Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer’s Disease Risk
<p>The association between filtered coffee consumption and the Motor Execution Network (i.e., neural network activity) in adults. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>The effect size (i.e., estimated Beta values) for neural network intrinsic functional connectivity in a given network. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>The association between standard tea consumption and the Memory Consolidation Network (i.e., neural network activity) in adults. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>The association between filtered coffee and the Memory Consolidation Network (i.e., neural network activity) in adults without or with the APOE4 allele (“positive”; “negative”). Blue and red, respectively, represent APOE4-negative and APOE4-positive participants. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>The association between standard tea consumption and the Sensorimotor Network (i.e., neural network activity) in adults without or with the APOE4 allele (“positive”; “negative”). Blue and red, respectively, represent APOE4-negative and APOE4-positive participants. * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort and Participants
2.2. Resting-State fMRI
2.3. Genetic Factors—APOE and AD Family History
2.4. Covariates
2.5. Tea and Coffee Consumption
2.6. Statistical Analyses
3. Results
3.1. Demographics and Data Summaries
3.2. Main Effects
3.3. Coffee Consumption: Interactions with APOE4 Status and Family History
3.4. Standard Tea Consumption: Interactions with APOE4 Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chetelat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Nandi, A.; Counts, N.; Broker, J.; Malik, S.; Chen, S.; Han, R.; Klusty, J.; Seligman, B.; Tortorice, D.; Vigo, D.; et al. Cost of care for Alzheimer’s disease and related dementias in the United States: 2016 to 2060. NPJ Aging 2024, 10, 13. [Google Scholar] [CrossRef]
- 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022, 18, 700–789. [CrossRef]
- Dhana, K.; Beck, T.; Desai, P.; Wilson, R.S.; Evans, D.A.; Rajan, K.B. Prevalence of Alzheimer’s disease dementia in the 50 US states and 3142 counties: A population estimate using the 2020 bridged-race postcensal from the National Center for Health Statistics. Alzheimers Dement. 2023, 19, 4388–4395. [Google Scholar] [CrossRef]
- Albadrani, H.M.; Chauhan, P.; Ashique, S.; Babu, M.A.; Iqbal, D.; Almutary, A.G.; Abomughaid, M.M.; Kamal, M.; Paiva-Santos, A.C.; Alsaweed, M.; et al. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer’s disease. Biomed. Pharmacother. 2024, 174, 116376. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B. A Brief History of the Progress in Our Understanding of Genetics and Lifestyle, Especially Diet, in the Risk of Alzheimer’s Disease. J. Alzheimers Dis. 2024, 100, S165–S178. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Steibel, J.P.; Willette, A.A. Vitamin B6, B12, and Folate’s Influence on Neural Networks in the UK Biobank Cohort. Nutrients 2024, 16, 2050. [Google Scholar] [CrossRef]
- Li, T.; Willette, A.A.; Wang, Q.; Pollpeter, A.; Larsen, B.A.; Mohammadiarvejeh, P.; Fili, M. Alzheimer’s Disease Genetic Influences Impact the Associations between Diet and Resting-State Functional Connectivity: A Study from the UK Biobank. Nutrients 2023, 15, 3390. [Google Scholar] [CrossRef]
