Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults
<p>Randomized controlled trial flowchart of this study (DOTP: desert olive tree pearl group, PLAG: placebo group, ITT: intention to treat).</p> "> Figure 2
<p>Structures of major polyphenols in desert olive tree pearls.</p> "> Figure 3
<p>Individual change (empty circle) in the cognitive function score of middle-aged and older adults of the desert olive tree pearls (DOTPs) versus the placebo group at 12 weeks. The outcome of cognitive function using the Cognitrax test. Δ (post-test − pre-test).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement and Participants
2.2. Desert Olive Tree Pearls (DOTPs) and Placebo Samples
2.3. Anthropometric Assessment
2.4. Evaluation of Cognitive Function
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Cognitive Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Japanese Ministry of Health, Labour and Welfare. Long-Termcarebenefits:Monthlyreport (in Japanese); Japanese Ministry of Health, Labour and Welfare: Tokyo, Japan, 2015. [Google Scholar]
- Wu, Q.; Gao, Z.J.; Yu, X.; Wang, P. Dietary regulation in health and disease. Signal Transduct Target Ther. 2022, 7, 252. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.A.; Chamoli, M.; Hilsabeck, T.A.; Pandey, M.; Bansal, S.; Chawla, G.; Kapahi, P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021, 33, 2142–2173. [Google Scholar] [CrossRef] [PubMed]
- Yannakoulia, M.; Kontogianni, M.; Scarmeas, N. Cognitive health and Mediterranean diet: Just diet or lifestyle pattern? Ageing Res. Rev. 2015, 20, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, K.; Isoda, H. Dietary consumption of desert olive tree pearls reduces brain Aβ content and improves learning and memory ability in aged mice. J. Funct. Foods 2022, 91, 105021. [Google Scholar] [CrossRef]
- Bonetti, A.; Venturini, S.; Ena, A.; Faraloni, C. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters. Water Sci. Technol. 2016, 74, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Goodyear, M.D.; Krleza-Jeric, K.; Lemmens, T. The Declaration of Helsinki. BMJ 2007, 335, 624–625. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, C.T.; Johnson, L.G. Reliability and validity of a computerized neurocognitive test battery, CNS vital signs. Arch Clin. Neuropsychol. 2006, 21, 623–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Japanese Ministry of Health, Labour and Welfare. National Health and Nutrition Survey 2019; Japanese Ministry of Health, Labour and Welfare: Tokyo, Japan, 2021. [Google Scholar]
- World Health Organization. World Health Statistics; World Health Organization: Geneva, Switzerland, 2022; Volume 2022. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Kim, C.; Challinor, A.; Geurts, L.; Gibney, E.R.; Galdos, M.V.; La Fata, G.; Layé, S.; Mathers, J.C.; Vauzour, D.; et al. The EAT-Lancet reference diet and cognitive function across the life course. Lancet Planet Health 2022, 6, e749–e759. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean diet; a literature review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanon, B.; Colitti, M. Original Research: Hydroxytyrosol, an ingredient of olive oil, reduces triglyceride accumulation and promotes lipolysis in human primary visceral adipocytes during differentiation. Exp. Biol. Med. 2016, 241, 1796–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Huertas, E.; Lozano-Sánchez, J.; Segura-Carretero, A. Olive oil varieties and ripening stages containing the antioxidants hydroxytyrosol and derivatives in compliance with EFSA health claim. Food Chem. 2021, 342, 128291. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Fernández, M.; Gonzalez-Ramirez, M.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Hydroxytyrosol in foods: Analysis, foods sources, EU dietary intake, and potential uses. Foods 2022, 11, 2355. [Google Scholar] [CrossRef]
- Commodari, E.; Guarnera, M. Attention and aging. Aging Clin. Exp. Res. 2008, 20, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Petrella, C.; Francati, S.; Lucarelli, M.; Barbato, C.; Minni, A.; Ralli, M.; Greco, A.; Tarani, L.; Fiore, M. Antioxidant intervention to improve cognition in the aging brain: The example of hydroxytyrosol and resveratrol. Int. J. Mol. Sci. 2022, 23, 15674. [Google Scholar] [CrossRef] [PubMed]
- Calahorra, J.; Shenk, J.; Wielenga, V.H.; Verweij, V.; Geenen, B.; Dederen, P.J.; Peinado, M.Á.; Siles, E.; Wiesmann, M.; Kiliaan, A.J. Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke. Nutrients 2019, 11, 2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Polyphenols | Content (mg/g) |
---|---|
Hydroxytyrosol | 16.2 |
Tyrosol | 2.8 |
Oleocantal | 3.8 |
Oleacein | 1.7 |
Total polyphenols | 55.6 |
All (n = 72) | DOTP (n = 36) | Placebo (n = 36) | p-Value | ||||
---|---|---|---|---|---|---|---|
Range | Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | ||
Age (years) † | 51–82 | 69.5 (7.6) | 54–82 | 69.6 (7.1) | 51–81 | 69.5 (8.1) | 0.939 † |
Height (cm) † | 137.7–179.1 | 156.4 (9.1) | 139.5–179.1 | 156.8 (9.7) | 137.7–176.8 | 156.0 (8.4) | 0.716 † |
Body weight (kg) † | 39.7–94.6 | 57.1 (10.3) | 39.7–76.8 | 58.4 (8.9) | 40.7–94.6 | 55.6 (11.5) | 0.252 † |
Body mass index (kg/m2) † | 16.9–34.5 | 23.2 (3.1) | 18.4–30.0 | 23.7 (2.4) | 16.9–34.5 | 22.8 (3.6) | 0.208 † |
Education (years) † | 0.208 a | ||||||
Middle school | 2 (2.8) | 2 (5.5) | 0 (0.0) | ||||
High school | 27 (37.5) | 15 (41.7) | 12 (33.3) | ||||
University | 43 (59.7) | 19 (52.8) | 24 (66.7) | ||||
MMSE (points) | 27–30 | 29.3 (0.9) | 27–30 | 29.1 (1.0) | 27–30 | 29.5 (0.9) | 0.152 a |
Women (n (%)) a | 53 | 26.0 | 27 | 0.789 a | |||
Blood pressure (mmHg) † | 76–186 | 132.9 (19.8) | 95–186 | 135.4 (19.4) | 76–180 | 130.5 (20.2) | 0.303 † |
Diastolic blood pressure (mmHg) † | 51–106 | 81.6 (12.8) | 59–106 | 82.8 (12.7) | 51–104 | 80.4 (13.0) | 0.421 † |
Heart Rate (bpm) † | 54–104 | 74.1 (11.2) | 54–104 | 74.8 (11.3) | 54–104 | 73.3 (11.3) | 0.574 † |
Take a Medicine | |||||||
Antihypertensive (n (%)) a | 21 (29.2) | 11 (30.6) | 10 (27.8) | 0.795 a | |||
Diabetes (n (%)) a | 5 (6.9) | 3 (8.3) | 2 (5.6) | 0.643 a | |||
Cerebrovascular heart disease (n (%)) a | 4 (5.6) | 1 (2.8) | 1 (2.8) | 0.303 a | |||
Blood viscous reducer (n (%)) a | 3 (4.2) | 1 (2.8) | 2 (5.6) | 0.394 a | |||
Physical function | |||||||
