From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance
<p>Number of articles published in the Scopus database starting 1997 until now. Number 2 (dotted lines) represents the number of “review articles” under a determined set of terms, while number 1 (solid lines) shows the number of “original articles”. A: “prebiotics” AND “inflammation”; B: “prebiotics” AND “colon” AND “cancer”; C: “prebiotics” AND “TLR”.</p> "> Figure 2
<p>VOSViewer map from the search combination of the terms “prebiotics” and “inflammation” (search A).</p> "> Figure 3
<p>VOSViewer map from the search combination of the terms “prebiotics” and “colon” and “cancer” (search B).</p> "> Figure 4
<p>VOSViewer map from the search combination of the terms “prebiotics” and “TLR” (search C).</p> "> Figure 5
<p>Established prebiotic effects for intestinal and systemic health.</p> "> Figure 6
<p>Direct effects observed of prebiotics in both immune and epithelial cells.</p> ">
Highlights
- A comprehensive bibliometric analysis of the current state of the research regarding prebiotics was performed;
- While the current clinical trials available can pave the next steps of prebiotic applications, their intervariability and similarities are pointed out as well as discussed in this present work;
- Conventional and novel prebiotic molecules, such as inulin, pectins, and polyphenols, can promote beneficial health effects through microbiota modulation and direct interaction with human cells.
Abstract
:1. Introduction
2. Bibliometric Analysis Methodology
- (1)
- “prebiotics” AND “inflammation”;
- (2)
- “prebiotics” AND “colon” AND “cancer”;
- (3)
- “prebiotics” AND “TLR”.
3. Prebiotics Definition, Types, and Effects
3.1. Gut Barrier Function
3.2. Inflammation and Carcinogenesis
3.3. Prebiotics and Inflammation: A Clinical View
3.4. Prebiotics and TLRs: Direct Modulation Matters?
4. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roy, S.; Dhaneshwar, S. Role of Prebiotics, Probiotics, and Synbiotics in Management of Inflammatory Bowel Disease: Current Perspectives. World J. Gastroenterol. 2023, 29, 2078–2100. [Google Scholar] [CrossRef] [PubMed]
- Castillo Andrade, A.I.; García Chávez, E.; Rivera Bautista, C.; Oros Ovalle, C.; Ruiz Cabrera, M.A.; Grajales Lagunes, A. Influence of Prebiotic Activity of Agave Salmiana Fructans on Mucus Production and Morphology Changes in Colonic Epithelium Cell of Healthy Wistar Rats. Front. Plant Sci. 2021, 12, 717460. [Google Scholar] [CrossRef]
- Wu, R.Y.; Abdullah, M.; Määttänen, P.; Pilar, A.V.C.; Scruten, E.; Johnson-Henry, K.C.; Napper, S.; O’Brien, C.; Jones, N.L.; Sherman, P.M. Protein Kinase Cσ Signaling Is Required for Dietary Prebiotic-Induced Strengthening of Intestinal Epithelial Barrier Function. Sci. Rep. 2017, 7, 40820. [Google Scholar] [CrossRef]
- Chang, S.C.; Chiang, H.H.; Liu, C.Y.; Li, Y.J.; Lu, C.L.; Lee, Y.P.; Huang, C.J.; Lai, C.L. Intestinal Mucosal Barrier Improvement with Prebiotics: Histological Evaluation of Longish Glucomannan Hydrolysates-Induced Innate T Lymphocyte Activities in Mice. Nutrients 2022, 14, 2220. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.H.; Ko, Y.F.; Hwang, T.L.; Young, J.D.; Ojcius, D.M. Gut Barrier Disruption and Chronic Disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Racioppo, A.; Sinigaglia, M.; Corbo, M.R. An Update on Prebiotics and on Their Health Effects. Foods 2024, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Sahu, N.; Saxena, S.; Pradhan, B.; Nayak, S.K.; Roychowdhury, A. Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Associated Gut Inflammation: A Systematic Network and Meta-Analysis With Molecular Docking Studies. Front. Microbiol. 