Biological Effect of Food for Special Medical Purposes (NutramilTM Complex) on Melanoma Cells in In Vitro Study
<p>Cytotoxicity of NutramilTM Complex and NutramilTM Complex without calcium caseinate in human melanoma cell lines: (<b>A</b>) WM-115, (<b>B</b>) WM-266-4, and (<b>C</b>) BJ normal fibroblast cell line. Cells were exposed to 1–10% concentrations of Nutramil<sup>TM</sup> Complex (NC) or Nutramil<sup>TM</sup> Complex without calcium caseinate (NC-CC) for 24, 48, and 72 h. Data are presented as mean ± SD for n = 15. Statistical significance was determined by a <span class="html-italic">t</span>-test; * denotes <span class="html-italic">p</span> < 0.05 compared to the untreated control (UC).</p> "> Figure 2
<p>The effect of Nutramil<sup>TM</sup> Complex and Nutramil<sup>TM</sup> Complex without calcium caseinate on proliferation in human melanoma cell lines (WM-115, WM-266-4) and normal fibroblast cell line (BJ). Cells WM-115 (<b>A</b>), WM266-4 (<b>B</b>), and BJ (<b>C</b>) were treated with Nutramil<sup>TM</sup> Complex (NC) or Nutramil<sup>TM</sup> Complex without calcium caseinate (NC-CC) at concentration 0, 3, 4% for 24, 48, and 72 h. Data are presented as mean ± SD for n = 12, normalized to the untreated control (UC) set as 100%. Statistical significance was determined by a <span class="html-italic">t</span>-test; * denotes <span class="html-italic">p</span> < 0.05 compared to UC.</p> "> Figure 3
<p>The effect of Nutramil<sup>TM</sup> Complex and Nutramil<sup>TM</sup> Complex without calcium caseinate on expression of stress and apoptosis proteins in melanoma cells (WM-115, WM-266-4). Cells WM-115 (<b>A</b>) and WM266-4 (<b>B</b>) were treated for 48 h with 4% of Nutramil <sup>TM</sup> Complex (NC) or Nutramil <sup>TM</sup> Complex without calcium caseinate (NC-CC). Staurosporine (ST; 1.5 μM concentration) was used as positive control. The results are presented as mean ± SD, normalized to the internal reference protein (α-Tubulin), with the untreated control (UC) set as 100% expression. Statistical significance was determined using a <span class="html-italic">t</span>-test; * indicates <span class="html-italic">p</span> < 0.05 compared to UC. Gene symbols and names: P44/42 MAPK (ERK1/2) phosphorylation (Thr202/Tyr204), Akt-1 phosphorylation (Ser473), Bad phosphorylation (Ser136), HSP27 phosphorylation (Ser82), Smad2 phosphorylation (Ser465/467), p53 phosphorylation (Ser15), p38 MAPK phosphorylation (Thr180/Tyr182), SAPK/JNK phosphorylation (Thr183/Tyr185), PARP cleavage (Asp214), Caspase-3 cleavage (Asp175), Caspase-7 cleavage (Asp198), IkB total, Chk-1 phosphorylation (Ser345), Chk-2 phosphorylation (Thr68), IkBα phosphorylation (Ser32/36), eIF2a phosphorylation (Ser51), TAK1 phosphorylation (Ser412), Survivin total.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Material
2.2. Cell Cultures and Treatments
2.3. Cytotoxicity Assay
2.4. Cell Proliferation Assay
2.5. RNA Isolation, RT Reaction and Real-Time PCR Analysis
2.6. Stress and Apoptosis Signaling Assay
