Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, and Dietary Essential Amino Acids Improved Muscle Quality in Mice
<p>Dietary essential amino acids (EAA) improved quality of the hypertrophied muscle by RT and/or myostatin inhibition. (<b>A</b>) body weight. (<b>B</b>) Total hindlimb muscle mass (soleus, plantaris, gastrocnemius, extensor digitorum longus, tibialis anterior and quadriceps femoris). (<b>C</b>–<b>H</b>) Individual hindlimb muscle mass. (<b>I</b>) Grip strength. (<b>J</b>) Changes in maximal carrying load over 4 weeks of resistance exercise training (RT) and maximal carrying load at the completion of RT (inset) in both RT groups (i.e., ACV (myostatin inhibitor) + EAA and ACV+ EAA+ RT). (<b>K</b>) Muscle quality (grip strength normalized by hindlimb muscle mass). Data are presented as mean ± S.E. <sup>a,b,c,d</sup> Groups not sharing the same letter are significantly different (<span class="html-italic">p</span> < 0.05), * <span class="html-italic">p</span> < 0.05, main effect for EAA. BW, body weight. SOL, soleus; PLAN, plantaris; GAS, gastrocnemius; EDL, extensor digitorum longus; TA, tibialis anterior; QUAD, quadriceps femoris.</p> "> Figure 2
<p>Integrated myofibrillar protein synthesis rate over 4 weeks of respective treatments. Absolute protein synthesis in (<b>A</b>) gastrocnemius, (<b>B</b>) tibialis anterior, and (<b>C</b>) soleus. Integrated protein synthesis rate was calculated as the product of 28-day cumulated muscle FSR and muscle protein pool size. Data are presented as mean ± S.E. <sup>a,b,c</sup> Groups not sharing the same letter are significantly different (<span class="html-italic">p</span> < 0.05). GAS, gastrocnemius; TA, tibialis anterior; SOL, soleus.</p> "> Figure 3
<p>Gains in muscle mass with treatment of EAA and/or RT were associated with increase in MyoD and decrease in Atrogin-1 mRNA expression in gastrocnemius muscle. (<b>A</b>–<b>C</b>) Relative protein expression of Akt1, mTORC1, and p70s6k. (each protein was normalized to GAPDH). (<b>D</b>–<b>F</b>) Relative mRNA expression of myogenesis-related genes and ubiquitin proteasome-related genes and autophagy-related genes (expression levels were normalized to GAPDH). (<b>G</b>) Correlation between MyoD mRNA expression and muscle mass. Data are presented as mean ± S.E. <sup>a,b</sup> Groups not sharing the same letter are significantly different (<span class="html-italic">p</span> < 0.05). Akt1, protein kinase B; mTORC1, mammalian target of rapamycin complex 1; p70s6k1, ribosomal protein S6 kinase beta-1; MyoD, myoblast determination protein 1; Myogenin, myogenic factor 4; UPS, ubiquitin proteasome system; Atrogin-1, muscle atrophy F-box protein; MuRF1, muscle ring finger protein-1; LC3, microtubule associated protein 1A/1B light chain 3; p62, ubiquitin-binding protein p62; BW, body weight.</p> "> Figure 4
<p>EAA-mediated improvements in muscle quality were mediated by other than changes in mitochondrial protein turnover or neuromuscular junction stability. (<b>A</b>) Relative protein expression of COX IV (COX IV was normalized to GAPDH). (<b>B</b>) Integrated mitochondrial protein synthesis over 28 days in gastrocnemius. (<b>C</b>) Relative mRNA expression of NMJ stability-related genes MuSK and AchR in gastrocnemius. (<b>D</b>,<b>E</b>) Correlations between MuSK mRNA expression and muscle quality (i.e., maximal carrying load normalized to muscle mass) and muscle strength (i.e, maximal carrying load normalized to body weight). Data are presented as mean ± S.E. <sup>a,b</sup> Groups not sharing the same letter are significantly different (<span class="html-italic">p</span> < 0.05). COX IV, cytochrome c oxidase subunit 4; NMJ, neuromuscular junction; MuSK, muscle-specific tyrosine kinase; AchR, acetylcholine receptor; BW, body weight.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Experimental Design