- Husain, M.A.; Laurent, B.; Plourde, M. APOE and Alzheimer’s Disease: From Lipid Transport to Physiopathology and Therapeutics. Front. Neurosci. 2021, 15, 630502. [Google Scholar] [CrossRef]
- Chelladurai, A.; Narayan, D.L.; Divakarachari, P.B.; Loganathan, U. fMRI-Based Alzheimer’s Disease Detection Using the SAS Method with Multi-Layer Perceptron Network. Brain Sci. 2023, 13, 893. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.E.; Lewis, L.D.; Chang, C.; Tian, Q.; Fultz, N.E.; Ohringer, N.A.; Rosen, B.R.; Polimeni, J.R. Resting-state “physiological networks”. NeuroImage 2020, 213, 116707. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Zhang, L.; Shen, C.; Lee, S.W.; Shen, D. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum. Brain Mapp. 2017, 38, 5019–5034. [Google Scholar] [CrossRef] [PubMed]
- Seewoo, B.J.; Joos, A.C.; Feindel, K.W. An analytical workflow for seed-based correlation and independent component analysis in interventional resting-state fMRI studies. Neurosci. Res. 2021, 165, 26–37. [Google Scholar] [CrossRef]
- Inoue-Choi, M.; Ramirez, Y.; Cornelis, M.C.; Berrington de Gonzalez, A.; Freedman, N.D.; Loftfield, E. Tea Consumption and All-Cause and Cause-Specific Mortality in the UK Biobank: A Prospective Cohort Study. Ann. Intern. Med. 2022, 175, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Komorita, Y.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Jodai-Kitamura, T.; Yoshinari, M.; Oku, Y.; Higashi, T.; Nakamura, U.; et al. Additive effects of green tea and coffee on all-cause mortality in patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. BMJ Open Diabetes Res. Care 2020, 8, e001252. [Google Scholar] [CrossRef] [PubMed]
- Valverde-Salazar, V.; Ruiz-Gabarre, D.; Garcia-Escudero, V. Alzheimer’s Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants 2023, 12, 1460. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.C.; Chen, Y.C.; Chen, T.F.; Sun, Y.; Wen, L.L.; Yip, P.K.; Chu, Y.M.; Chiou, J.M.; Chen, J.H. Coffee and tea consumption and dementia risk: The role of sex and vascular comorbidities. J. Formos. Med. Assoc. 2024, in press. [Google Scholar] [CrossRef]
- Finsterer, J. Coffee and tea are unlikely to be risk factors or preventers of Alzheimer’s disease or vascular dementia. J. Formos. Med. Assoc. 2024, in press. [Google Scholar] [CrossRef]
- Abbel, D.; Asvold, B.O.; Kolberg, M.; Selbaek, G.; Noordam, R.; Skjellegrind, H.K. The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study. Nutrients 2023, 15, 2469. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, N.; Nakanishi, Y.; Watanabe, Y.; Kitamura, K.; Kabasawa, K.; Takahashi, A.; Saito, T.; Kobayashi, R.; Takachi, R.; Oshiki, R.; et al. Association of coffee, green tea, and caffeine with the risk of dementia in older Japanese people. J. Am. Geriatr. Soc. 2021, 69, 3529–3544. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Li, S.; Li, W.D.; Wang, Y. Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank. PLoS Med. 2021, 18, e1003830. [Google Scholar] [CrossRef] [PubMed]
- Gelber, R.P.; Petrovitch, H.; Masaki, K.H.; Ross, G.W.; White, L.R. Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J. Alzheimers Dis. 2011, 23, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Orsini, N. Coffee Consumption and Risk of Dementia and Alzheimer’s Disease: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2018, 10, 1501. [Google Scholar] [CrossRef]