2.7. Statistical Analysis
3. Results
3.1. Cytotoxicity
3.2. Cell Proliferation
3.3. mRNA Expression of Genes Associated with Cell Cycle and Apoptosis
3.4. Expression of Proteins Involved in Cellular Stress and Apoptosis Signaling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Globocan. Global Cancer Observatory. 2022. Available online: https://gco.iarc.who.int/media/globocan/factsheets/cancers/16-melanoma-of-skin-fact-sheet.pdf (accessed on 12 August 2024).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.X.; Young, L.C. Nutrition: The future of melanoma prevention? J. Am. Acad. Dermatol. 2014, 71, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Arends, J. Malnutrition in cancer patients: Causes, consequences and treatment options. Eur. J. Surg. Oncol. (EJSO) 2023, 50, 107074. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, A.; Krośniak, M.; Jurowski, K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients 2023, 15, 1012. [Google Scholar] [CrossRef]
- Surwiłło-Snarska, A.; Kapała, A.; Szostak-Węgierek, D. Assessment of the Dietary Intake Changes in Patients with Head and Neck Cancer Treated with Radical Radiotherapy. Nutrients 2024, 16, 2093. [Google Scholar] [CrossRef]
- Chereches, M.C.; Popa, C.O.; Finta, H. The dynamics of food for special medical purposes (FSMPs) utilization in cancer care: From doctor recommendations to online pharmacy procurement. Front. Pharmacol. 2024, 15, 1393784. [Google Scholar] [CrossRef]
- Koronowicz, A.A.; Drozdowska, M.; Wielgos, B.; Piasna-Słupecka, E.; Domagała, D.; Dulińska-Litewka, J.; Leszczyńska, T. The effect of “NutramilTM Complex”, food for special medical purpose, on breast and prostate carcinoma cells. PLoS ONE 2018, 13, e0192860. [Google Scholar] [CrossRef]
- Belmokhtar, C.A.; Hillion, J.; Ségal-Bendirdjian, E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 2001, 20, 3354–3362. [Google Scholar] [CrossRef]
- Antonsson, A.; Persson, J.L. Induction of Apoptosis by Staurosporine Involves the Inhibition of Expression of the Major Cell Cycle Proteins at the G2/M Checkpoint Accompanied by Alterations in Erk and Akt Kinase Activities. Anticances Res. 2009, 29, 2893–2898. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Fung, T.T.; Nan, H. An Epidemiological Review of Diet and Cutaneous Malignant Melanoma. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Eberle, J.; Kurbanov, B.M.; Hossini, A.M.; Trefzer, U.; Fecker, L.F. Overcoming Apoptosis Deficiency of melanoma—Hope for New Therapeutic Approaches. Drug Resist. Updat. 2007, 10, 218–234. [Google Scholar] [CrossRef] [PubMed]
- Roopashree, P.; Shetty, S.S.; Kumari, N.S. Effect of medium chain fatty acid in human health and disease. J. Funct. Food 2021, 87, 104724. [Google Scholar] [CrossRef]
- Fagbohun, O.F.; Gillies, C.R.; Murphy, K.P.J.; Rupasinghe, H.P.V. Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer. Int. J. Mol. Sci. 2023, 24, 6092. [Google Scholar] [CrossRef]