2.3. Ladder Climbing Exercise Protocol
2.4. Four Limb Grip Strength Test
2.5. 2H2O Labeling Protocol
2.6. Sample Collection
2.7. Isolation of Myofibrilar and Mitochondrial Subfractions
2.8. Body Water and Muscle Protein Enrichment Analysis
2.9. Calculations of Muscle Protein Kinetics
2.10. RNA Isolation, cDNA Synthesis, and Quantitative Real-Time PCR
2.11. Western Blot Analysis
2.12. Statictical Analysis
3. Results
3.1. Body Composition and Mucle Function
3.2. Myofibrillar Protein Synthesis Rate
3.3. Protein Turnover Signaling Pathway
3.4. Mitochondrial Protein Kinetics and Neuromuscular Junction Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-Y.; Park, S.; Jang, J.; Wolfe, R.R. Understanding Muscle Protein Dynamics: Technical Considerations for Advancing Sarcopenia Research. Ann. Geriatr. Med. Res. 2020, 24, 157. [Google Scholar] [CrossRef]
- Garber, K. No longer going to waste. Nat. Biotechnol. 2016, 34, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Lynch, G.S. Emerging drugs for sarcopenia: Age-related muscle wasting. Expert Opin. Emerg. Drugs 2004, 9, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Han, H.Q.; Mitch, W.E. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr. Opin. Support. Palliat. Care 2011, 5, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; McPherron, A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 2001, 98, 9306–9311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langley, B.; Thomas, M.; Bishop, A.; Sharma, M.; Gilmour, S.; Kambadur, R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J. Biol. Chem. 2002, 277, 49831–49840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massague, J. New EMBO Members Review: Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000, 19, 1745–1754. [Google Scholar] [CrossRef] [Green Version]
- Elkina, Y.; von Haehling, S.; Anker, S.D.; Springer, J. The role of myostatin in muscle wasting: An overview. J. Cachexia Sarcopenia Muscle 2011, 2, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Amirouche, A.; Durieux, A.C.; Banzet, S.; Koulmann, N.; Bonnefoy, R.; Mouret, C.; Bigard, X.; Peinnequin, A.; Freyssenet, D. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 2009, 150, 286–294. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, C.; Plummer, E.; Thomas, M.; Hennebry, A.; Ashby, M.; Ling, N.; Smith, H.; Sharma, M.; Kambadur, R. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-κB-independent, FoxO1-dependent mechanism. J. Cell. Physiol. 2006, 209, 501–514. [Google Scholar] [CrossRef]
- Liu, C.M.; Yang, Z.; Liu, C.W.; Wang, R.; Tien, P.; Dale, R.; Sun, L.Q. Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. Gene Ther. 2008, 15, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Camporez, J.P.G.; Petersen, M.C.; Abudukadier, A.; Moreira, G.V.; Jurczak, M.J.; Friedman, G.; Haqq, C.M.; Petersen, K.F.; Shulman, G.I. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc. Natl. Acad. Sci. USA 2016, 113, 2212–2217. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; McPherron, A.C. Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation. J. Physiol. 2012, 590, 2151–2165. [Google Scholar] [CrossRef]
- Latres, E.; Pangilinan, J.; Miloscio, L.; Bauerlein, R.; Na, E.; Potocky, T.B.; Huang, Y.; Eckersdorff, M.; Rafique, A.; Mastaitis, J.; et al. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skelet. Muscle 2015, 5, 1–3. [Google Scholar] [CrossRef] [Green Version]