- Eskelinen, M.H.; Ngandu, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife coffee and tea drinking and the risk of late-life dementia: A population-based CAIDE study. J. Alzheimers Dis. 2009, 16, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liang, Z.; Xia, X.; Wang, M.H.; Zhu, C.; Pan, Y.; Sun, R. Extra cup of tea intake associated with increased risk of Alzheimer’s disease: Genetic insights from Mendelian randomization. Front. Nutr. 2023, 10, 1052281. [Google Scholar] [CrossRef] [PubMed]
- Mizuseki, K.; Miyawaki, H. Fast network oscillations during non-REM sleep support memory consolidation. Neurosci. Res. 2023, 189, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Whitman, J.C.; Metzak, P.D.; Lavigne, K.M.; Woodward, T.S. Functional connectivity in a frontoparietal network involving the dorsal anterior cingulate cortex underlies decisions to accept a hypothesis. Neuropsychologia 2013, 51, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Brodtmann, A.; Puce, A.; Darby, D.; Donnan, G. Extrastriate visual cortex reorganizes despite sequential bilateral occipital stroke: Implications for vision recovery. Front. Hum. Neurosci. 2015, 9, 224. [Google Scholar] [CrossRef]
- Bizzi, E.; Ajemian, R. From motor planning to execution: A sensorimotor loop perspective. J. Neurophysiol. 2020, 124, 1815–1823. [Google Scholar] [CrossRef]
- Pelletier, G.; Fellows, L.K. Viewing orbitofrontal cortex contributions to decision-making through the lens of object recognition. Behav. Neurosci. 2021, 135, 182–191. [Google Scholar] [CrossRef]
- Fernandez-Calle, R.; Konings, S.C.; Frontinan-Rubio, J.; Garcia-Revilla, J.; Camprubi-Ferrer, L.; Svensson, M.; Martinson, I.; Boza-Serrano, A.; Venero, J.L.; Nielsen, H.M.; et al. APOE in the bullseye of neurodegenerative diseases: Impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases. Mol. Neurodegener. 2022, 17, 62. [Google Scholar] [CrossRef]
- Marioni, R.E.; Harris, S.E.; Zhang, Q.; McRae, A.F.; Hagenaars, S.P.; Hill, W.D.; Davies, G.; Ritchie, C.W.; Gale, C.R.; Starr, J.M.; et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 2018, 8, 99. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.L.; Alfaro-Almagro, F.; Bangerter, N.K.; Thomas, D.L.; Yacoub, E.; Xu, J.; Bartsch, A.J.; Jbabdi, S.; Sotiropoulos, S.N.; Andersson, J.L.; et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 2016, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Almagro, F.; Jenkinson, M.; Bangerter, N.K.; Andersson, J.L.R.; Griffanti, L.; Douaud, G.; Sotiropoulos, S.N.; Jbabdi, S.; Hernandez-Fernandez, M.; Vallee, E.; et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 2018, 166, 400–424. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Pappas, C.; Klinedinst, B.; Pollpeter, A.; Larsen, B.; Hoth, N.; Anton, F.; Wang, Q.; Willette, A.A. Associations Between Insulin-Like Growth Factor-1 and Resting-State Functional Connectivity in Cognitively Unimpaired Midlife Adults. J. Alzheimers Dis. 2023, 94, S309–S318. [Google Scholar] [CrossRef]
- Kapogiannis, D.; Reiter, D.A.; Willette, A.A.; Mattson, M.P. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. NeuroImage 2013, 64, 112–119. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Liu, J.; Adali, T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 2009, 45, S163–S172. [Google Scholar] [CrossRef]
