. Neurotrauma 2021, 38, 111–121. [Google Scholar] [CrossRef]
- Dash, P.K.; Zhao, J.; Hergenroeder, G.; Moore, A.N. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 2010, 7, 100–114. [Google Scholar] [CrossRef]
- Huibregtse, M.E.; Bazarian, J.J.; Shultz, S.R.; Kawata, K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci. Biobehav. Rev. 2021, 130, 433–447. [Google Scholar] [CrossRef]
- Gerber, K.S.; Alvarez, G.; Alamian, A.; Behar-Zusman, V.; Downs, C.A. Biomarkers of Neuroinflammation in Traumatic Brain Injury. Clin. Nurs. Res. 2022, 31, 1203–1218. [Google Scholar] [CrossRef]
- Yue, J.K.; Kobeissy, F.H.; Jain, S.; Sun, X.; Phelps, R.R.L.; Korley, F.K.; Gardner, R.C.; Ferguson, A.R.; Huie, J.R.; Schneider, A.L.C.; et al. Neuroinflammatory Biomarkers for Traumatic Brain Injury Diagnosis and Prognosis: A TRACK-TBI Pilot Study. Neurotrauma Rep. 2023, 4, 171–183. [Google Scholar] [CrossRef]
- Ghaith, H.S.; Nawar, A.A.; Gabra, M.D.; Abdelrahman, M.E.; Nafady, M.H.; Bahbah, E.I.; Ebada, M.A.; Ashraf, G.M.; Negida, A.; Barreto, G.E. A Literature Review of Traumatic Brain Injury Biomarkers. Mol. Neurobiol. 2022, 59, 4141–4158. [Google Scholar] [CrossRef] [PubMed]
- Stocchetti, N.; Taccone, F.S.; Citerio, G.; Pepe, P.E.; Le Roux, P.D.; Oddo, M.; Polderman, K.H.; Stevens, R.D.; Barsan, W.; Maas, A.I.; et al. Neuroprotection in acute brain injury: An up-to-date review. Crit. Care 2015, 19, 186. [Google Scholar] [CrossRef]
- Zoerle, T.; Carbonara, M.; Zanier, E.R.; Ortolano, F.; Bertani, G.; Magnoni, S.; Stocchetti, N. Rethinking Neuroprotection in Severe Traumatic Brain Injury: Toward Bedside Neuroprotection. Front. Neurol. 2017, 8, 354. [Google Scholar] [CrossRef]
- Sastry, P.S. Lipids of nervous tissue: Composition and metabolism. Prog. Lipid Res. 1985, 24, 69–176. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Kimura, I.; Inoue, D.; Ichimura, A.; Hirasawa, A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev. Physiol. Biochem. Pharmacol. 2013, 164, 77–116. [Google Scholar] [CrossRef]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef]
- Sinclair, A.J.; Attar-Bashi, N.M.; Li, D. What is the role of alpha-linolenic acid for mammals? Lipids 2002, 37, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog. Lipid Res. 2011, 50, 28–34. [Google Scholar] [CrossRef]
- Salem, N., Jr.; Litman, B.; Kim, H.Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001, 36, 945–959. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Burdge, G.C.; Calder, P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef]
- Williams, C.M.; Burdge, G. Long-chain n-3 PUFA: Plant v. marine sources. Proc. Nutr. Soc. 2006, 65, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Salem, N., Jr.; Sinclair, A.J.; Cunnane, S.C.; International Society for the Study of Fatty, A.; Lipids, I. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fatty Acids 2009, 80, 85–91. [Google Scholar] [CrossRef]
- Dighriri, I.M.; Alsubaie, A.M.; Hakami, F.M.; Hamithi, D.M.; Alshekh, M.M.; Khobrani, F.A.; Dalak, F.E.; Hakami, A.A.; Alsueaadi, E.H.; Alsaawi, L.S.; et al. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022, 14, e30091. [Google Scholar] [CrossRef]
- Demar, J.C., Jr.; Ma, K.; Chang, L.; Bell, J.M.; Rapoport, S.I. alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. J. Neurochem. 2005, 94, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Ma, D.; Shui, G.; Wong, P.; Cazenave-Gassiot, A.; Zhang, X.; Wenk, M.R.; Goh, E.L.; Silver, D.L. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014, 509, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Thies, F.; Pillon, C.; Moliere, P.; Lagarde, M.; Lecerf, J. Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am. J. Physiol. 1994, 267, R1273–R1279. [Google Scholar] [CrossRef]
- McNamara, R.K.; Carlson, S.E. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot. Essent. Fatty Acids 2006, 75, 329–349. [Google Scholar] [CrossRef]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fatty Acids 2018, 136, 3–13. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. The Importance of Marine Omega-3s for Brain Development and the Prevention and Treatment of Behavior, Mood, and Other Brain Disorders. Nutrients 2020, 12, 2333. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. The omega-3 index: Clinical utility for therapeutic intervention. Curr. Cardiol. Rep. 2010, 12, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N., Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- von Schacky, C.; Kuipers, R.S.; Pijl, H.; Muskiet, F.A.J.; Grobbee, D.E. Omega-3 fatty acids in heart disease-why accurately measured levels matter. Neth. Heart J. 2023, 31, 415–423. [Google Scholar] [CrossRef]
