Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study
<p>CONSORT flow diagram for recruitment and data collection.</p> "> Figure 2
<p>Muscle soreness, measured on a 100 mm visual analogue scale (VAS), during a squat (<b>A</b>) and after three MVICs (<b>B</b>) before (PRE) and after 30 min of downhill running. Participants were allocated into dairy protein (<span class="html-italic">n</span> = 11, DP), placebo (<span class="html-italic">n</span> = 11, PLA), or collagen hydrolysate (<span class="html-italic">n</span> = 11, CH) groups. * Different to PRE (<span class="html-italic">p <</span> 0.05); # different to 30 min (<span class="html-italic">p <</span> 0.05); + different to 24h (<span class="html-italic">p <</span> 0.05); ^ different to 48 h (<span class="html-italic">p <</span> 0.05).</p> "> Figure 3
<p>MVIC (<b>A</b>), IMTP (<b>B</b>), CMJ (<b>C</b>), and running economy (<b>D</b>) before (PRE) and after 30 min of downhill running. Participants were allocated into dairy protein (<span class="html-italic">n</span> = 11, DP), placebo (<span class="html-italic">n</span> = 11, PLA), or collagen hydrolysate (<span class="html-italic">n</span> = 11, CH) groups. * Different to PRE (<span class="html-italic">p <</span> 0.05); # different to 30 min (<span class="html-italic">p <</span> 0.05).</p> "> Figure 4
<p>nLog of high-sensitivity C-reactive protein (hsCRP; (<b>A</b>)), interleukin 6 (IL-6; (<b>B</b>)), and creatine kinase (CK; (<b>C</b>)) before (PRE) and after 30 min of downhill running. Participants were allocated into dairy protein (<span class="html-italic">n</span> = 11, DP), placebo (<span class="html-italic">n</span> = 11, PLA), or collagen hydrolysate (<span class="html-italic">n</span> = 11, CH) groups. * Different to PRE (<span class="html-italic">p <</span> 0.05); # different to 30 min (<span class="html-italic">p <</span> 0.05); + different to 24 h (<span class="html-italic">p <</span> 0.05); ^ different to 48 h (<span class="html-italic">p <</span> 0.05).</p> ">
Highlights
- When consumed acutely in the days after eccentric exercise, neither collagen hydrolysate nor dairy protein improved recovery better than the placebo.
- Despite the popularity of dairy protein supplementation, growing evidence suggests that it provides little benefit when recovering from exercise-induced muscle damage.
- For collagen hydrolysate to improve recovery from exercise-induced muscle damage, its supplementation for extended periods of time may be necessary.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Supplements
2.4. VO2max
2.5. Muscle-Damaging Exercise Protocol
2.6. Muscle Soreness
2.7. Muscle Function Measures
2.7.1. Counter Movement Jump
2.7.2. Isometric Midthigh Pull
2.7.3. MVIC
2.8. Running Economy
2.9. Blood-Borne Biomarkers
2.10. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Muscle Soreness
3.3. Muscle Function
3.4. Blood-Borne Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owens, D.J.; Twist, C.; Cobley, J.N.; Howatson, G.; Close, G.L. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur. J. Sport Sci. 2019, 19, 71–85. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Genovesi, F.; Nemmer, M.; Carling, C.; Alberti, G.; Howatson, G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: Current knowledge, practical application and future perspectives. Eur. J. Appl. Physiol. 2020, 120, 1965–1996. [Google Scholar] [CrossRef] [PubMed]
- Hody, S.; Croisier, J.-L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric muscle contractions: Risks and benefits. Front. Physiol. 2019, 10, 442082. [Google Scholar] [CrossRef]