- Allen, E.A.; Erhardt, E.B.; Damaraju, E.; Gruner, W.; Segall, J.M.; Silva, R.F.; Havlicek, M.; Rachakonda, S.; Fries, J.; Kalyanam, R.; et al. A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 2011, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Sepulcre, J.; Talukdar, T.; Krienen, F.M.; Liu, H.; Hedden, T.; Andrews-Hanna, J.R.; Sperling, R.A.; Johnson, K.A. Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 2009, 29, 1860–1873. [Google Scholar] [CrossRef] [PubMed]
- Särelä, J.; Valpola, H.; Jordan, M. Denoising source separation. J. Mach. Learn. Res. 2005, 6, 233–272. [Google Scholar]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Pappas, C.; Le, S.T.; Wang, Q.; Klinedinst, B.S.; Larsen, B.A.; Pollpeter, A.; Lee, L.Y.; Lutz, M.W.; Gottschalk, W.K.; et al. APOE, TOMM40, and sex interactions on neural network connectivity. Neurobiol. Aging 2022, 109, 158–165. [Google Scholar] [CrossRef]
- Shweikh, Y.; Ko, F.; Chan, M.P.; Patel, P.J.; Muthy, Z.; Khaw, P.T.; Yip, J.; Strouthidis, N.; Foster, P.J.; Eye, U.K.B.; et al. Measures of socioeconomic status and self-reported glaucoma in the U.K. Biobank cohort. Eye 2015, 29, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Bradbury, K.E.; Carter, M.; Elliott, P.; Evans, C.E.L.; Ford, H.E.; Hancock, N.; et al. Validation of the Oxford WebQ Online 24-Hour Dietary Questionnaire Using Biomarkers. Am. J. Epidemiol. 2019, 188, 1858–1867. [Google Scholar] [CrossRef]
- Geijselaers, S.L.C.; Aalten, P.; Ramakers, I.; De Deyn, P.P.; Heijboer, A.C.; Koek, H.L.; OldeRikkert, M.G.M.; Papma, J.M.; Reesink, F.E.; Smits, L.L.; et al. Association of Cerebrospinal Fluid (CSF) Insulin with Cognitive Performance and CSF Biomarkers of Alzheimer’s Disease. J. Alzheimers Dis. 2018, 61, 309–320. [Google Scholar] [CrossRef]
- Selvin, S. Statistical Analysis of Epidemiologic Data, 3rd ed.; Oxford University Press: New York, NY, USA, 2004; p. 418. [Google Scholar]
- Coombs, W.T.; Algina, J.; Oltman, D.O. Univariate and multivariate omnibus hypothesis tests selected to control type I error rates when population variances are not necessarily equal. Rev. Educ. Res. 1996, 66, 137–179. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, Y.; Xu, J.; Wei, X. A comprehensive review on the prevention and regulation of Alzheimer’s disease by tea and its active ingredients. Crit. Rev. Food Sci. Nutr. 2023, 63, 10560–10584. [Google Scholar] [CrossRef] [PubMed]
- Socala, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wlaz, P. Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int. J. Mol. Sci. 2020, 22, 107. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Heitman, E.; Ingram, D.K. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 2017, 20, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Tejada, S.; Setzer, W.N.; Gortzi, O.; Sureda, A.; Braidy, N.; Daglia, M.; Manayi, A.; Nabavi, S.M. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Curr. Neuropharmacol. 2017, 15, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Espindola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Makowska, J.; Szczesny, D.; Lichucka, A.; Gieldon, A.; Chmurzynski, L.; Kaliszan, R. Preliminary studies on trigonelline as potential anti-Alzheimer disease agent: Determination by hydrophilic interaction liquid chromatography and modeling of interactions with beta-amyloid. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2014, 968, 101–104. [Google Scholar] [CrossRef]
- Berron, D.; van Westen, D.; Ossenkoppele, R.; Strandberg, O.; Hansson, O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 2020, 143, 1233–1248. [Google Scholar] [CrossRef]