- St. Andre, M.; Johnson, M.; Bansal, P.N.; Wellen, J.; Robertson, A.; Opsahl, A.; Burch, P.M.; Bialek, P.; Morris, C.; Owens, J. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet. Muscle 2017, 7, 25. [Google Scholar]
- Latres, E.; Mastaitis, J.; Fury, W.; Miloscio, L.; Trejos, J.; Pangilinan, J.; Okamoto, H.; Cavino, K.; Na, E.; Papatheodorou, A.; et al. Activin A more prominently regulates muscle mass in primates than does GDF8. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lipina, C.; Kendall, H.; McPherron, A.C.; Taylor, P.M.; Hundal, H.S. Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Lett. 2010, 584, 2403–2408. [Google Scholar] [CrossRef] [Green Version]
- Amthor, H.; Macharia, R.; Navarrete, R.; Schuelke, M.; Brown, S.C.; Otto, A.; Voit, T.; Muntoni, F.; Vrbóva, G.; Partridge, T.; et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc. Natl. Acad. Sci. USA 2007, 104, 1835–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Jiao, H.; Zhao, J.; Wang, X.; Lin, H. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage. PLoS ONE 2016, 11, e0156225. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Deutz, N.E.P.; Wolfe, R.R. Update on maximal anabolic response to dietary protein. Clin. Nutr. 2017, 37, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D.; Borsheim, E.; Wolf, S.E.; Sanford, A.P.; Wolfe, R.R. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E76–E89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwin, J.A.; Church, D.D.; Hatch-McChesney, A.; Howard, E.E.; Carrigan, C.T.; Murphy, N.E.; Wilson, M.A.; Margolis, L.M.; Carbone, J.W.; Wolfe, R.R.; et al. Effects of high versus standard essential amino acid intakes on whole-body protein turnover and mixed muscle protein synthesis during energy deficit: A randomized, crossover study. Clin. Nutr. 2020, 40, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-Y.; Park, S.; Smeets, E.T.H.C.; Schutzler, S.; Azhar, G.; Wei, J.Y.; Ferrando, A.A.; Wolfe, R.R. Consumption of a Specially-Formulated Mixture of Essential Amino Acids Promotes Gain in Whole-Body Protein to a Greater Extent than a Complete Meal Replacement in Older Women with Heart Failure. Nutrients 2019, 11, 1360. [Google Scholar] [CrossRef] [Green Version]
- Yarasheski, K.E.; Pak-Loduca, J.; Hasten, D.L.; Obert, K.A.; Brown, M.B.; Sinacore, D.R. Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men ≥76 years old. Am. J. Physiol. Endocrinol. Metab. 1999, 277, E118–E125. [Google Scholar] [CrossRef]
- Tipton, K.D.; Ferrando, A.A.; Phillips, S.M.; Doyle, D.; Wolfe, R.R. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am. J. Physiol. Endocrinol. Metab. 1999, 276, E628–E634. [Google Scholar] [CrossRef]
- Willoughby, D.S.; Stout, J.R.; Wilborn, C.D. Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids 2007, 32, 467–477. [Google Scholar] [CrossRef]
- D’Antona, G.; Ragni, M.; Cardile, A.; Tedesco, L.; Dossena, M.; Bruttini, F.; Caliaro, F.; Corsetti, G.; Bottinelli, R.; Carruba, M.O.; et al. Branched-Chain Amino Acid Supplementation Promotes Survival and Supports Cardiac and Skeletal Muscle Mitochondrial Biogenesis in Middle-Aged Mice. Cell Metab. 2010, 12, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.M.; Soop, M.; Sohn, T.S.; Morse, D.M.; Schimke, J.M.; Klaus, K.A.; Nair, K.S. High insulin combined with essential amino acids stimulates skeletal muscle mitochondrial protein synthesis while decreasing insulin sensitivity in healthy humans. J. Clin. Endocrinol. Metab. 2014, 99, E2574–E2583. [Google Scholar] [CrossRef] [Green Version]