- Johnston, D.T.; Deuster, P.A.; Harris, W.S.; Macrae, H.; Dretsch, M.N. Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutr. Neurosci. 2013, 16, 30–38. [Google Scholar] [CrossRef]
- van der Wurff, I.S.M.; Meyer, B.J.; de Groot, R.H.M. Effect of Omega-3 Long Chain Polyunsaturated Fatty Acids (n-3 LCPUFA) Supplementation on Cognition in Children and Adolescents: A Systematic Literature Review with a Focus on n-3 LCPUFA Blood Values and Dose of DHA and EPA. Nutrients 2020, 12, 3115. [Google Scholar] [CrossRef] [PubMed]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [PubMed]
- Basil, M.C.; Levy, B.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016, 16, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, R.P.; Laye, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; da Costa Souza, F.; Dalli, J.; Durand, T.; Galano, J.M.; Lein, P.J.; et al. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef]
- Yang, B.; Fritsche, K.L.; Beversdorf, D.Q.; Gu, Z.; Lee, J.C.; Folk, W.R.; Greenlief, C.M.; Sun, G.Y. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front. Neurol. 2019, 10, 642. [Google Scholar] [CrossRef]
- Davis, C.K.; Vemuganti, R. Antioxidant therapies in traumatic brain injury. Neurochem. Int. 2022, 152, 105255. [Google Scholar] [CrossRef]
- Chiang, N.; Serhan, C.N. Specialized pro-resolving mediator network: An update on production and actions. Essays Biochem. 2020, 64, 443–462. [Google Scholar] [CrossRef]
- Panigrahy, D.; Gilligan, M.M.; Serhan, C.N.; Kashfi, K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol. Ther. 2021, 227, 107879. [Google Scholar] [CrossRef]
- Rey, C.; Delpech, J.C.; Madore, C.; Nadjar, A.; Greenhalgh, A.D.; Amadieu, C.; Aubert, A.; Pallet, V.; Vaysse, C.; Laye, S.; et al. Dietary n-3 long chain PUFA supplementation promotes a pro-resolving oxylipin profile in the brain. Brain Behav. Immun. 2019, 76, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Schebb, N.H.; Ostermann, A.I.; Yang, J.; Hammock, B.D.; Hahn, A.; Schuchardt, J.P. Comparison of the effects of long-chain omega-3 fatty acid supplementation on plasma levels of free and esterified oxylipins. Prostaglandins Other Lipid Mediat. 2014, 113–115, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Nessel, I.; Michael-Titus, A.T. Lipid profiling of brain tissue and blood after traumatic brain injury: A review of human and experimental studies. Semin. Cell Dev. Biol. 2021, 112, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.F.; Wright, K.F.; Wei, E.P.; Kontos, H.A. Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. J. Neurochem. 1981, 37, 892–896. [Google Scholar] [CrossRef]
- Dewitt, D.S.; Kong, D.L.; Lyeth, B.G.; Jenkins, L.W.; Hayes, R.L.; Wooten, E.D.; Prough, D.S. Experimental traumatic brain injury elevates brain prostaglandin E2 and thromboxane B2 levels in rats. J. Neurotrauma 1988, 5, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Shohami, E.; Shapira, Y.; Yadid, G.; Reisfeld, N.; Yedgar, S. Brain phospholipase A2 is activated after experimental closed head injury in the rat. J. Neurochem. 1989, 53, 1541–1546. [Google Scholar] [CrossRef]
- Dhillon, H.S.; Donaldson, D.; Dempsey, R.J.; Prasad, M.R. Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J. Neurotrauma 1994, 11, 405–415. [Google Scholar] [CrossRef]
- Homayoun, P.; Parkins, N.E.; Soblosky, J.; Carey, M.E.; Rodriguez de Turco, E.B.; Bazan, N.G. Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem. Res. 2000, 25, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.; Muller, L.; Jackson, S.N.; Post, J.; Baldwin, K.; Hoffer, B.; Balaban, C.D.; Barbacci, D.; Schultz, J.A.; Gouty, S.; et al. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J. Neurosci. Methods 2016, 272, 19–32. [Google Scholar] [CrossRef]
- Guo, S.; Zhou, D.; Zhang, M.; Li, T.; Liu, Y.; Xu, Y.; Chen, T.; Li, Z. Monitoring changes of docosahexaenoic acid-containing lipids during the recovery process of traumatic brain injury in rat using mass spectrometry imaging. Sci. Rep. 2017, 7, 5054. [Google Scholar] [CrossRef]
