Activation of the Gut–Brain Interaction by Urolithin A and Its Molecular Basis
<p>Schematic diagram of the experimental protocol.</p> "> Figure 2
<p>Effects of Uro-A on age-related memory impairment in Aged mice. (<b>A</b>) Comparison of exploration preference among Young, Aged-Ctrl, and Aged-Uro-A groups compared with that for the familiar object; (<b>B</b>) discrimination index compared with the Aged-Ctrl group (*** <span class="html-italic">p</span> < 0.001) (value means ± SEM, <span class="html-italic">n</span> = 10). The circles indicate the respective data. n.s. shows not significant.</p> "> Figure 2 Cont.
<p>Effects of Uro-A on age-related memory impairment in Aged mice. (<b>A</b>) Comparison of exploration preference among Young, Aged-Ctrl, and Aged-Uro-A groups compared with that for the familiar object; (<b>B</b>) discrimination index compared with the Aged-Ctrl group (*** <span class="html-italic">p</span> < 0.001) (value means ± SEM, <span class="html-italic">n</span> = 10). The circles indicate the respective data. n.s. shows not significant.</p> "> Figure 3
<p>(<b>A</b>) Effects of Uro-A on age-related inflammation in Aged mice. Brain sections were incubated with primary antibodies for anti-Iba1, GFAP, and NeuN. Iba1 and GFAP were stained with Alexa Fluor 555 and NeuN with Alexa Fluor 488. After staining with Vectashield mounting medium, the tissue samples were observed under a fluorescence microscope. (<b>B</b>,<b>C</b>) Number of Iba1<sup>+</sup> and GFAP<sup>+</sup> cells per area, respectively (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01) (value means ± SEM, <span class="html-italic">n</span> = 10).</p> "> Figure 4
<p>Effects of Uro-A on gene expression in the hippocampus of Aged mice. (<b>A</b>) The changes in gene expression in the hippocampus of each mouse are shown as a heatmap. The genes were classified into four clusters (A–D) according to changes in gene expression. Genes expressed at low levels are shown in green and genes expressed at high levels are shown in red. (<b>B</b>) The expression of genes (SIRT1, mitochondrial transcription factor A (TFAM), Atp5d) in the hippocampus of Uro-A-fed mice analyzed by RNAseq. (<b>C</b>) The expression of genes (BDNF, TNF-α, and IL-1β) in the hippocampus of Uro-A-fed mice analyzed by RNAseq (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001) (value means ± SEM, <span class="html-italic">n</span> = 3).</p> "> Figure 5
<p>Cell supernatants of Caco-2 cells treated with Uro-A-activated SH-SY5Y cells for 2 days. Uro-A stock solution dissolved in DMSO was added at a dilution of 1/1000 to give a final concentration of 10–100 µM. In the DMSO group, the same volume of DMSO was added as at this time. DMSO-treated cells are the controls for all experiments. (<b>A</b>) Mitochondrial activity of SH-SY5Y cells treated with supernatant of Uro-A (10–100 µM)-treated Caco-2 cells. (<b>B</b>) Expression of SIRT1; (<b>C</b>) SIRT3; (<b>D</b>) NAMPT; (<b>E</b>) BDNF; and (<b>F</b>) PGC-1α in SH-SY5Y cells treated with the supernatant of 100 µM Uro-A-treated Caco-2 cells. (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001) (value means ± SEM, <span class="html-italic">n</span> = 3). Experiments were repeated three times, and representative data are shown.</p> "> Figure 5 Cont.