- Tesarz, J.; Schuster, A.K.; Hartmann, M.; Gerhardt, A.; Eich, W. Pain perception in athletes compared to normally active controls: A systematic review with meta-analysis. Pain 2012, 153, 1253–1262. [Google Scholar] [CrossRef]
- Aljamali, N.M.; Hussein, K.M. Review on benefits and harms of nutritional supplements on health. J. Pharma Drug Regul. Aff. 2021, 3, 42–49. [Google Scholar]
- Peeling, P.; Binnie, M.J.; Goods, P.S.; Sim, M.; Burke, L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meng, Q.; Su, C.-H. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024, 16, 4081. [Google Scholar] [CrossRef]
- O’Connor, E.; Mündel, T.; Barnes, M.J. Nutritional compounds to improve post-exercise recovery. Nutrients 2022, 14, 5069. [Google Scholar] [CrossRef]
- Robberechts, R.; Poffé, C.; Ampe, N.; Bogaerts, S.; Hespel, P. Partly substituting whey for collagen peptide supplementation improves neither indices of muscle damage nor recovery of functional capacity during eccentric exercise training in fit males. Int. J. Sport Nutr. Exerc. Metab. 2023, 1, 69–78. [Google Scholar] [CrossRef] [PubMed]
- West, D.W.; Abou Sawan, S.; Mazzulla, M.; Williamson, E.; Moore, D.R. Whey protein supplementation enhances whole body protein metabolism and performance recovery after resistance exercise: A double-blind crossover study. Nutrients 2017, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Pavis, G.F.; Jameson, T.S.; Dirks, M.L.; Lee, B.P.; Abdelrahman, D.R.; Murton, A.J.; Porter, C.; Alamdari, N.; Mikus, C.R.; Wall, B.T. Improved recovery from skeletal muscle damage is largely unexplained by myofibrillar protein synthesis or inflammatory and regenerative gene expression pathways. Am. J. Physiol. 2021, 320, E291–E305. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Stevenson, E.J.; Howatson, G. Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females. Appl. Physiol. Nutr. Metab. 2018, 43, 324–330. [Google Scholar] [CrossRef]
- Buckley, J.D.; Thomson, R.L.; Coates, A.M.; Howe, P.R.; DeNichilo, M.O.; Rowney, M.K. Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. J. Sci. Med. Sport 2010, 13, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.B.; Rybalka, E.; Stathis, C.G.; Cribb, P.J.; Hayes, A. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J. Int. Soc. Sports Nutr. 2010, 7, 30. [Google Scholar] [CrossRef]
- Gee, T.I.; Woolrich, T.J.; Smith, M.F. Effectiveness of whey protein hydrolysate and milk-based formulated drinks on recovery of strength and power following acute resistance exercise. J. Hum. Kinet. 2019, 68, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Zwetsloot, K.A.; Simonson, A.J.; Hoyle, A.T.; Wang, X.; Nelson, H.K.; Lefranc-Millot, C.; Guérin-Deremaux, L. Effects of whey and pea protein supplementation on post-eccentric exercise muscle damage: A randomized trial. Nutrients 2020, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Saracino, P.G.; Morrissey, M.C.; Donaldson, J.; Rentería, L.I.; McKune, A.J. Pre-sleep protein supplementation after an acute bout of evening resistance exercise does not improve next day performance or recovery in resistance trained men. J. Int. Soc. Sports Nutr. 2022, 19, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Saracino, P.G.; Saylor, H.E.; Hanna, B.R.; Hickner, R.C.; Kim, J.-S.; Ormsbee, M.J. Effects of pre-sleep whey vs. plant-based protein consumption on muscle recovery following damaging morning exercise. Nutrients 2020, 12, 2049. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.G.; Hind, K.; MacNaughton, L.S. The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: A systematic review with meta-analysis. Eur. J. Clin. Nutr. 2023, 77, 767–783. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Patel, V.; Aggarwal, K.; Dhawan, A.; Singh, B.; Shah, P.; Sawhney, A.; Jain, R. (Eds.) Protein supplementation: The double-edged sword. In Baylor University Medical Center Proceedings; Taylor & Francis: Abingdon, UK, 2024; pp. 118–126. [Google Scholar]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel protein sources for applications in meat-alternative products—Insight and challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Holwerda, A.M.; van Loon, L.J. The impact of collagen protein ingestion on musculoskeletal connective tissue remodeling: A narrative review. Nutr. Rev. 2022, 80, 1497–1514. [Google Scholar] [CrossRef]
- Skov, K.; Oxfeldt, M.; Thøgersen, R.; Hansen, M.; Bertram, H.C. Enzymatic hydrolysis of a collagen hydrolysate enhances postprandial absorption rate—A randomized controlled trial. Nutrients 2019, 11, 1064. [Google Scholar] [CrossRef] [PubMed]
- Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Stable isotope-labeled collagen: A novel and versatile tool for quantitative collagen analyses using mass spectrometry. J. Proteome Res. 2014, 13, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Hoshi, T.; Tajima, A. Characteristics of transmural potential changes associated with the proton-peptide co-transport in toad small intestine. J. Physiol. 1987, 394, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Jimi, S.; Kusubata, M. Generation of bioactive prolyl-hydroxyproline (Pro-Hyp) by oral administration of collagen hydrolysate and degradation of endogenous collagen. Int. J. Food Sci. Technol. 2019, 54, 1976–1980. [Google Scholar] [CrossRef]
- Sato, K.; Asai, T.T.; Jimi, S. Collagen-derived di-peptide, prolylhydroxyproline (Pro-Hyp): A new low molecular weight growth-initiating factor for specific fibroblasts associated with wound healing. Front. Cell Dev. Biol. 2020, 8, 548975. [Google Scholar] [CrossRef]
- Tenberg, S.; Nosaka, K.; Wilke, J. The relationship between acute exercise-induced changes in extramuscular connective tissue thickness and delayed onset muscle soreness in healthy participants: A randomized controlled crossover trial. Sports Med. -Open 2022, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Prowting, J.L.; Bemben, D.; Black, C.D.; Day, E.A.; Campbell, J.A. Effects of collagen peptides on recovery following eccentric exercise in resistance-trained males—A pilot study. Int. J. Sport Nutr. Exerc. Metab. 2020, 31, 32–39. [Google Scholar] [CrossRef]
- Wilke, J.; Behringer, M. Is “delayed onset muscle soreness” a false friend? The potential implication of the fascial connective tissue in post-exercise discomfort. Int. J. Mol. Sci. 2021, 22, 9482. [Google Scholar] [CrossRef]
- Clifford, T.; Ventress, M.; Allerton, D.M.; Stansfield, S.; Tang, J.C.; Fraser, W.D.; Vanhoecke, B.; Prawitt, J.; Stevenson, E. The effects of collagen peptides on muscle damage, inflammation and bone turnover following exercise: A randomized, controlled trial. Amino Acids 2019, 51, 691–704. [Google Scholar] [CrossRef]
- Lopez, H.L.; Ziegenfuss, T.N.; Park, J. Evaluation of the effects of biocell collagen, a novel cartilage extract, on connective tissue support and functional recovery from exercise. Integr. Med. A Clin. J. 2015, 14, 30. [Google Scholar]
- Aussieker, T.; Hilkens, L.; Holwerda, A.M.; Fuchs, C.J.; Houben, L.H.; Senden, J.M.; Van Dijk, J.-W.; Snijders, T.; Van Loon, L.J. Collagen protein ingestion during recovery from exercise does not increase muscle connective protein synthesis rates. Med. Sci. Sports Exerc. 2023, 55, 1792. [Google Scholar] [CrossRef] [PubMed]