- Abdullah, L.; Evans, J.E.; Ferguson, S.; Mouzon, B.; Montague, H.; Reed, J.; Crynen, G.; Emmerich, T.; Crocker, M.; Pelot, R.; et al. Lipidomic analyses identify injury-specific phospholipid changes 3 mo after traumatic brain injury. FASEB J. 2014, 28, 5311–5321. [Google Scholar] [CrossRef]
- Pilitsis, J.G.; Coplin, W.M.; O’Regan, M.H.; Wellwood, J.M.; Diaz, F.G.; Fairfax, M.R.; Michael, D.B.; Phillis, J.W. Free fatty acids in cerebrospinal fluids from patients with traumatic brain injury. Neurosci. Lett. 2003, 349, 136–138. [Google Scholar] [CrossRef]
- Farias, S.E.; Heidenreich, K.A.; Wohlauer, M.V.; Murphy, R.C.; Moore, E.E. Lipid mediators in cerebral spinal fluid of traumatic brain injured patients. J. Trauma 2011, 71, 1211–1218. [Google Scholar] [CrossRef]
- Varma, S.; Janesko, K.L.; Wisniewski, S.R.; Bayir, H.; Adelson, P.D.; Thomas, N.J.; Kochanek, P.M. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J. Neurotrauma 2003, 20, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.C.; Chen, T.W.; Yang, T.C.; Wei, H.J.; Hsu, J.C.; Lin, C.L. Levels of F2-isoprostanes, F4-neuroprostanes, and total nitrate/nitrite in plasma and cerebrospinal fluid of patients with traumatic brain injury. Free Radic. Res. 2015, 49, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Bayir, H.; Marion, D.W.; Puccio, A.M.; Wisniewski, S.R.; Janesko, K.L.; Clark, R.S.; Kochanek, P.M. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J. Neurotrauma 2004, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nessel, I.; Whiley, L.; Dyall, S.C.; Michael-Titus, A.T. A plasma lipid signature in acute human traumatic brain injury: Link with neuronal injury and inflammation markers. J. Cereb. Blood Flow. Metab. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Nkiliza, A.; Huguenard, C.J.C.; Aldrich, G.J.; Ferguson, S.; Cseresznye, A.; Darcey, T.; Evans, J.E.; Dretsch, M.; Mullan, M.; Crawford, F.; et al. Levels of Arachidonic Acid-Derived Oxylipins and Anandamide Are Elevated Among Military APOE varepsilon4 Carriers with a History of Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. Neurotrauma Rep. 2023, 4, 643–654. [Google Scholar] [CrossRef]
- Michael-Titus, A.T.; Priestley, J.V. Omega-3 fatty acids and traumatic neurological injury: From neuroprotection to neuroplasticity? Trends Neurosci. 2014, 37, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, C.P.; Tadayyon, M.; Andrews, J.L.; Benson, W.G.; Chambers, J.K.; Eilert, M.M.; Ellis, C.; Elshourbagy, N.A.; Goetz, A.S.; Minnick, D.T.; et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 2003, 278, 11303–11311. [Google Scholar] [CrossRef]
- Katsuma, S.; Hatae, N.; Yano, T.; Ruike, Y.; Kimura, M.; Hirasawa, A.; Tsujimoto, G. Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J. Biol. Chem. 2005, 280, 19507–19515. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.; He, L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 2017, 113, 639–651. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- Nakajima, S.; Demers, G.; Machuca-Parra, A.I.; Pour, Z.D.; Bairamian, D.; Bouyakdan, K.; Fisette, A.; Kabahizi, A.; Robb, J.; Rodaros, D.; et al. Central activation of the fatty acid sensor GPR120 suppresses microglia reactivity and alleviates sickness- and anxiety-like behaviors. J. Neuroinflamm. 2023, 20, 302. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Li, M.Y.; Li, G.; Li, S.J.; Wen, B.; Lu, Y.; Yu, X. Retinoid X Receptor alpha Regulates DHA-Dependent Spinogenesis and Functional Synapse Formation In Vivo. Cell Rep. 2020, 31, 107649. [Google Scholar] [CrossRef] [PubMed]
- de Urquiza, A.M.; Liu, S.; Sjoberg, M.; Zetterstrom, R.H.; Griffiths, W.; Sjovall, J.; Perlmann, T. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000, 290, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Lengqvist, J.; Mata De Urquiza, A.; Bergman, A.C.; Willson, T.M.; Sjovall, J.; Perlmann, T.; Griffiths, W.J. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol. Cell Proteom. 2004, 3, 692–703. [Google Scholar] [CrossRef]
- Heurteaux, C.; Guy, N.; Laigle, C.; Blondeau, N.; Duprat, F.; Mazzuca, M.; Lang-Lazdunski, L.; Widmann, C.; Zanzouri, M.; Romey, G.; et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004, 23, 2684–2695. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Bruehl, C.; Voskuyl, R.A.; Kang, J.X.; Leaf, A.; Wadman, W.J. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc. Natl. Acad. Sci. USA 1996, 93, 12559–12563. [Google Scholar] [CrossRef]