- Master, A.; Nauman, A. Molecular mechanisms of protein biosynthesis initiation--biochemical and biomedical implications of a new model of translation enhanced by the RNA hypoxia response element (rHRE). Postep. Biochem. 2014, 60, 39–54. [Google Scholar] [PubMed]
- Rydz, L.; Wróbel, M.; Janik, K.; Jurkowska, H. Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells. Biomolecules 2023, 13, 1491. [Google Scholar] [CrossRef]
- Giannopoulou, A.F.; Velentzas, A.D.; Anagnostopoulos, A.K.; Agalou, A.; Papandreou, N.C.; Katarachia, S.A.; Koumoundourou, D.G.; Konstantakou, E.G.; Pantazopoulou, V.I.; Delis, A.; et al. From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers 2021, 13, 2024. [Google Scholar] [CrossRef]
- McConkey, D.J.; Zhu, K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist. Updat. 2008, 11, 164–179. [Google Scholar] [CrossRef]
- Cichorek, M.; Kozłowska, K.; Wachulska, M.; Zielińska, K. Spontaneous apoptosis of melanotic and amelanotic melanoma cells in different phases of cell cycle: Relation to tumor growth. Folia Histochem. Cytobiol. 2006, 44, 31–66. [Google Scholar] [PubMed]
- Pokrywka, M.; Litynska, A. Targeting the melanoma. Postepy Biol. Komorki 2012, 39, 3–24. [Google Scholar]
- Blokx, W.A.M.; Van Dijk, M.C.R.F.; Ruiter, D.J. Molecular cytogenetics of cutaneous melanocytic lesions—Diagnostic, prognostic and therapeutic aspects. Histopathology 2009, 56, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Gray-Schopfer, V.; Wellbrock, C.; Marais, R. Melanoma biology and new targeted therapy. Nature 2007, 445, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.J.; Atkins, M.B. Molecular-targeted therapy in malignant melanoma. Expert Rev. Anticancer. Ther. 2009, 9, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Sidor-Kaczmarek, J.; Cichorek, M.; Spodnik, J.H.; Wójcik, S.; Moryś, J. Proteasome inhibitors against amelanotic melanoma. Cell Biol. Toxicol. 2017, 33, 557–573. [Google Scholar] [CrossRef] [PubMed]
- Parcellier, A.; Brunet, M.; Schmitt, E.; Col, E.; Didelot, C.; Hammann, A.; Nakayama, K.I.; Khochbin, S.; Solary, E.; Garrido, C. HSP27 favors ubiquitination and proteasomal degradation of p27 Kip1 and helps S-phase re-entry in stressed cells. FASEB J. 2006, 20, 1179–1181. [Google Scholar] [CrossRef]
- Okada, M.; Matsuzawa, A.; Yoshimura, A.; Ichijo, H. The Lysosome Rupture-activated TAK1-JNK Pathway Regulates NLRP3 Inflammasome Activation. J. Biol. Chem. 2014, 289, 32926–32936. [Google Scholar] [CrossRef]
- Dahl, C.; Guldberg, P. The genome and epigenome of malignant melanoma. Apmis 2007, 115, 1161–1176. [Google Scholar] [CrossRef]
- Yajima, I.; Kumasaka, M.Y.; Thang, N.D.; Goto, Y.; Takeda, K.; Yamanoshita, O.; Iida, M.; Ohgami, N.; Tamura, H.; Kawamoto, Y.; et al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy. Dermatol. Res. Pract. 2011, 2012, 354191. [Google Scholar] [CrossRef]
- Krześlak, A. Akt kinase: A key regulator of metabolism and progression of tumors. Adv. Hyg. Exp. Med. 2010, 64, 490–503. [Google Scholar]