<p>Cell supernatants of Caco-2 cells treated with Uro-A-activated SH-SY5Y cells for 2 days. Uro-A stock solution dissolved in DMSO was added at a dilution of 1/1000 to give a final concentration of 10–100 µM. In the DMSO group, the same volume of DMSO was added as at this time. DMSO-treated cells are the controls for all experiments. (<b>A</b>) Mitochondrial activity of SH-SY5Y cells treated with supernatant of Uro-A (10–100 µM)-treated Caco-2 cells. (<b>B</b>) Expression of SIRT1; (<b>C</b>) SIRT3; (<b>D</b>) NAMPT; (<b>E</b>) BDNF; and (<b>F</b>) PGC-1α in SH-SY5Y cells treated with the supernatant of 100 µM Uro-A-treated Caco-2 cells. (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001) (value means ± SEM, <span class="html-italic">n</span> = 3). Experiments were repeated three times, and representative data are shown.</p> "> Figure 6
<p>Functional evaluation of exosomes induced by Uro-A. (<b>A</b>) Effects of exosomes derived from Uro-A-treated Caco-2 cells on the activation of mitochondria; (<b>B</b>) effects of exosomes derived from serum of mice on the activation of mitochondria. (*** <span class="html-italic">p</span> < 0.001) (value means ± SEM, <span class="html-italic">n</span> = 10). Experiments were repeated three times, and representative data are shown.</p> "> Figure 7
<p>Effects of Uro-A on the gene expression of secretory factors in Caco-2 cells. Expression of (<b>A</b>) BDNF; (<b>B</b>) NT-4; (<b>C</b>) CNTF; and (<b>D</b>) NGF in Caco-2 cells treated with 100 µM Uro-A. (<b>E</b>) BDNF level in the supernatant of Caco-2 treated with Uro-A was determined by ELISA (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01) (value means ± SEM, <span class="html-italic">n</span> = 3). Experiments were repeated three times, and representative data are shown.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Reagent
2.2. Mitochondria
2.3. Quantitative Reverse Transcriptase–Polymerase Chain Reaction (RT-qPCR)
2.4. Animals
2.5. Novel Object Recognition Test (NORT)
2.6. Fluorescent Immunocytochemistry
2.7. RNA Sequencing (RNAseq)
2.8. Exosome Isolation
2.9. miRNA Microarray Assay
2.10. Statistical Analysis
3. Results
3.1. Effects of Uro-A on Age-Related Memory Impairment in Aged Mice
3.2. Effects of Uro-A on Age-Related Inflammation in Aged Mice
3.3. Effects of Uro-A on Gene Expression in the Hippocampus of Aged Mice
3.4. Supernatants from Caco-2 Cells Treated with Uro-A-Activated SH-SY5Y Cells
3.5. Functional Evaluation of Uro-A-Induced Exosomes
3.6. Involvement of Secreted Factors Other than Exosomes in the Functionality of Uro-A
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Amico, D.; Andreux, P.A.; Valdes, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends Mol. Med. 2021, 27, 687–699. [Google Scholar] [CrossRef]
- Gong, Z.; Huang, J.; Xu, B.; Ou, Z.; Zhang, L.; Lin, X.; Ye, X.; Kong, X.; Long, D.; Sun, X.; et al. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J. Neuroinflamm. 2019, 16, 62. [Google Scholar] [CrossRef]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef]
- Chong, Z.; Matsuo, H.; Onoue, S.; Yamamoto, H.; Ito, H.; Katakura, Y. Identification of polyphenols that repair the ultraviolet-B-induced DNA damage via SIRT1-dependent XPC/XPA activation. J. Funct. Foods 2019, 54, 119–127. [Google Scholar] [CrossRef]
- Ishibashi, A.; Udono, M.; Sato, M.; Katakura, Y. Molecular Mechanisms for the Carnosine-Induced Activation of Muscle-Brain Interaction. Nutrients 2023, 15, 1479. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Shoji, H.; Miyakawa, T. Age-related behavioral changes from young to old age in male mice of a C57BL/6J strain maintained under a genetic stability program. Neuropsychopharmacol. Rep. 2019, 39, 100–118. [Google Scholar] [CrossRef]
- Shoji, H.; Takao, K.; Hattori, S.; Miyakawa, T. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol. Brain 2016, 9, 11. [Google Scholar] [CrossRef]
- Tanimizu, T.; Kono, K.; Kida, S. Brain networks activated to form object recognition memory. Brain Res. Bull. 2018, 141, 27–34. [Google Scholar] [CrossRef]