- Valentine, R.C.; Valentine, D.L. Omega-3 fatty acids in cellular membranes: A unified concept. Prog. Lipid Res. 2004, 43, 383–402. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Lin, X. Molecular View on the Impact of DHA Molecules on the Physical Properties of a Model Cell Membrane. J. Chem. Inf. Model. 2022, 62, 2421–2431. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J. Neurotrauma 2004, 21, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- King, V.R.; Huang, W.L.; Dyall, S.C.; Curran, O.E.; Priestley, J.V.; Michael-Titus, A.T. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 2006, 26, 4672–4680. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.L.; King, V.R.; Curran, O.E.; Dyall, S.C.; Ward, R.E.; Lal, N.; Priestley, J.V.; Michael-Titus, A.T. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 2007, 130, 3004–3019. [Google Scholar] [CrossRef]
- Zhu, W.; Cui, G.; Li, T.; Chen, H.; Zhu, J.; Ding, Y.; Zhao, L. Docosahexaenoic Acid Protects Traumatic Brain Injury by Regulating NOX(2) Generation via Nrf2 Signaling Pathway. Neurochem. Res. 2020, 45, 1839–1850. [Google Scholar] [CrossRef]
- Liu, Z.H.; Chen, N.Y.; Tu, P.H.; Wu, C.T.; Chiu, S.C.; Huang, Y.C.; Lim, S.N.; Yip, P.K. DHA Attenuates Cerebral Edema Following Traumatic Brain Injury via the Reduction in Blood-Brain Barrier Permeability. Int. J. Mol. Sci. 2020, 21, 6291. [Google Scholar] [CrossRef]
- Thau-Zuchman, O.; Ingram, R.; Harvey, G.G.; Cooke, T.; Palmas, F.; Pallier, P.N.; Brook, J.; Priestley, J.V.; Dalli, J.; Tremoleda, J.L.; et al. A Single Injection of Docosahexaenoic Acid Induces a Pro-Resolving Lipid Mediator Profile in the Injured Tissue and a Long-Lasting Reduction in Neurological Deficit after Traumatic Brain Injury in Mice. J. Neurotrauma 2020, 37, 66–79. [Google Scholar] [CrossRef]
- Zhu, W.; Zhao, L.; Li, T.; Xu, H.; Ding, Y.; Cui, G. Docosahexaenoic acid ameliorates traumatic brain injury involving JNK-mediated Tau phosphorylation signaling. Neurosci. Res. 2020, 157, 44–50. [Google Scholar] [CrossRef]
- Zhu, W.; Chi, N.; Zou, P.; Chen, H.; Tang, G.; Zhao, W. Effect of docosahexaenoic acid on traumatic brain injury in rats. Exp. Ther. Med. 2017, 14, 4411–4416. [Google Scholar] [CrossRef]
- Begum, G.; Yan, H.Q.; Li, L.; Singh, A.; Dixon, C.E.; Sun, D. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury. J. Neurosci. 2014, 34, 3743–3755. [Google Scholar] [CrossRef] [PubMed]
- Harvey, L.D.; Yin, Y.; Attarwala, I.Y.; Begum, G.; Deng, J.; Yan, H.Q.; Dixon, C.E.; Sun, D. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury. ASN Neuro 2015, 7, 1759091415618969. [Google Scholar] [CrossRef]
- Lucke-Wold, B.P.; Turner, R.C.; Logsdon, A.F.; Nguyen, L.; Bailes, J.E.; Lee, J.M.; Robson, M.J.; Omalu, B.I.; Huber, J.D.; Rosen, C.L. Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy. J. Neurosurg. 2016, 124, 687–702. [Google Scholar] [CrossRef]
- Tang, R.; Lin, Y.M.; Liu, H.X.; Wang, E.S. Neuroprotective effect of docosahexaenoic acid in rat traumatic brain injury model via regulation of TLR4/NF-Kappa B signaling pathway. Int. J. Biochem. Cell Biol. 2018, 99, 64–71. [Google Scholar] [CrossRef]
- Yin, Y.; Li, E.; Sun, G.; Yan, H.Q.; Foley, L.M.; Andrzejczuk, L.A.; Attarwala, I.Y.; Hitchens, T.K.; Kiselyov, K.; Dixon, C.E.; et al. Effects of DHA on Hippocampal Autophagy and Lysosome Function After Traumatic Brain Injury. Mol. Neurobiol. 2018, 55, 2454–2470. [Google Scholar] [CrossRef] [PubMed]
- Ghazale, H.; Ramadan, N.; Mantash, S.; Zibara, K.; El-Sitt, S.; Darwish, H.; Chamaa, F.; Boustany, R.M.; Mondello, S.; Abou-Kheir, W.; et al. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behav. Brain Res. 2018, 340, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yang, F.; Ge, Z.; Tang, Z.; Zhang, K.; Chen, B.; Wang, H.; Hou, J.; Li, H.; Tang, Z. Iduna contributes to the therapeutic effect of DHA in a cell and mouse model of traumatic brain injury via Wnt/MDM2 pathway. Folia Neuropathol. 2022, 60, 92–104. [Google Scholar] [CrossRef]
- Pu, H.; Jiang, X.; Wei, Z.; Hong, D.; Hassan, S.; Zhang, W.; Liu, J.; Meng, H.; Shi, Y.; Chen, L.; et al. Repetitive and Prolonged Omega-3 Fatty Acid Treatment After Traumatic Brain Injury Enhances Long-Term Tissue Restoration and Cognitive Recovery. Cell Transplant. 2017, 26, 555–569. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Chen, C.; Xie, B.; Fang, Z.; Hu, W.; Chen, J.; Fu, H.; He, H. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-kappaB pathway following experimental traumatic brain injury. J. Neuroinflamm. 2017, 14, 143. [Google Scholar] [CrossRef]