- Bayles, M.P. ACSM’s Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2023. [Google Scholar]
- Apweiler, E.; Wallace, D.; Stansfield, S.; Allerton, D.M.; Brown, M.A.; Stevenson, E.J.; Clifford, T. Pre-bed casein protein supplementation does not enhance acute functional recovery in physically active males and females when exercise is performed in the morning. Sports 2018, 7, 5. [Google Scholar] [CrossRef]
- Betts, J.A.; Toone, R.J.; Stokes, K.A.; Thompson, D. Systemic indices of skeletal muscle damage and recovery of muscle function after exercise: Effect of combined carbohydrate–protein ingestion. Appl. Physiol. Nutr. Metab. 2009, 34, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, E.; Hayes, P.R.; French, D.N.; Stevenson, E.; St Clair Gibson, A. Acute milk-based protein–CHO supplementation attenuates exercise-induced muscle damage. Appl. Physiol. Nutr. Metab. 2008, 33, 775–783. [Google Scholar] [CrossRef]
- Cockburn, E.; Stevenson, E.; Hayes, P.R.; Robson-Ansley, P.; Howatson, G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl. Physiol. Nutr. Metab. 2010, 35, 270–277. [Google Scholar] [CrossRef]
- Davies, R.W.; Bass, J.J.; Carson, B.P.; Norton, C.; Kozior, M.; Wilkinson, D.J.; Brook, M.S.; Atherton, P.J.; Smith, K.; Jakeman, P.M. The effect of whey protein supplementation on myofibrillar protein synthesis and performance recovery in resistance-trained men. Nutrients 2020, 12, 845. [Google Scholar] [CrossRef]
- Hilkens, L.; Boerboom, M.; van Schijndel, N.; Bons, J.; van Loon, L.J.; van Dijk, J.-W. Bone turnover following high-impact exercise is not modulated by collagen supplementation in young men: A randomized cross-over trial. Bone 2023, 170, 116705. [Google Scholar] [CrossRef]
- Hirose, N.; Sato, M.; Yanagisawa, O.; Fukubayashi, T. Milk peptide intake may decrease muscle damage after eccentric exercise. Int. J. Sport Health Sci. 2013, 11, 20–28. [Google Scholar] [CrossRef]
- White, J.P.; Wilson, J.M.; Austin, K.G.; Greer, B.K.; St John, N.; Panton, L.B. Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2008, 5, 5. [Google Scholar] [CrossRef]
- Markus, I.; Constantini, K.; Hoffman, J.; Bartolomei, S.; Gepner, Y. Exercise-induced muscle damage: Mechanism, assessment and nutritional factors to accelerate recovery. Eur. J. Appl. Physiol. 2021, 121, 969–992. [Google Scholar] [CrossRef]
- Lacroix, M.; Bos, C.; Léonil, J.; Airinei, G.; Luengo, C.; Daré, S.; Benamouzig, R.; Fouillet, H.; Fauquant, J.; Tomé, D.; et al. Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am. J. Clin. Nutr. 2006, 84, 1070–1079. [Google Scholar] [CrossRef]
- Rindom, E.; Nielsen, M.; Kececi, K.; Jensen, M.; Vissing, K.; Farup, J. Effect of protein quality on recovery after intense resistance training. Eur. J. Appl. Physiol. 2016, 116, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Draganidis, D.; Chondrogianni, N.; Chatzinikolaou, A.; Terzis, G.; Karagounis, L.G.; Sovatzidis, A.; Avloniti, A.; Lefaki, M.; Protopapa, M.; Deli, C.K. Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans. Br. J. Nutr. 2017, 118, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Bischof, K.; Stafilidis, S.; Bundschuh, L.; Oesser, S.; Baca, A.; König, D. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides–a randomized controlled trial. Front. Nutr. 2024, 11, 1384112. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, T.; Philp, A.; Watt, P.W. A single protein meal increases recovery of muscle function following an acute eccentric exercise bout. Appl. Physiol. Nutr. Metab. 2008, 33, 483–488. [Google Scholar] [CrossRef]