2022, 13, 878297. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Guarner, F.; Sanders, M.E.; Szajewska, H.; Cohen, H.; Eliakim, R.; Herrera-Deguise, C.; Karakan, T.; Merenstein, D.; Piscoya, A.; Ramakrishna, B.; et al. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics. J. Clin. Gastroenterol. 2024, 58, 533–553. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Andersen-Civil, A.I.S.; Arora, P.; Williams, A.R. Regulation of Enteric Infection and Immunity by Dietary Proanthocyanidins. Front. Immunol. 2021, 12, 637603. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Jin, W.; Liu, S.J.; Jiao, Z.; Li, X. Probiotics, Prebiotics, and Postbiotics in Health and Disease. MedComm 2023, 4, e420. [Google Scholar] [CrossRef]
- Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. Int. J. Environ. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Khalil, M.; De Angelis, M.; Calabrese, F.M.; D’amato, M.; Wang, D.Q.H.; Di Ciaula, A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2022, 10, 83. [Google Scholar] [CrossRef]
- Horrocks, V.; King, O.G.; Yip, A.Y.G.; Marques, I.M.; McDonald, J.A.K. Role of the Gut Microbiota in Nutrient Competition and Protection against Intestinal Pathogen Colonization. Microbiology 2023, 169, 001377. [Google Scholar] [CrossRef]
- Suriano, F.; Nyström, E.E.L.; Sergi, D.; Gustafsson, J.K. Diet, Microbiota, and the Mucus Layer: The Guardians of Our Health. Front. Immunol. 2022, 13, 953196. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Barbaro, M.R.; Fuschi, D.; Palombo, M.; Falangone, F.; Cremon, C.; Marasco, G.; Stanghellini, V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front. Nutr. 2021, 8, 718356. [Google Scholar] [CrossRef] [PubMed]
- Compare, D.; Sgamato, C.; Rocco, A.; Coccoli, P.; Ambrosio, C.; Nardone, G. The Leaky Gut and Human Diseases: “Can’T Fill the Cup If You Don’T Plug the Holes First”. Dig. Dis. 2024, 42, 548–566. [Google Scholar] [CrossRef]
- Jensen, S.K.; Pærregaard, S.I.; Brandum, E.P.; Jørgensen, A.S.; Hjortø, G.M.; Jensen, B.A.H. Rewiring Host-Microbe Interactions and Barrier Function during Gastrointestinal Inflammation. Gastroenterol. Rep. 2022, 10, goac008. [Google Scholar] [CrossRef]
- Cosovanu, C.; Neumann, C. The Many Functions of Foxp3+ Regulatory T Cells in the Intestine. Front. Immunol. 2020, 11, 600973. [Google Scholar] [CrossRef]
- Stockinger, B.; Diaz, O.E.; Wincent, E. The Influence of AHR on Immune and Tissue Biology. EMBO Mol. Med. 2024, 16, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qiao, S. Research Progress on the Relationship Between Inflammation and Colorectal Cancer. Ann. Gastroenterol. Surg. 2022, 6, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Greten, F.R. The Inflammatory Pathogenesis of Colorectal Cancer. Nat. Rev. Immunol. 2021, 21, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Lopez, L.; Kong, Y.W.; Sriram, G.; Patterson, J.C.; Rosenberg, S.; Morandell, S.; Haigis, K.M.; Yaffe, M.B. MAPKAP Kinase-2 Drives Expression of Angiogenic Factors by Tumor-Associated Macrophages in a Model of Inflammation-Induced Colon Cancer. Front. Immunol. 2021, 11, 607891. [Google Scholar] [CrossRef]
- Hirano, T.; Hirayama, D.; Wagatsuma, K.; Yamakawa, T.; Yokoyama, Y.; Nakase, H. Immunological Mechanisms in Inflammationassociated Colon Carcinogenesis. Int. J. Mol. Sci. 2020, 21, 3062. [Google Scholar] [CrossRef]
- Sheikh, A.; Taube, J.; Greathouse, K.L. Contribution of the Microbiota and Their Secretory Products to Inflammation and Colorectal Cancer Pathogenesis: The Role of Toll-like Receptors. Carcinogenesis 2021, 42, 1133–1142. [Google Scholar] [CrossRef]