- Chen, X.; Pan, Z.; Fang, Z.; Lin, W.; Wu, S.; Yang, F.; Li, Y.; Fu, H.; Gao, H.; Li, S. Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1. J. Neuroinflamm. 2018, 15, 310. [Google Scholar] [CrossRef]
- Chen, X.; Chen, C.; Fan, S.; Wu, S.; Yang, F.; Fang, Z.; Fu, H.; Li, Y. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-kappaB pathway following experimental traumatic brain injury. J. Neuroinflamm. 2018, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, J.; Feng, X.; Jiao, W. Omega-3 polyunsaturated fatty acids alleviate early brain injury after traumatic brain injury by inhibiting neuroinflammation and necroptosis. Transl. Neurosci. 2023, 14, 20220277. [Google Scholar] [CrossRef]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J. Neurotrauma 2007, 24, 1587–1595. [Google Scholar] [CrossRef]
- Bailes, J.E.; Mills, J.D. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J. Neurotrauma 2010, 27, 1617–1624. [Google Scholar] [CrossRef]
- Mills, J.D.; Bailes, J.E.; Sedney, C.L.; Hutchins, H.; Sears, B. Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model. J. Neurosurg. 2011, 114, 77–84. [Google Scholar] [CrossRef]
- Mills, J.D.; Hadley, K.; Bailes, J.E. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery 2011, 68, 474–481; discussion 481. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J. Neurotrauma 2011, 28, 2113–2122. [Google Scholar] [CrossRef]
- Ying, Z.; Feng, C.; Agrawal, R.; Zhuang, Y.; Gomez-Pinilla, F. Dietary omega-3 deficiency from gestation increases spinal cord vulnerability to traumatic brain injury-induced damage. PLoS ONE 2012, 7, e52998. [Google Scholar] [CrossRef]
- Pu, H.; Guo, Y.; Zhang, W.; Huang, L.; Wang, G.; Liou, A.K.; Zhang, J.; Zhang, P.; Leak, R.K.; Wang, Y.; et al. Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J. Cereb. Blood Flow. Metab. 2013, 33, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.L.; Berman, N.E.; Levant, B. Low brain DHA content worsens sensorimotor outcomes after TBI and decreases TBI-induced Timp1 expression in juvenile rats. Prostaglandins Leukot. Essent. Fatty Acids 2013, 89, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Van, K.C.; Gavitt, B.J.; Grayson, J.K.; Lu, Y.-C.; Lyeth, B.G.; Pichakron, K.O. Effect of fish oil supplementation in a rat model of multiple mild traumatic brain injuries. Restor. Neurol. Neurosci. 2013, 31, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Exercise facilitates the action of dietary DHA on functional recovery after brain trauma. Neuroscience 2013, 248, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Tyagi, E.; Vergnes, L.; Reue, K.; Gomez-Pinilla, F. Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim. Biophys. Acta 2014, 1842, 535–546. [Google Scholar] [CrossRef]
- Desai, A.; Kevala, K.; Kim, H.Y. Depletion of brain docosahexaenoic acid impairs recovery from traumatic brain injury. PLoS ONE 2014, 9, e86472. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.L.; Berman, N.E.; Gregg, P.R.; Levant, B. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury. Prostaglandins Leukot. Essent. Fatty Acids 2014, 90, 5–11. [Google Scholar] [CrossRef]
- Tyagi, E.; Agrawal, R.; Ying, Z.; Gomez-Pinilla, F. TBI and sex: Crucial role of progesterone protecting the brain in an omega-3 deficient condition. Exp. Neurol. 2014, 253, 41–51. [Google Scholar] [CrossRef]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary strategy to repair plasma membrane after brain trauma: Implications for plasticity and cognition. Neurorehabil Neural Repair 2014, 28, 75–84. [Google Scholar] [CrossRef]
- Desai, A.; Park, T.; Barnes, J.; Kevala, K.; Chen, H.; Kim, H.Y. Reduced acute neuroinflammation and improved functional recovery after traumatic brain injury by alpha-linolenic acid supplementation in mice. J. Neuroinflamm. 2016, 13, 253. [Google Scholar] [CrossRef]
- Schober, M.E.; Requena, D.F.; Abdullah, O.M.; Casper, T.C.; Beachy, J.; Malleske, D.; Pauly, J.R. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury. J. Neurotrauma 2016, 33, 390–402. [Google Scholar] [CrossRef]
- Butt, C.M.; Harrison, J.L.; Rowe, R.K.; Jones, J.; Wynalda, K.M.; Salem, N., Jr.; Lifshitz, J.; Pauly, J.R. Selective reduction of brain docosahexaenoic acid after experimental brain injury and mitigation of neuroinflammatory outcomes with dietary DHA. Curr. Res. Concussion 2017, 4, e38–e54. [Google Scholar] [CrossRef]