- Hyldahl, R.D.; Chen, T.C.; Nosaka, K. Mechanisms and mediators of the skeletal muscle repeated bout effect. Exerc. Sport Sci. Rev. 2017, 45, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Bontemps, B.; Vercruyssen, F.; Gruet, M.; Louis, J. Downhill running: What are the effects and how can we adapt? A narrative review. Sports Med. 2020, 50, 2083–2110. [Google Scholar] [CrossRef]
- Chen, T.C.; Nosaka, K.; Tu, J.-H. Changes in running economy following downhill running. J. Sports Sci. 2007, 25, 55–63. [Google Scholar] [CrossRef]
- Chrismas, B.C.; Taylor, L.; Siegler, J.C.; Midgley, A.W. A reduction in maximal incremental exercise test duration 48 h post downhill run is associated with muscle damage derived exercise induced pain. Front. Physiol. 2017, 8, 135. [Google Scholar] [CrossRef]
- Haff, G.G.; Stone, M.; O’Bryant, H.S.; Harman, E.; Dinan, C.; Johnson, R.; Han, K.-H. Force-time dependent characteristics of dynamic and isometric muscle actions. J. Strength Cond. Res. 1997, 11, 269–272. [Google Scholar]
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of isometric mid-thigh pull variables to weightlifting performance. J. Sports Med. Phys. Fit. 2013, 53, 573–581. [Google Scholar]
- Barnes, M.J.; Mündel, T.; Stannard, S.R. The effects of acute alcohol consumption and eccentric muscle damage on neuromuscular function. Appl. Physiol. Nutr. Metab. 2012, 37, 63–71. [Google Scholar] [CrossRef]
- Kuwaba, K.; Kusubata, M.; Taga, Y.; Igarashi, H.; Nakazato, K.; Mizuno, K. Dietary collagen peptides alleviate exercise-induced muscle soreness in healthy middle-aged males: A randomized double-blinded crossover clinical trial. J. Int. Soc. Sports Nutr. 2023, 20, 2206392. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Lowe, D.A.; Armstrong, R.B. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999, 27, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007, 81, 209–230. [Google Scholar] [CrossRef]
- Paulsen, G.; Ramer Mikkelsen, U.; Raastad, T.; Peake, J.M. Leucocytes, cytokines and satellite cells: What role do they play in muscle damage and regeneration following eccentric exercise? Exerc. Immunol. Rev. 2012, 18, 42–97. [Google Scholar]
- Nash, D.; Hughes, M.G.; Butcher, L.; Aicheler, R.; Smith, P.; Cullen, T.; Webb, R. IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand. J. Med. Sci. Sports 2023, 33, 4–19. [Google Scholar] [CrossRef] [PubMed]
- León-López, A.; Fuentes-Jiménez, L.; Hernández-Fuentes, A.D.; Campos-Montiel, R.G.; Aguirre-Álvarez, G. Hydrolysed collagen from sheepskins as a source of functional peptides with antioxidant activity. Int. J. Mol. Sci. 2019, 20, 3931. [Google Scholar] [CrossRef] [PubMed]
- Burnley, E.C.D.; Olson, A.N.; Sharp, R.L.; Baier, S.M.; Alekel, D.L. Impact of protein supplements on muscle recovery after exercise-induced muscle soreness. J. Exerc. Sci. Fit. 2010, 8, 89–96. [Google Scholar] [CrossRef]
- Dahlstrom, E.C. Impact of Protein Supplementation on Muscle Recovery After Exercise-Induced Muscle Soreness; Iowa State University: Ames, IA, USA, 2007. [Google Scholar]
- Eddens, L.; Browne, S.; Stevenson, E.J.; Sanderson, B.; van Someren, K.; Howatson, G. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. Appl. Physiol. Nutr. Metab. 2017, 42, 716–724. [Google Scholar] [CrossRef]