- Kubo, C.; Ogawa, M.; Uehara, N.; Katakura, Y. Fisetin Promotes Hair Growth by Augmenting TERT Expression. Front. Cell Dev. Biol. 2020, 8, 566617. [Google Scholar] [CrossRef]
- Ogawa, M.; Udono, M.; Teruya, K.; Uehara, N.; Katakura, Y. Exosomes Derived from Fisetin-Treated Keratinocytes Mediate Hair Growth Promotion. Nutrients 2021, 13, 2087. [Google Scholar] [CrossRef]
- Ge, S.X.; Son, E.W.; Yao, R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 2018, 19, 534. [Google Scholar] [CrossRef]
- Sugihara, Y.; Onoue, S.; Tashiro, K.; Sato, M.; Hasegawa, T.; Katakura, Y. Carnosine induces intestinal cells to secrete exosomes that activate neuronal cells. PLoS ONE 2019, 14, e0217394. [Google Scholar] [CrossRef]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef]
- Inotsuka, R.; Udono, M.; Yamatsu, A.; Kim, M.; Katakura, Y. Exosome-Mediated Activation of Neuronal Cells Triggered by gamma-Aminobutyric Acid (GABA). Nutrients 2021, 13, 2544. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, J.; Zhou, J.; Jin, Y.; Zhao, Q.; Jiang, X.; Gao, H. Notopterygium incisum roots extract (NRE) alleviates neuroinflammation pathology in Alzheimer’s disease through TLR4-NF-κB pathway. J. Ethnopharmacol. 2024, 335, 118651. [Google Scholar] [CrossRef]
- Sales, I.S.L.; de Souza, A.G.; Chaves Filho, A.J.M.; Sampaio, T.L.; da Silva, D.M.A.; Valentim, J.T.; Chaves, R.C.; Soares, M.V.R.; Costa Junior, D.C.; Barbosa Filho, J.M.; et al. Antidepressant-like effect of riparin I and riparin II against CUMS-induced neuroinflammation via astrocytes and microglia modulation in mice. Behav. Pharmacol. 2024, 35, 314–326. [Google Scholar] [CrossRef]
- Izadi, S.; Abdolrezaei, M.; Soukhaklari, R.; Moosavi, M. Memory impairment induced by aluminum nanoparticles is associated with hippocampal IL-1 and IBA-1 upregulation in mice. Neurol. Res. 2024, 46, 284–290. [Google Scholar] [CrossRef]
- Lituma, P.J.; Woo, E.; O’Hara, B.F.; Castillo, P.E.; Sibinga, N.E.S.; Nandi, S. Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proc. Natl. Acad. Sci. USA 2021, 118, e2115539118. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Liu, J.M.; Wang, S.Y.; Fei, Z.P.; Zhang, K.W.; Zhang, D.F.; Jin, X. Gegen Qinlian tablets delay Alzheimer ‘s disease progression via inhibiting glial neuroinflammation and remodeling gut microbiota homeostasis. Phytomedicine 2024, 128, 155394. [Google Scholar] [CrossRef]
- Shen, Y.; Ye, B.; Chen, P.; Wang, Q.; Fan, C.; Shu, Y.; Xiang, M. Cognitive Decline, Dementia, Alzheimer’s Disease and Presbycusis: Examination of the Possible Molecular Mechanism. Front. Neurosci. 2018, 12, 394. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Flint Beal, M. Mitochondrial diseases of the brain. Free Radic. Biol. Med. 2013, 63, 1–29. [Google Scholar] [CrossRef]
- Patro, S.; Ratna, S.; Yamamoto, H.A.; Ebenezer, A.T.; Ferguson, D.S.; Kaur, A.; McIntyre, B.C.; Snow, R.; Solesio, M.E. ATP Synthase and Mitochondrial Bioenergetics Dysfunction in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 11185. [Google Scholar] [CrossRef]
- Wang, Y.H.; Mondal, G.; Khan, W.; Gurley, B.J.; Yates, C.R. Development of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for characterizing pomegranate extract pharmacokinetics in humans. J. Pharm. Biomed. Anal. 2023, 233, 115477. [Google Scholar] [CrossRef]
- Tang, B.L. Sirt1 and the Mitochondria. Mol. Cells 2016, 39, 87–95. [Google Scholar] [CrossRef]
- Zhou, L.; Pinho, R.; Gu, Y.; Radak, Z. The Role of SIRT3 in Exercise and Aging. Cells 2022, 11, 2596. [Google Scholar] [CrossRef]
- Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef]
- Shaito, A.; Al-Mansoob, M.; Ahmad, S.M.S.; Haider, M.Z.; Eid, A.H.; Posadino, A.M.; Pintus, G.; Giordo, R. Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications. Curr. Neuropharmacol. 2023, 21, 1184–1201. [Google Scholar] [CrossRef] [PubMed]