- Lin, C.; Chao, H.; Li, Z.; Xu, X.; Liu, Y.; Bao, Z.; Hou, L.; Liu, Y.; Wang, X.; You, Y.; et al. Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp. Neurol. 2017, 290, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, T.H.; Harbert, C.L.; Pidoplichko, V.; Almeida-Suhett, C.P.; Pan, H.; Rossetti, K.; Braga, M.F.M.; Marini, A.M. Alpha-Linolenic Acid Treatment Reduces the Contusion and Prevents the Development of Anxiety-Like Behavior Induced by a Mild Traumatic Brain Injury in Rats. Mol. Neurobiol. 2018, 55, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Ding, Y.; Kong, W.; Li, T.; Chen, H. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain Injury Models via Activating Nrf2-ARE Signaling. Inflammation 2018, 41, 1182–1193. [Google Scholar] [CrossRef]
- Ataizi, S.; Ozkoc, M.; Kanbak, G.; Karimkhani, H.; Donmez, D.B.; Ustunisik, N.; Ozturk, B. A possible protective role of betain and omega-3 supplementation in traumatic brain injury. Ann. Ital. Chir. 2019, 90, 174–181. [Google Scholar]
- Schober, M.E.; Requena, D.F.; Casper, T.C.; Velhorst, A.K.; Lolofie, A.; McFarlane, K.E.; Otto, T.E.; Terry, C.; Gensel, J.C. Docosahexaenoic acid decreased neuroinflammation in rat pups after controlled cortical impact. Exp. Neurol. 2019, 320, 112971. [Google Scholar] [CrossRef]
- Reyes, L.D.; Haight, T.; Desai, A.; Chen, H.; Bosomtwi, A.; Korotcov, A.; Dardzinski, B.; Kim, H.Y.; Pierpaoli, C. Investigation of the effect of dietary intake of omega-3 polyunsaturated fatty acids on trauma-induced white matter injury with quantitative diffusion MRI in mice. J. Neurosci. Res. 2020, 98, 2232–2244. [Google Scholar] [CrossRef]
- Zhang, E.; Wan, X.; Yang, L.; Wang, D.; Chen, Z.; Chen, Y.; Liu, M.; Zhang, G.; Wu, J.; Han, H.; et al. Omega-3 Polyunsaturated Fatty Acids Alleviate Traumatic Brain Injury by Regulating the Glymphatic Pathway in Mice. Front. Neurol. 2020, 11, 707. [Google Scholar] [CrossRef]
- Desai, A.; Chen, H.; Kevala, K.; Kim, H.Y. Higher n-3 Polyunsaturated Fatty Acid Diet Improves Long-Term Neuropathological and Functional Outcome after Repeated Mild Traumatic Brain Injury. J. Neurotrauma 2021, 38, 2622–2632. [Google Scholar] [CrossRef]
- Schober, M.E.; Requena, D.F.; Ohde, J.W.; Maves, S.; Pauly, J.R. Docosahexaenoic acid decreased inflammatory gene expression, but not 18-kDa translocator protein binding, in rat pup brain after controlled cortical impact. J. Trauma Acute Care Surg. 2021, 90, 866–873. [Google Scholar] [CrossRef]
- Tyagi, E.; Zhuang, Y.; Agrawal, R.; Ying, Z.; Gomez-Pinilla, F. Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol. Dis. 2015, 73, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Lecques, J.D.; Kerr, B.J.K.; Hillyer, L.M.; Kang, J.X.; Robinson, L.E.; Ma, D.W.L. N-3 Polyunsaturated Fatty Acids Ameliorate Neurobehavioral Outcomes Post-Mild Traumatic Brain Injury in the Fat-1 Mouse Model. Nutrients 2021, 13, 4092. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.S.; Lust, C.A.C.; Lecques, J.D.; Hillyer, L.M.; Mountjoy, M.; Kang, J.X.; Robinson, L.E.; Ma, D.W.L. n-3 PUFA ameliorate functional outcomes following repetitive mTBI in the fat-1 mouse model. Front. Nutr. 2024, 11, 1410884. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.M.; Jones, M.T.; Kirk, K.M.; Gable, D.A.; Repshas, J.T.; Johnson, T.A.; Andreasson, U.; Norgren, N.; Blennow, K.; Zetterberg, H. Effect of Docosahexaenoic Acid on a Biomarker of Head Trauma in American Football. Med. Sci. Sports Exerc. 2016, 48, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Lust, C.A.C.; Burns, J.L.; Jones, M.T.; Smith, S.B.; Choi, S.H.; Krk, M.; Gable, D.A.; Oliver, J.M.; Ma, D.W.L. The Dose-Response Effect of Docosahexaenoic Acid on the Omega-3 Index in American Football Athletes. Med. Sci. Sports Exerc. 2023, 55, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Kunces, L.J.; Keenan, J.; Schmidt, C.M.; Schmidt, M.A. Molecular Deficits Relevant to Concussion Are Prevalent in Top-Ranked Football Players Entering the National Football League Draft. J. Strength Cond. Res. 2021, 35, 3139–3144. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Zynda, A.J.; Sabatino, M.J.; Jo, C.; Ellis, H.B.; Dimeff, R.J. A Pilot Randomized Controlled Trial of Docosahexaenoic Acid for the Treatment of Sport-Related Concussion in Adolescents. Clin. Pediatr. 