- Ten Haaf, D.S.; Flipsen, M.A.; Horstman, A.M.; Timmerman, H.; Steegers, M.A.; De Groot, L.C.; Eijsvogels, T.M.; Hopman, M.T. The effect of protein supplementation versus carbohydrate supplementation on muscle damage markers and soreness following a 15-km road race: A double-blind randomized controlled trial. Nutrients 2021, 13, 858. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; Lieberman, H.R.; McLellan, T.M. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: A systematic review. Sports Med. 2014, 44, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Oertzen-Hagemann, V.; Kirmse, M.; Eggers, B.; Pfeiffer, K.; Marcus, K.; de Marées, M.; Platen, P. Effects of 12 weeks of hypertrophy resistance exercise training combined with collagen peptide supplementation on the skeletal muscle proteome in recreationally active men. Nutrients 2019, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, S.Y.; Kamal, M.J.; Webb, E.K.; McGlory, C.; Baker, S.K.; Phillips, S.M. Whey protein but not collagen peptides stimulate acute and longer-term muscle protein synthesis with and without resistance exercise in healthy older women: A randomized controlled trial. Am. J. Clin. Nutr. 2020, 111, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef]
- Kviatkovsky, S.A.; Hickner, R.C.; Ormsbee, M.J. Collagen peptide supplementation for pain and function: Is it effective? Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Starkoff, B.E.; Lenz, E.K.; Mattern, C.O.; Too, D.; Byrne, H.K. Protein Supplementation Does Not Enhance Recovery from Exercise-Induced Muscle Damage. J. Exerc. Physiol. Online 2020, 23, 99–112. [Google Scholar]
- Børsheim, E.; Cree, M.G.; Tipton, K.D.; Elliott, T.A.; Aarsland, A.; Wolfe, R.R. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J. Appl. Physiol. 2004, 96, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Aragon, A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J. Int. Soc. Sports Nutr. 2018, 15, 10. [Google Scholar] [CrossRef]
- Deane, C.S.; Bass, J.J.; Crossland, H.; Phillips, B.E.; Atherton, P.J. Animal, plant, collagen and blended dietary proteins: Effects on musculoskeletal outcomes. Nutrients 2020, 12, 2670. [Google Scholar] [CrossRef] [PubMed]
DP (n = 11) | PLA (n = 11) | CH (n = 11) | p Value | |
---|---|---|---|---|
Age (years) | 26.2 ± 7.2 | 23.5 ± 6.1 | 26.6 ± 6.4 | 0.468 |
Height (cm) | 181.1 ± 11.4 | 182.0 ± 7.6 | 176.0 ± 5.3 | 0.220 |
Weight (kg) | 87.0 ± 12.6 | 82.3 ± 13.1 | 82.6 ± 9.0 | 0.581 |
VO2max (ml/kg/min) | 45.8 ± 5.2 | 46.3 ± 5.3 | 45.2 ± 5.7 | 0.896 |
Protein (g/day) * | 117.9 ± 55.8 | 103.7 ± 38.3 | 102.8 ± 38.4 | 0.697 |
Protein (g/day/kg BM) * | 1.4 ± 0.6 | 1.3 ± 0.6 | 1.3 ± 0.5 | 0.905 |
Energy (MJ/day) * | 10.8 ± 5.6 | 8.3 ± 2.1 | 10.0 ± 2.7 | 0.353 |
Variable | DP | PLA | CH |
---|---|---|---|
Serving size (g) | 35.8 | 53.2 | 26.9 |
Energy (kJ) | 1000 | 1000 | 1000 |
Protein (g) | 25.0 | 0.0 | 25.0 |
CHO (g) | 32.9 | 58.8 | 33.8 |
Fat (g) | 0.42 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barclay, R.; Coad, J.; Schraders, K.; Barnes, M.J. Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study. Nutrients 2024, 16, 4389. https://doi.org/10.3390/nu16244389
Barclay R, Coad J, Schraders K, Barnes MJ. Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study. Nutrients. 2024; 16(24):4389. https://doi.org/10.3390/nu16244389
Chicago/Turabian StyleBarclay, Rachel, Jane Coad, Katie Schraders, and Matthew J. Barnes. 2024. "Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study" Nutrients 16, no. 24: 4389. https://doi.org/10.3390/nu16244389
APA StyleBarclay, R., Coad, J., Schraders, K., & Barnes, M. J. (2024). Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study. Nutrients, 16(24), 4389. https://doi.org/10.3390/nu16244389