- Lichtenstern, C.R.; Ngu, R.K.; Shalapour, S.; Karin, M. Immunotherapy, Inflammation and Colorectal Cancer. Cells 2020, 9, 618. [Google Scholar] [CrossRef]
- Borowczak, J.; Szczerbowski, K.; Maniewski, M.; Kowalewski, A.; Janiczek-Polewska, M.; Szylberg, A.; Marszałek, A.; Szylberg, Ł. The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022, 10, 1670. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.K. Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Front. Immunol. 2022, 12, 807648. [Google Scholar] [CrossRef]
- Sánchez-Alcoholado, L.; Ramos-Molina, B.; Otero, A.; Laborda-Illanes, A.; Ordóñez, R.; Medina, J.A.; Gómez-Millán, J.; Queipo-Ortuño, M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers 2020, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Ghosh, T.; You, D.G.; Joo, H.; Lee, J.; Lee, J.; Kim, C.H.; Jeon, J.; Shin, S.; Park, J.H. Functionally Masked Antibody to Uncouple Immune-Related Toxicities in Checkpoint Blockade Cancer Therapy. ACS Nano 2023, 17, 10065–10077. [Google Scholar] [CrossRef]
- Omstead, A.N.; Paskewicz, M.; Gorbunova, A.; Zheng, P.; Salvitti, M.S.; Mansoor, R.; Reed, P.; Ballengee, S.; Wagner, P.L.; Jobe, B.A.; et al. CSF-1R Inhibitor, Pexidartinib, Sensitizes Esophageal Adenocarcinoma to PD-1 Immune Checkpoint Blockade in a Rat Model. Carcinogenesis 2022, 43, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-M.; Fu, Y.-J.; Liu, N.; Xia, W.-Y.; Chen, H.-Y.; Liu, M.-Y.; Li, L.-F.; Gao, J.-X. A Novel Tumor-Specific Broad-Spectral Monoclonal Antibody to PL2L60 Is Highly Effective for the Treatment of Various Types of Cancers from Human and Mouse. Am. J. Cancer Res. 2022, 12, 265–279. [Google Scholar] [PubMed]
- Chen, J.S.; Hsieh, Y.C.; Chou, C.H.; Wu, Y.H.; Yang, M.H.; Chu, S.H.; Chao, Y.S.; Chen, C.N. Chidamide plus Tyrosine Kinase Inhibitor Remodel the Tumor Immune Microenvironment and Reduce Tumor Progression When Combined with Immune Checkpoint Inhibitor in Naïve and Anti-PD-1 Resistant CT26-Bearing Mice. Int. J. Mol. Sci. 2022, 23, 10677. [Google Scholar] [CrossRef] [PubMed]
- Hajiabadi, S.; Alidadi, S.; Montakhab Farahi, Z.; Ghahramani Seno, M.M.; Farzin, H.; Haghparast, A. Immunotherapy with STING and TLR9 Agonists Promotes Synergistic Therapeutic Efficacy with Suppressed Cancer-Associated Fibroblasts in Colon Carcinoma. Front. Immunol. 2023, 14, 1258691. [Google Scholar] [CrossRef]
- Kang, X.; Liu, C.; Ding, Y.; Ni, Y.; Ji, F.; Lau, H.C.H.; Jiang, L.; Sung, J.J.Y.; Wong, S.H.; Yu, J. Roseburia Intestinalis Generated Butyrate Boosts Anti-PD-1 Efficacy in Colorectal Cancer by Activating Cytotoxic CD8 + T Cells. Gut 2023, 72, 2112–2122. [Google Scholar] [CrossRef]
- Molinari, R.; Merendino, N.; Costantini, L. Polyphenols as Modulators of Pre-Established Gut Microbiota Dysbiosis: State-of-the-Art. BioFactors 2022, 48, 255–273. [Google Scholar] [CrossRef]
- Macis, D.; Briata, I.M.; D’Ecclesiis, O.; Johansson, H.; Aristarco, V.; Buttiron Webber, T.; Oppezzi, M.; Gandini, S.; Bonanni, B.; DeCensi, A. Inflammatory and Metabolic Biomarker Assessment in a Randomized Presurgical Trial of Curcumin and Anthocyanin Supplements in Patients with Colorectal Adenomas. Nutrients 2023, 15, 3894. [Google Scholar] [CrossRef]
- Moorthy, M.; Sundralingam, U.; Palanisamy, U.D. Polyphenols as Prebiotics in the Management of High-Fat Diet-Induced Obesity: A Systematic Review of Animal Studies. Foods 2021, 10, 299. [Google Scholar] [CrossRef]
- Bush, J.R.; Baisley, J.; Harding, S.V.; Alfa, M.J. Consumption of SolnulTM Resistant Potato Starch Produces a Prebiotic Effect in a Randomized, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 1582. [Google Scholar] [CrossRef] [PubMed]