- Koronowicz, A.A.; Banks, P.; Domagała, D.; Master, A.; Leszczyńska, T.; Piasna, E.; Marynowska, M.; Laidler, P. Fatty acid extract from CLA-enriched egg yolks can mediate transcriptome reprogramming of MCF-7 cancer cells to prevent their growth and proliferation. Genes Nutr. 2016, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Jochemsen, A.G. Reactivation of p53 as therapeutic intervention for malignant melanoma. Curr. Opin. Oncol. 2014, 26, 114–119. [Google Scholar] [CrossRef]
- Kyrgidis, A.; Tzellos, T.-G.; Triaridis, S. Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications. J. Carcinog. 2010, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.M.; Velez, N.F.; Tsao, H. Pathways to Melanoma. Semin. Cutan. Med. Surg. 2010, 29, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, S.P.; McNeish, I.A. Survivin: A Protein with Dual Roles in Mitosis and Apoptosis. Int. Rev. Cytol. 2005, 247, 35–88. [Google Scholar] [CrossRef]
- O’Driscoll, L.; Linehan, R.; Clynes, M. Survivin: Role in Normal Cells and in Pathological Conditions. Curr. Cancer Drug Targets 2003, 3, 131–152. [Google Scholar] [CrossRef]
- Tamm, I.; Wang, Y.; Sausville, E.; A Scudiero, D.; Vigna, N.; Oltersdorf, T.; Reed, J.C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998, 58, 5315–5320. [Google Scholar] [PubMed]
- Ikeguchi, M.; Hirooka, Y.; Kaibara, N. Quantitative analysis of apoptosis-related gene expression in hepatocellular carcinoma. Cancer 2002, 95, 1938–1945. [Google Scholar] [CrossRef]
- Grossman, D.; Altieri, D.C. Drug Resistance in Melanoma: Mechanisms, Apoptosis, and New Potential Therapeutic Targets. Cancer Metastasis Rev. 2001, 20, 3–11. [Google Scholar] [CrossRef]
- Gradilone, A.; Gazzaniga, P.; Ribuffo, D.; Scarpa, S.; Cigna, E.; Vasaturo, F.; Bottoni, U.; Innocenzi, D.; Calvieri, S.; Scuderi, N.; et al. Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. J. Clin. Oncol. 2003, 21, 306–312. [Google Scholar] [CrossRef]
- Fang, Y.; Eglen, R.M. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov. 2017, 22, 456–472. [Google Scholar] [CrossRef] [PubMed]
- Antunes, N.; Kundu, B.; Kundu, S.C.; Reis, R.L.; Correlo, V. In Vitro Cancer Models: A Closer Look at Limitations on Translation. Bioengineering 2022, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | WM-115 | WM266-4 | ||||||
---|---|---|---|---|---|---|---|---|
NC vs. UC | NC-CC vs. UC | NC vs. UC | NC-CC vs. UC | |||||
FC Value | Adjusted p-Values | FC Value | Adjusted p-Values | FC Value | Adjusted p-Values | FC Value | Adjusted p-Values | |
Pro-apoptotic genes | ||||||||
APAF1 | ↑4.52 * | 1.1 × 10−7 | ↑4.73 * | 0.00003 | ↓−4.56 * | 0.00001 | ↓−2.69 * | 0.00010 |
BAD | ↑1.59 * | 0.01212 | ↑1.25 * | 0.00007 | ↑6.20 * | 0.01623 | ↑3.62 * | 0.00128 |
BAX | ↑1.37 * | 0.00064 | 1.44 | 0.07656 | ↑2.12 * | 0.00005 | 1.29 | 0.05086 |
BID | ↑1.78 * | 0.02290 | ↑1.25 * | 0.00552 | ↑2.58 * | 0.00013 | 1.74 | 0.12706 |
CASP3 | ↑2.42 * | 0.00017 | ↑2.79 * | 5.0 × 10−7 | ↑4.00 * | 0.00017 | ↑3.27 * | 0.00005 |
CASP8 | ↑4.01 * | 0.00015 | ↑5.53 * | 0.00007 | ↓−1.55 * | 0.00001 | ↓−2.28 * | 0.00013 |