Grip strength (kg) | 26.2 (6.4) | 25.7 (6.6) | 26.7 (6.3) | 0.534 | |||
One-leg balance with eyes open (s) | 49.2 (18.1) | 50.7 (17.3) | 47.7 (18.9) | 0.439 | |||
Five-repetition sit-to-stand (s) | 6.07 (1.51) | 6.32 (1.81) | 5.81 (1.10) | 0.162 | |||
Timed up and go (s) | 5.25 (0.82) | 5.24 (0.83) | 5.27 (0.81) | 0.890 |
Variables | Unit | Group | n | Pre-Test Mean (SD) | Post-Test Mean (SD) | Effect Size (Cohen’s d) | Interaction (Groups × Time) | Simple-Main Effect | Group Effect | Time Effect |
---|---|---|---|---|---|---|---|---|---|---|
Composite memory | points | DOTP | 34 | 90.7 (9.6) | 91.2 (11.6) | 0.05 | 0.455 | 0.376 | 0.212 | |
Placebo | 33 | 92.3 (10.8) | 94.6 (10.4) | 0.22 | ||||||
Verbal memory | points | DOTP | 34 | 48.3 (6.2) | 48.4 (7.5) | 0.02 | 0.259 | 0.412 | 0.159 | |
Placebo | 33 | 48.7 (7.5) | 50.9 (6.8) | 0.31 | ||||||
Visual memory | points | DOTP | 35 | 42.3 (5.1) | 42.3 (5.7) | 0.00 | 0.754 | 0.309 | 0.778 | |
Placebo | 34 | 43.7 (5.6) | 43.3 (5.2) | −0.07 | ||||||
Psychomotor speed | points | DOTP | 32 | 144.4 (31.6) | 150.6 (28.3) | 0.21 | 0.255 | 0.611 | 0.002 | |
Placebo | 33 | 138.1 (33.6) | 150.6 (31.6) | 0.38 | ||||||
Reaction time * | points | DOTP | 34 | 834 (124.2) | 815.7 (140.0) | 0.12 | 0.857 | 0.072 | 0.040 | |
Placebo | 33 | 779.0 (116.5) | 759.0 (114.4) | 0.17 | ||||||
Complex attention * | points | DOTP | 35 | 19.1 (17.7) | 13.5 (15.8) | 0.36 | 0.049 | <0.001 | ||
Placebo | 34 | 12.2 (8.6) | 11.3 (13.2) | 0.08 | 0.572 | |||||
Cognitive flexibility | points | DOTP | 34 | 17.8 (24.7) | 24.7 (22.3) | 0.29 | 0.441 | 0.323 | <0.001 | |
Placebo | 34 | 24.5 (20.8) | 29.4 (24.8) | 0.21 | ||||||
Processing speed | points | DOTP | 35 | 46.9 (9.3) | 50.4 (10.6) | 0.35 | 0.542 | 0.331 | <0.001 | |
Placebo | 33 | 45.3 (12.1) | 47.8 (12.6) | 0.20 | ||||||
Executive function | points | DOTP | 3 | 18.7 (23.7) | 26.7 (20.2) | 0.36 | 0.248 | 0.309 | <0.001 | |
Placebo | 34 | 25.8 (20.6) | 30.7 (23.4) | 0.22 | ||||||
Simple attention | points | DOTP | 34 | 36.2 (10.6) | 37.9 (8.7) | 0.17 | 0.116 | 0.243 | 0.191 | |
Placebo | 34 | 38.9 (1.2) | 38.8 (2.3) | −0.06 | ||||||
Motor speed | points | DOTP | 32 | 96.4 (26.4) | 99.7 (22.6) | 0.13 | 0.217 | 0.763 | 0.018 | |
Placebo | 33 | 91.6 (25.3) | 101.6 (24.3) | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Sasaki, K.; Nishimura, I.; Hashimoto, H.; Okura, T.; Isoda, H. Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults. Nutrients 2023, 15, 3234. https://doi.org/10.3390/nu15143234
Yoon J, Sasaki K, Nishimura I, Hashimoto H, Okura T, Isoda H. Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults. Nutrients. 2023; 15(14):3234. https://doi.org/10.3390/nu15143234
Chicago/Turabian StyleYoon, Jieun, Kazunori Sasaki, Iku Nishimura, Haruna Hashimoto, Tomohiro Okura, and Hiroko Isoda. 2023. "Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults" Nutrients 15, no. 14: 3234. https://doi.org/10.3390/nu15143234
APA StyleYoon, J., Sasaki, K., Nishimura, I., Hashimoto, H., Okura, T., & Isoda, H. (2023). Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults. Nutrients, 15(14), 3234. https://doi.org/10.3390/nu15143234