2022, 61, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Poblete, R.A.; Pena, J.E.; Kuo, G.; Tarzi, F.; Nguyen, P.L.; Cen, S.Y.; Yaceczko, S.; Louie, S.G.; Lewis, M.R.; Martin, M.; et al. Immunonutrition with Omega-3 Fatty Acid Supplementation in Severe TBI: Retrospective Analysis of Patient Characteristics and Outcomes. Neurotrauma Rep. 2024, 5, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H.; Nishi, D.; Matsumura, K.; Hamazaki, K.; Hamazaki, T.; Matsuoka, Y.J. Limited effect of omega-3 fatty acids on the quality of life in survivors of traumatic injury: A randomized, placebo-controlled trial. Prostaglandins Leukot. Essent. Fatty Acids 2017, 127, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bailes, J.E.; Abusuwwa, R.; Arshad, M.; Chowdhry, S.A.; Schleicher, D.; Hempeck, N.; Gandhi, Y.N.; Jaffa, Z.; Bokhari, F.; Karahalios, D.; et al. Omega-3 fatty acid supplementation in severe brain trauma: Case for a large multicenter trial. J. Neurosurg. 2020, 133, 598–602. [Google Scholar] [CrossRef]
- Domenichiello, A.F.; Jensen, J.R.; Zamora, D.; Horowitz, M.; Yuan, Z.X.; Faurot, K.; Mann, J.D.; Mannes, A.J.; Ramsden, C.E. Identifying oxidized lipid mediators as prognostic biomarkers of chronic posttraumatic headache. Pain 2020, 161, 2775–2785. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Lucas, S.; Dikmen, S.; Braden, C.A.; Brown, A.W.; Brunner, R.; Diaz-Arrastia, R.; Walker, W.C.; Watanabe, T.K.; Bell, K.R. Natural history of headache after traumatic brain injury. J. Neurotrauma 2011, 28, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Barta, J.R.; Kim, S.; Park, H.J. Energy-dense diets lower in protein, antioxidants, and omega-3 fatty acids among US adults with a self-reported head injury with loss of consciousness: A nationwide study, NHANES 2011–2014. Nutr. Res. 2022, 105, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Yip, P.K.; Hasan, S.; Liu, Z.H.; Uff, C.E.G. Characterisation of Severe Traumatic Brain Injury Severity from Fresh Cerebral Biopsy of Living Patients: An Immunohistochemical Study. Biomedicines 2022, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.T.; Maas, A.I. The Glasgow Coma Scale at 50: Looking back and forward. Lancet 2024, 404, 734–735. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.R.; Bazinet, R.P. Heterogeneity in the response to n-3 polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Deckelbaum, R.J.; Calder, P.C. Editorial: Is it time to separate EPA from DHA when using omega-3 fatty acids to protect heart and brain? Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 65–67. [Google Scholar] [CrossRef]
- Pal, A.; Metherel, A.H.; Fiabane, L.; Buddenbaum, N.; Bazinet, R.P.; Shaikh, S.R. Do Eicosapentaenoic Acid and Docosahexaenoic Acid Have the Potential to Compete against Each Other? Nutrients 2020, 12, 3718. [Google Scholar] [CrossRef]
- Namiranian, K.; Brink, C.D.; Goodman, J.C.; Robertson, C.S.; Bryan, R.M., Jr. Traumatic brain injury in mice lacking the K channel, TREK-1. J. Cereb. Blood Flow Metab. 2011, 31, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Paterniti, I.; Impellizzeri, D.; Di Paola, R.; Esposito, E.; Gladman, S.; Yip, P.; Priestley, J.V.; Michael-Titus, A.T.; Cuzzocrea, S. Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: In-vivo and in-vitro studies. J. Neuroinflamm. 2014, 11, 6. [Google Scholar] [CrossRef]
- Temkin, N.R.; Anderson, G.D.; Winn, H.R.; Ellenbogen, R.G.; Britz, G.W.; Schuster, J.; Lucas, T.; Newell, D.W.; Mansfield, P.N.; Machamer, J.E.; et al. Magnesium sulfate for neuroprotection after traumatic brain injury: A randomised controlled trial. Lancet Neurol. 2007, 6, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, B.E.; Maas, A.I.; Narayan, R.K.; van der Hoop, R.G.; MacAllister, T.; Ward, J.D.; Nelson, N.R.; Stocchetti, N.; Investigators, S.T. A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 2014, 371, 2467–2476. [Google Scholar] [CrossRef]
- Wright, D.W.; Yeatts, S.D.; Silbergleit, R.; Palesch, Y.Y.; Hertzberg, V.S.; Frankel, M.; Goldstein, F.C.; Caveney, A.F.; Howlett-Smith, H.; Bengelink, E.M.; et al. Very early administration of progesterone for acute traumatic brain injury. N. Engl. J. Med. 2014, 371, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.G. Embracing failure: What the Phase III progesterone studies can teach about TBI clinical trials. Brain Inj. 2015, 29, 1259–1272. [Google Scholar] [CrossRef]