- Rengadu, D.; Gerrano, A.S.; Mellem, J.J. Prebiotic Effect of Resistant Starch from Vigna Unguiculata (L.) Walp. (Cowpea) Using an in Vitro Simulated Digestion Model. Int. J. Food Sci. Technol. 2020, 55, 332–339. [Google Scholar] [CrossRef]
- Das, M.; Rajan, N.; Biswas, P.; Banerjee, R. Dual Enzyme Treatment Strategy for Enhancing Resistant Starch Content of Green Banana Flour and in Vitro Evaluation of Prebiotic Effect. LWT 2022, 160, 113267. [Google Scholar] [CrossRef]
- Wang, M.; Chen, X.; Zhou, L.; Li, Y.; Yang, J.; Ji, N.; Xiong, L.; Sun, Q. Prebiotic Effects of Resistant Starch Nanoparticles on Growth and Proliferation of the Probiotic Lactiplantibacillus Plantarum Subsp. Plantarum. LWT 2022, 154, 112572. [Google Scholar] [CrossRef]
- Buhaș, M.C.; Candrea, R.; Gavrilaș, L.I.; Miere, D.; Tătaru, A.; Boca, A.; Cătinean, A. Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 11225. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Rodriguez, J.; Taminiau, B.; Amadieu, C.; Herpin, F.; Allaert, F.A.; Cani, P.D.; Daube, G.; Bindels, L.B.; Delzenne, N.M. Improvement of Gastrointestinal Discomfort and Inflammatory Status by a Synbiotic in Middle-Aged Adults: A Double-Blind Randomized Placebo-Controlled Trial. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Azuma, N.; Mawatari, T.; Saito, Y.; Tsukamoto, M.; Sampei, M.; Iwama, Y. Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 4175. [Google Scholar] [CrossRef] [PubMed]
- De Giani, A.; Sandionigi, A.; Zampolli, J.; Michelotti, A.; Tursi, F.; Labra, M.; Di Gennaro, P. Effects of Inulin-Based Prebiotics Alone or in Combination with Probiotics on Human Gut Microbiota and Markers of Immune System: A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Subjects. Microorganisms 2022, 10, 1256. [Google Scholar] [CrossRef]
- Moludi, J.; Khedmatgozar, H.; Nachvak, S.M.; Abdollahzad, H.; Moradinazar, M.; Sadeghpour Tabaei, A. The Effects of Co-Administration of Probiotics and Prebiotics on Chronic Inflammation, and Depression Symptoms in Patients with Coronary Artery Diseases: A Randomized Clinical Trial. Nutr. Neurosci. 2022, 25, 1659–1668. [Google Scholar] [CrossRef]
- Visuthranukul, C.; Kwanbunbumpen, T.; Chongpison, Y.; Chamni, S.; Panichsillaphakit, E.; Uaariyapanichkul, J.; Maholarnkij, S.; Chomtho, S. The Impact of Dietary Fiber as a Prebiotic on Inflammation in Children with Obesity. Foods 2022, 11, 2856. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, Y.; Wu, J.; Zhou, H.; Yang, C. Efficacy of Probiotics, Prebiotics, and Synbiotics on Liver Enzymes, Lipid Profiles, and Inflammation in Patients with Non- Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Gastroenterol. 2024, 24, 283. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Li, Y.; Fang, C.; Jia, Y.; Chen, M.; Chen, X.; Jia, J. The Associations between Dietary Fibers Intake and Systemic Immune and Inflammatory Biomarkers, a Multi-Cycle Study of NHANES 2015–2020. Front. Nutr. 2023, 10, 1242115. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Funasaka, Y.; Saeki, H.; Yamamoto, M.; Kanda, N. Dietary Fiber Inulin Improves Murine Imiquimod-Induced Psoriasis-like Dermatitis. Int. J. Mol. Sci. 2023, 24, 14197. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Lan, Y.; Tuo, Y.; Ma, S.; Liu, X. Inulin Attenuates Blood-Brain Barrier Permeability and Alleviates Behavioral Disorders by Modulating the TLR4/MyD88/NF-ΚB Pathway in Mice with Chronic Stress. J. Agric. Food Chem. 2023, 71, 13325–13337. [Google Scholar] [CrossRef]
- Abreu, C.D.D.; Caldas, B.V.; Ribeiro, G.H.M.; Aguilar, C.M.; Farias, L.C.; Guimarães, A.L.S.; de Paula, A.M.B.; Glória, M.B.A.; Santos, S.H.S. Inulin Prebiotic Dietary Supplementation Improves Metabolic Parameters by Reducing the Toll-like Receptor 4 Transmembrane Protein Gene and Interleukin 6 Expression in Adipose Tissue. PharmaNutrition 2022, 22, 100316. [Google Scholar] [CrossRef]