CASP9 | ↑2.91 * | 0.00148 | ↑1.40 * | 0.00752 | ↑4.80 * | 0.00148 | ↑2.93 * | 0.00007 |
CYCS | ↑1.73 * | 0.03390 | ↑1.48 * | 0.00641 | ↓−2.06 * | 0.00295 | ↓−2.76 * | 0.00006 |
FADD | 1.20 | 0.08572 | ↑1.47 * | 0.01262 | ↑3.16 * | 0.00008 | 1.87 | 0.163556 |
FAS | 1.01 | 0.3740 | ↑1.12 * | 2.80 × 10−5 | 1.12 | 0.37390 | ↑1.34 * | 0.00006 |
TP53 | 1.02 | 0.09595 | ↑1.49 * | 0.02467 | ↑1.72 * | 0.00001 | 1.28 | 0.06596 |
Pro-survival genes | ||||||||
AKT1 | 1.05 | 0.28798 | 1.18 | 0.12187 | ↓−1.97 * | 0.00014 | ↓−1.42 * | 0.02336 |
BCL2 | −1.36 | 0.19346 | ↓−1.37 * | 0.00859 | ↓−1.57 * | 0.00022 | ↓−2.53 * | 0.00023 |
HRAS | ↓−1.82 * | 0.02360 | −1.69 | 0.51894 | ↓−2.38 * | 0.00033 | ↓−1.64 * | 0.00358 |
IGF1 | ↓−3.04 * | 0.04336 | 1.01 | 0.11020 | ↓−7.70 * | 0.00003 | −2.16 | 0.08021 |
IGF1R | ↑1.56 * | 0.00003 | ↑1.27 * | 0.00040 | −2.01 | 0.43357 | ↓−1.43 * | 0.00005 |
KRAS | ↓−2.28 * | 0.00004 | ↓−1.18 * | 0.00008 | ↓−2.67 * | 0.00004 | ↓−3.29 * | 0.00009 |
MYC | ↓−2.55 * | 0.00366 | ↑1.12 * | 0.00006 | ↓−1.10 * | 0.00006 | ↓−1.23 * | 0.03746 |
NRAS | ↑1.16 * | 0.00015 | ↑1.18 * | 0.00018 | −3.43 * | 0.00001 | ↓−3.70 * | 0.00001 |
RRAS | ↑1.34 * | 0.01637 | −1.60 | 0.60253 | ↑1.17 * | 0.00007 | −1.15 | 0.05788 |
YWHA family genes | ||||||||
YWHAB | ↓−2.27 * | 0.00027 | ↑1.04 * | 0.00038 | ↓−2.46 * | 0.00001 | ↓−1.27 * | 0.00014 |
YWHAE | ↓−1.57 * | 0.00001 | ↓−1.29 * | 0.00003 | ↓−2.92 * | 0.00001 | ↓−3.86 * | 0.00001 |
YWHAG | ↓−1.85 * | 0.01506 | ↓−1.29 * | 0.00280 | ↓−1.08 * | 0.00008 | ↓−1.56 * | 0.00496 |
YWHAH | ↓−1.73 * | 0.00376 | ↓−1.38 * | 0.00007 | ↓−1.88 * | 0.00009 | ↓−1.55 * | 0.00754 |
YWHAQ | 1.01 | 0.10424 | ↓−1.10 * | 0.00007 | ↓−2.35 * | 0.00001 | ↓−4.10 * | 0.00001 |
YWHAZ | ↓−1.10 * | 0.00029 | ↑1.10 * | 0.00081 | ↓−2.38 * | 0.00002 | ↓−4.10 * | 0.00082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koronowicz, A.; Krawczyk, K.; Such, A.; Piasna-Słupecka, E.; Drozdowska, M.; Leszczyńska, T. Biological Effect of Food for Special Medical Purposes (NutramilTM Complex) on Melanoma Cells in In Vitro Study. Nutrients 2024, 16, 4287. https://doi.org/10.3390/nu16244287
Koronowicz A, Krawczyk K, Such A, Piasna-Słupecka E, Drozdowska M, Leszczyńska T. Biological Effect of Food for Special Medical Purposes (NutramilTM Complex) on Melanoma Cells in In Vitro Study. Nutrients. 2024; 16(24):4287. https://doi.org/10.3390/nu16244287
Chicago/Turabian StyleKoronowicz, Aneta, Katarzyna Krawczyk, Aleksandra Such, Ewelina Piasna-Słupecka, Mariola Drozdowska, and Teresa Leszczyńska. 2024. "Biological Effect of Food for Special Medical Purposes (NutramilTM Complex) on Melanoma Cells in In Vitro Study" Nutrients 16, no. 24: 4287. https://doi.org/10.3390/nu16244287
APA StyleKoronowicz, A., Krawczyk, K., Such, A., Piasna-Słupecka, E., Drozdowska, M., & Leszczyńska, T. (2024). Biological Effect of Food for Special Medical Purposes (NutramilTM Complex) on Melanoma Cells in In Vitro Study. Nutrients, 16(24), 4287. https://doi.org/10.3390/nu16244287