- Bragge, P.; Synnot, A.; Maas, A.I.; Menon, D.K.; Cooper, D.J.; Rosenfeld, J.V.; Gruen, R.L. A State-of-the-Science Overview of Randomized Controlled Trials Evaluating Acute Management of Moderate-to-Severe Traumatic Brain Injury. J. Neurotrauma 2016, 33, 1461–1478. [Google Scholar] [CrossRef]
- Harrison, J.L.; Rowe, R.K.; Ellis, T.W.; Yee, N.S.; O’Hara, B.F.; Adelson, P.D.; Lifshitz, J. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav. Immun. 2015, 47, 131–140. [Google Scholar] [CrossRef]
- Bisicchia, E.; Sasso, V.; Catanzaro, G.; Leuti, A.; Besharat, Z.M.; Chiacchiarini, M.; Molinari, M.; Ferretti, E.; Viscomi, M.T.; Chiurchiu, V. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs. Mol. Neurobiol. 2018, 55, 6894–6905. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.W.V.; Davidsson, J.; Lidin, E.; Angeria, M.; Risling, M.; Gunther, M. Brain tissue saving effects by single-dose intralesional administration of Neuroprotectin D1 on experimental focal penetrating brain injury in rats. J. Clin. Neurosci. 2019, 64, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Z.; Zhang, B.Z.; Zhao, X.J.; Zhang, Z.Y. Resolvin D1 ameliorates cognitive impairment following traumatic brain injury via protecting astrocytic mitochondria. J. Neurochem. 2020, 154, 530–546. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, A.I.; Tyrtyshnaia, A.A.; Pislyagin, E.A.; Dyuizen, I.V.; Sultanov, R.M.; Manzhulo, I.V. N-docosahexaenoylethanolamine reduces neuroinflammation and cognitive impairment after mild traumatic brain injury in rats. Sci. Rep. 2021, 11, 756. [Google Scholar] [CrossRef]
- Ponomarenko, A.; Tyrtyshnaia, A.; Ivashkevich, D.; Ermolenko, E.; Dyuizen, I.; Manzhulo, I. Synaptamide Modulates Astroglial Activity in Mild Traumatic Brain Injury. Mar. Drugs 2022, 20, 538. [Google Scholar] [CrossRef] [PubMed]
- Kushner, D.S.; Alvarez, G. Dual diagnosis: Traumatic brain injury with spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 2014, 25, 681–696, ix–x. [Google Scholar] [CrossRef]
- Yip, P.K.; Bowes, A.L.; Hall, J.C.E.; Burguillos, M.A.; Ip, T.H.R.; Baskerville, T.; Liu, Z.H.; Mohamed, M.; Getachew, F.; Lindsay, A.D.; et al. Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury. Hum. Mol. Genet. 2019, 28, 2427–2448. [Google Scholar] [CrossRef]
- Georgieva, M.; Wei, Y.; Dumitrascuta, M.; Pertwee, R.; Finnerup, N.B.; Huang, W. Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain 2019, 160, 2724–2742. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, E.; Daly, E.; Pearce, A.J.; Ryan, L. Nutritional interventions to support acute mTBI recovery. Front. Nutr. 2022, 9, 977728. [Google Scholar] [CrossRef]
- Conti, F.; McCue, J.J.; DiTuro, P.; Galpin, A.J.; Wood, T.R. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024, 16, 2430. [Google Scholar] [CrossRef] [PubMed]
- Zirpoli, H.; Chang, C.L.; Carpentier, Y.A.; Michael-Titus, A.T.; Ten, V.S.; Deckelbaum, R.J. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu. Rev. Nutr. 2020, 40, 161–187. [Google Scholar] [CrossRef]
- Zirpoli, H.; Bernis, M.E.; Sabir, H.; Manual Kollareth, D.J.; Hamilton, J.A.; Huang, N.; Ng, J.; Sosunov, S.A.; Gaebler, B.; Ten, V.S.; et al. Omega-3 fatty acid diglyceride emulsions as a novel injectable acute therapeutic in neonatal hypoxic-ischemic brain injury. Biomed. Pharmacother. 2024, 175, 116749. [Google Scholar] [CrossRef]
- Thau-Zuchman, O.; Gomes, R.N.; Dyall, S.C.; Davies, M.; Priestley, J.V.; Groenendijk, M.; De Wilde, M.C.; Tremoleda, J.L.; Michael-Titus, A.T. Brain Phospholipid Precursors Administered Post-Injury Reduce Tissue Damage and Improve Neurological Outcome in Experimental Traumatic Brain Injury. J. Neurotrauma 2019, 36, 25–42. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valero-Hernandez, E.; Tremoleda, J.L.; Michael-Titus, A.T. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients 2024, 16, 4175. https://doi.org/10.3390/nu16234175
Valero-Hernandez E, Tremoleda JL, Michael-Titus AT. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients. 2024; 16(23):4175. https://doi.org/10.3390/nu16234175
Chicago/Turabian StyleValero-Hernandez, Ester, Jordi L. Tremoleda, and Adina T. Michael-Titus. 2024. "Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain" Nutrients 16, no. 23: 4175. https://doi.org/10.3390/nu16234175
APA StyleValero-Hernandez, E., Tremoleda, J. L., & Michael-Titus, A. T. (2024). Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients, 16(23), 4175. https://doi.org/10.3390/nu16234175