- Akkerman, R.; Oerlemans, M.M.P.; Ferrari, M.; Fernández-Lainez, C.; de Haan, B.J.; Faas, M.M.; Walvoort, M.T.C.; de Vos, P. Exopolysaccharide β-(2,6)-Levan-Type Fructans Have a Molecular-Weight-Dependent Modulatory Effect on Toll-like Receptor Signalling. Food Funct. 2023, 15, 676–688. [Google Scholar] [CrossRef]
- Fernández-Lainez, C.; aan de Stegge, M.; Silva-Lagos, L.A.; López-Velázquez, G.; de Vos, P. Β(2 → 1)-Β(2 → 6) Branched Graminan-Type Fructans and Β(2 → 1) Linear Fructans Impact Mucus-Related and Endoplasmic Reticulum Stress-Related Genes in Goblet Cells and Attenuate Inflammatory Responses in a Fructan Dependent Fashion. Food Funct. 2023, 14, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, H.K.; Bording-Jorgensen, M.; Santer, D.M.; Zhang, Z.; Valcheva, R.; Rieger, A.M.; Sung-Ho Kim, J.; Dijk, S.I.; Mahmood, R.; Ogungbola, O.; et al. Unfermented β-Fructan Fibers Fuel Inflammation in Select Inflammatory Bowel Disease Patients. Gastroenterology 2023, 164, 228–240. [Google Scholar] [CrossRef]
- Silva Lagos, L.; Klostermann, C.E.; López-Velázquez, G.; Fernández-Lainez, C.; Leemhuis, H.; Oudhuis, A.A.C.M.L.; Buwalda, P.; Schols, H.A.; de Vos, P. Crystal Type, Chain Length and Polydispersity Impact the Resistant Starch Type 3 Immunomodulatory Capacity via Toll-like Receptors. Carbohydr. Polym. 2024, 324, 121490. [Google Scholar] [CrossRef]
- Jermendi, É.; Fernández-Lainez, C.; Beukema, M.; López-Velázquez, G.; van den Berg, M.A.; de Vos, P.; Schols, H.A. TLR 2/1 Interaction of Pectin Depends on Its Chemical Structure and Conformation. Carbohydr. Polym. 2023, 303, 120444. [Google Scholar] [CrossRef]
- Gasaly, N.; Tang, X.; Chen, X.; Bellalta, S.; Hermoso, M.A.; de Vos, P. Effects of Pectin’s Degree of Methyl Esterification on TLR2-Mediated IL-8 Secretion and Tight Junction Gene Expression in Intestinal Epithelial Cells: Influence of Soluble TLR2. Food Funct. 2023, 15, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bai, J.; Song, Z.; Ji, Y.; Chen, Z.; Yang, Y.; Wu, Z. Dietary Pectin Attenuates Salmonella Typhimurium-Induced Colitis by Modulating the TLR2-NF-ΚB Pathway and Intestinal Microbiota in Mice. Food Chem. Toxicol. 2023, 182, 114100. [Google Scholar] [CrossRef] [PubMed]
- Hyun, G.H.; Cho, I.H.; Yang, Y.Y.; Jeong, D.H.; Kang, Y.P.; Kim, Y.S.; Lee, S.J.; Kwon, S.W. Mechanisms of Interactions in Pattern-Recognition of Common Glycostructures across Pectin-Derived Heteropolysaccharides by Toll-like Receptor 4. Carbohydr. Polym. 2023, 314, 120921. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Fu, H.; Yang, Y.; Wu, Z. An Isofibrous Diet with Fiber Konjac Glucomannan Ameliorates Salmonella Typhimurium-Induced Colonic Injury by Regulating TLR2-NF-ΚB Signaling and Intestinal Microbiota in Mice. J. Agric. Food Chem. 2024, 72, 13415–13430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrosa, L.d.F.; de Vos, P.; Fabi, J.P. From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients 2024, 16, 4286. https://doi.org/10.3390/nu16244286
Pedrosa LdF, de Vos P, Fabi JP. From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients. 2024; 16(24):4286. https://doi.org/10.3390/nu16244286
Chicago/Turabian StylePedrosa, Lucas de Freitas, Paul de Vos, and João Paulo Fabi. 2024. "From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance" Nutrients 16, no. 24: 4286. https://doi.org/10.3390/nu16244286
APA StylePedrosa, L. d. F., de Vos, P., & Fabi, J. P. (2024). From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients, 16(24), 4286. https://doi.org/10.3390/nu16244286