- Nila, I.S.; Villagra Moran, V.M.; Khan, Z.A.; Hong, Y. Effect of Daily Coffee Consumption on the Risk of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Lifestyle Med. 2023, 13, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Panza, F.; Imbimbo, B.P.; D’Introno, A.; Galluzzo, L.; Gandin, C.; Misciagna, G.; Guerra, V.; Osella, A.; Baldereschi, M.; et al. Coffee Consumption Habits and the Risk of Mild Cognitive Impairment: The Italian Longitudinal Study on Aging. J. Alzheimers Dis. 2015, 47, 889–899. [Google Scholar] [CrossRef]
- Kakutani, S.; Watanabe, H.; Murayama, N. Green Tea Intake and Risks for Dementia, Alzheimer’s Disease, Mild Cognitive Impairment, and Cognitive Impairment: A Systematic Review. Nutrients 2019, 11, 1165. [Google Scholar] [CrossRef]
- Arab, H.; Mahjoub, S.; Hajian-Tilaki, K.; Moghadasi, M. The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: A prospective intervention study. Caspian J. Intern. Med. 2016, 7, 188–194. [Google Scholar]
- Lange, K.W.; Lange, K.M.; Nakamura, Y. Green tea, epigallocatechin gallate and the prevention of Alzheimer’s disease: Clinical evidence. Food Sci. Human. Wellness 2022, 11, 765–770. [Google Scholar] [CrossRef]
- Ide, K.; Matsuoka, N.; Yamada, H.; Furushima, D.; Kawakami, K. Effects of Tea Catechins on Alzheimer’s Disease: Recent Updates and Perspectives. Molecules 2018, 23, 2357. [Google Scholar] [CrossRef]
- Unno, K. Prevention of brain aging by green tea components: Role of catechins and theanine. J. Phys. Fit. Sports Med. 2016, 5, 117–122. [Google Scholar] [CrossRef]
- Kakuda, T. Neuroprotective effects of theanine and its preventive effects on cognitive dysfunction. Pharmacol. Res. 2011, 64, 162–168. [Google Scholar] [CrossRef]
- Ohwada, K.; Takeda, H.; Yamazaki, M.; Isogai, H.; Nakano, M.; Shimomura, M.; Fukui, K.; Urano, S. Pyrroloquinoline Quinone (PQQ) Prevents Cognitive Deficit Caused by Oxidative Stress in Rats. J. Clin. Biochem. Nutr. 2008, 42, 29–34. [Google Scholar] [CrossRef]
- Kodagoda, K.; Wickramasinghe, I. Health benefits of green and black Tea: A Review. Int. J. Adv. Eng. Res. Sci. 2017, 4, 237217. [Google Scholar] [CrossRef]
- Noguchi-Shinohara, M.; Yuki, S.; Dohmoto, C.; Ikeda, Y.; Samuraki, M.; Iwasa, K.; Yokogawa, M.; Asai, K.; Komai, K.; Nakamura, H.; et al. Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS ONE 2014, 9, e96013. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Langsetmo, L.; Yaffe, K.; Sun, Y.; Fink, H.A.; Shikany, J.M.; Leung, P.C.; Lane, N.E.; Cauley, J.A.; Osteoporotic Fractures in Men Study, G. No Effects of Black Tea on Cognitive Decline Among Older US Men: A Prospective Cohort Study. J. Alzheimers Dis. 2018, 65, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Arendash, G.W.; Schleif, W.; Rezai-Zadeh, K.; Jackson, E.K.; Zacharia, L.C.; Cracchiolo, J.R.; Shippy, D.; Tan, J. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 2006, 142, 941–952. [Google Scholar] [CrossRef]
- Mohamed, H.E.; Asker, M.E.; Younis, N.N.; Shaheen, M.A.; Eissa, R.G. Modulation of brain insulin signaling in Alzheimer’s disease: New insight on the protective role of green coffee bean extract. Nutr. Neurosci. 2020, 23, 27–36. [Google Scholar] [CrossRef]