- Inotsuka, R.; Uchimura, K.; Yamatsu, A.; Kim, M.; Katakura, Y. gamma-Aminobutyric acid (GABA) activates neuronal cells by inducing the secretion of exosomes from intestinal cells. Food Funct. 2020, 11, 9285–9290. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Song, G.; Zhu, H.; Qian, H.; Pan, X.; Song, X.; Xie, Y.; Liu, C. Pharmacological Effects of Urolithin A and Its Role in Muscle Health and Performance: Current Knowledge and Prospects. Nutrients 2023, 15, 4441. [Google Scholar] [CrossRef]
- Wang, I.F.; Ho, P.C.; Tsai, K.J. MicroRNAs in Learning and Memory and Their Impact on Alzheimer’s Disease. Biomedicines 2022, 10, 1856. [Google Scholar] [CrossRef]
- Su, L.; Li, R.; Zhang, Z.; Liu, J.; Du, J.; Wei, H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer’s disease. Ageing Res. Rev. 2022, 73, 101497. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1403–1416. [Google Scholar] [CrossRef]
- Kadooka, K.; Fujii, K.; Matsumoto, T.; Sato, M.; Morimatsu, F.; Tashiro, K.; Kuhara, S.; Katakura, Y. Mechanisms and consequences of carnosine-induced activation of intestinal epithelial cells. J. Funct. Foods 2015, 13, 32–37. [Google Scholar] [CrossRef]
- Matin, S.; Dadkhah, M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res. Bull. 2024, 207, 110882. [Google Scholar] [CrossRef]
- Lin, P.H.; Kuo, L.T.; Luh, H.T. The Roles of Neurotrophins in Traumatic Brain Injury. Life 2021, 12, 26. [Google Scholar] [CrossRef]
- Bolognin, S.; Buffelli, M.; Puolivali, J.; Iqbal, K. Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiol. Aging 2014, 35, 2134–2146. [Google Scholar] [CrossRef]
- Amadoro, G.; Latina, V.; Balzamino, B.O.; Squitti, R.; Varano, M.; Calissano, P.; Micera, A. Nerve Growth Factor-Based Therapy in Alzheimer’s Disease and Age-Related Macular Degeneration. Front. Neurosci. 2021, 15, 735928. [Google Scholar] [CrossRef] [PubMed]
Category | Origin | Caco-2 | |||||
---|---|---|---|---|---|---|---|
miR | 4730 | 6126 | 663a | 4497 | 4745-5p | 3663-3p | |
Memory | Axon guidance | * | *** | ** | * | ** | *** |
Long-term potentiation | * | ||||||
Neurotrophin signaling pathway | * | *** | |||||
Neurological Function | GABAergic synapse | * | * | ||||
Long-term depression | |||||||
Dopaminergic synapse | ** | ||||||
Oxytocin signaling pathway | *** | * | |||||
Longevity Signal | Longevity regulating pathway | *** | * | * | |||
FoxO signaling pathway | *** | ||||||
Calcium signaling pathway | ** | * | * | ** |
Category | Origin | Mouse Serum | |||||
---|---|---|---|---|---|---|---|
miR | 29a-5p | 449c-3p | 6240 | 5100 | 3547-5p | 2861 | |
Memory | Axon guidance | *** | *** | *** | *** | *** | |
Long-term potentiation | ** | ** | *** | *** | * | ||
Neurotrophin signaling pathway | ** | ** | *** | *** | |||
Neurological Function | GABAergic synapse | ** | *** | *** | * | ||
Long-term depression | * | ** | ** | ** | ** | ||
Dopaminergic synapse | *** | *** | *** | *** | |||
Oxytocin signaling pathway | ** | * | ** | *** | *** | ||
Longevity Signal | Longevity regulating pathway | ** | *** | *** | * | ||
FoxO signaling pathway | *** | ** | ** | *** | |||
Calcium signaling pathway | *** | ** | ** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubota, D.; Sato, M.; Udono, M.; Kohara, A.; Kudoh, M.; Ukawa, Y.; Teruya, K.; Katakura, Y. Activation of the Gut–Brain Interaction by Urolithin A and Its Molecular Basis. Nutrients 2024, 16, 3369. https://doi.org/10.3390/nu16193369
Kubota D, Sato M, Udono M, Kohara A, Kudoh M, Ukawa Y, Teruya K, Katakura Y. Activation of the Gut–Brain Interaction by Urolithin A and Its Molecular Basis. Nutrients. 2024; 16(19):3369. https://doi.org/10.3390/nu16193369
Chicago/Turabian StyleKubota, Daiki, Momoka Sato, Miyako Udono, Akiko Kohara, Masatake Kudoh, Yuichi Ukawa, Kiichiro Teruya, and Yoshinori Katakura. 2024. "Activation of the Gut–Brain Interaction by Urolithin A and Its Molecular Basis" Nutrients 16, no. 19: 3369. https://doi.org/10.3390/nu16193369
APA StyleKubota, D., Sato, M., Udono, M., Kohara, A., Kudoh, M., Ukawa, Y., Teruya, K., & Katakura, Y. (2024). Activation of the Gut–Brain Interaction by Urolithin A and Its Molecular Basis. Nutrients, 16(19), 3369. https://doi.org/10.3390/nu16193369