- Panza, F.; Solfrizzi, V.; Barulli, M.R.; Bonfiglio, C.; Guerra, V.; Osella, A.; Seripa, D.; Sabba, C.; Pilotto, A.; Logroscino, G. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: A systematic review. J. Nutr. Health Aging 2015, 19, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Ojo, J.O.; Reed, J.M.; Crynen, G.; Vallabhaneni, P.; Evans, J.; Shackleton, B.; Eisenbaum, M.; Ringland, C.; Edsell, A.; Mullan, M.; et al. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer’s disease and age-matched non-demented brains. Mol. Brain 2021, 14, 110. [Google Scholar] [CrossRef]
Characteristic | ||
---|---|---|
Baseline age, mean (SD), y | 55.07 (7.48) | Range: 40–70 |
Body mass index (BMI), mean (SD), kg/m2 | 26.59 (4.17) | Range: 14.74–56.12 |
Women, % | 52.54 | |
APOE ε4 status, % | 27.68 | |
Family history of AD, % | 24.26 | |
Smoking status, % | ||
Never | 60.74 | |
Previous | 32.89 | |
Current | 6.37 | |
Alcohol status, % | ||
Never | 2.45 | |
Previous | 1.95 | |
Current | 95.60 | |
Filtered coffee, mean (SD), cups/250 mL | 1.53 (0.87) | Range: 0–6 |
Standard tea, mean (SD), cups/250 mL | 3.1 (1.47) | Range: 0–6 |
Green tea, mean (SD), cups/250 mL | 1.41 (1.01) | Range: 0–6 |
Neural Network | Filtered Coffee | Standard Tea | Green Tea | ||||||
---|---|---|---|---|---|---|---|---|---|
Beta | SE | p Value | Beta | SE | p Value | Beta | SE | p Value | |
IC 4 | 0.0657 | 0.0168 | 0.0001 | −0.0109 | 0.0068 | 0.1122 | 0.0512 | 0.0248 | 0.0396 |
IC 7 | 0.0095 | 0.0129 | 0.4626 | −0.0105 | 0.0049 | 0.0329 | −0.0016 | 0.0170 | 0.9245 |
IC 8 | 0.0773 | 0.0265 | 0.0036 | −0.0058 | 0.0104 | 0.5736 | 0.0782 | 0.0377 | 0.0385 |
IC 11 | 0.0240 | 0.0121 | 0.0471 | −0.0119 | 0.0047 | 0.0111 | 0.0098 | 0.0161 | 0.5438 |
IC 12 | 0.0431 | 0.0131 | 0.0011 | −0.0081 | 0.0052 | 0.1195 | 0.0090 | 0.0189 | 0.6341 |
IC 14 | 0.0243 | 0.0084 | 0.0037 | −0.0070 | 0.0033 | 0.0343 | −0.0045 | 0.0115 | 0.6979 |
IC 21 | 0.0230 | 0.0109 | 0.0340 | −0.0097 | 0.0043 | 0.0227 | −0.0082 | 0.0149 | 0.5814 |
Neural Network | Filtered Coffee | Standard Tea | ||||||
---|---|---|---|---|---|---|---|---|
APOE4-Negative | APOE4-Positive | APOE4-Negative | APOE4-Positive | |||||
Beta | p-Value | Beta | p-Value | Beta | p-Value | Beta | p-Value | |
IC4 | 0.0704 | 0.0000 | 0.0667 | 0.0001 | −0.0150 | 0.0009 | −0.0030 | 0.6662 |
IC7 | 0.0302 | 0.0002 | −0.0313 | 0.0099 | −0.0126 | 0.0001 | −0.0046 | 0.3483 |
IC8 | 0.0876 | 0.0000 | 0.0973 | 0.0001 | −0.0073 | 0.2794 | −0.0040 | 0.6964 |
IC11 | 0.0210 | 0.0077 | 0.0512 | 0.0000 | −0.0102 | 0.0011 | −0.0219 | 0.0000 |
IC12 | 0.0348 | 0.0000 | 0.0787 | 0.0000 | −0.0034 | 0.3188 | −0.0261 | 0.0000 |
IC14 | 0.0313 | 0.0000 | 0.0211 | 0.0154 | −0.0109 | 0.0000 | 0.0018 | 0.6042 |
IC21 | 0.0322 | 0.0000 | 0.0127 | 0.2278 | −0.0064 | 0.0205 | −0.0195 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Fili, M.; Mohammadiarvejeh, P.; Dawson, A.; Hu, G.; Willette, A.A. Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer’s Disease Risk. Nutrients 2024, 16, 4303. https://doi.org/10.3390/nu16244303
Li T, Fili M, Mohammadiarvejeh P, Dawson A, Hu G, Willette AA. Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer’s Disease Risk. Nutrients. 2024; 16(24):4303. https://doi.org/10.3390/nu16244303
Chicago/Turabian StyleLi, Tianqi, Mohammad Fili, Parvin Mohammadiarvejeh, Alice Dawson, Guiping Hu, and Auriel A. Willette. 2024. "Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer’s Disease Risk" Nutrients 16, no. 24: 4303. https://doi.org/10.3390/nu16244303
APA StyleLi, T., Fili, M., Mohammadiarvejeh, P., Dawson, A., Hu, G., & Willette, A. A. (2024). Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer’s Disease Risk. Nutrients, 16(24), 4303. https://doi.org/10.3390/nu16244303