- Manini, T.M.; Clark, B.C. Dynapenia and aging: An update. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Hornberger, T.A.; Farrar, R.P. Physiological Hypertrophy of the FHL Muscle Following 8 Weeks of Progressive Resistance Exercise in the Rat. Can. J. Appl. Physiol. 2004, 29, 16–31. [Google Scholar] [CrossRef]
- Hong, Y.; Lee, J.H.; Jeong, K.W.; Choi, C.S.; Jun, H.S. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J. Cachexia Sarcopenia Muscle 2019, 10, 903–918. [Google Scholar] [CrossRef]
- Shankaran, M.; King, C.L.; Angel, T.E.; Holmes, W.E.; Li, K.W.; Colangelo, M.; Price, J.C.; Turner, S.M.; Bell, C.; Hamilton, K.L.; et al. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics. J. Clin. Investig. 2016, 126, 288–302. [Google Scholar] [CrossRef]
- Liao, P.C.; Bergamini, C.; Fato, R.; Pon, L.A.; Pallotti, F. Isolation of mitochondria from cells and tissues. In Methods in Cell Biology; Academic Press: Cambridge, MA, USA, 2020; Volume 155, pp. 3–31. ISBN 9780128202289. [Google Scholar]
- Kim, I.-Y.; Suh, S.-H.; Lee, I.-K.; Wolfe, R.R. Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp. Mol. Med. 2016, 48, e203. [Google Scholar] [CrossRef] [Green Version]
- Gasier, H.G.; Fluckey, J.D.; Previs, S.F. The application of 2H2O to measure skeletal muscle protein synthesis. Nutr. Metab. 2010, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.M.; Murphy, E.J.; Neese, R.A.; Antelo, F.; Thomas, T.; Agarwal, A.; Go, C.; Hellerstein, M.K. Measurement of TG synthesis and turnover in vivo by 2H2O incorporation into the glycerol moiety and application of MIDA. Am. J. Physiol. Metab. 2003, 285, E790–E803. [Google Scholar] [CrossRef] [Green Version]
- Brooks, G.A.; Fahey, T.D.; Baldwin, K.M. Exercise Physiology: Human Bioenergetics and Its Applications; McGraw-Hill: New York, NY, USA, 2005; ISBN 0072985402. [Google Scholar]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lyons, C.N.; Mathieu-Costello, O.; Moyes, C.D. Regulation of Skeletal Muscle Mitochondrial Content During Aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Wyckelsma, V.L.; Levinger, I.; McKenna, M.J.; Formosa, L.E.; Ryan, M.T.; Petersen, A.C.; Anderson, M.J.; Murphy, R.M. Preservation of skeletal muscle mitochondrial content in older adults: Relationship between mitochondria, fibre type and high-intensity exercise training. J. Physiol. 2017, 595, 3345–3359. [Google Scholar] [CrossRef] [Green Version]
- Whittemore, L.A.; Song, K.; Li, X.; Aghajanian, J.; Davies, M.; Girgenrath, S.; Hill, J.J.; Jalenak, M.; Kelley, P.; Knight, A.; et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 2003, 300, 965–971. [Google Scholar] [CrossRef]
- Cui, D.; Drake, J.C.; Wilson, R.J.; Shute, R.J.; Lewellen, B.; Zhang, M.; Zhao, H.; Sabik, O.L.; Onengut, S.; Berr, S.S.; et al. A novel voluntary weightlifting model in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway. FASEB J. 2020, 34, 7330–7344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, M.A.; Brocca, L.; Dioguardi, F.S.; Bottinelli, R.; D’Antona, G. Effects of voluntary wheel running and amino acid supplementation on skeletal muscle of mice. Eur. J. Appl. Physiol. 2005, 93, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Børsheim, E.; Bui, Q.U.T.; Tissier, S.; Kobayashi, H.; Ferrando, A.A.; Wolfe, R.R. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin. Nutr. 2008, 27, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.T.; Yang, Y.J.; Huang, R.H.; Zhang, Z.H.; Lin, X. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease. Oxid. Med. Cell. Longev. 2015. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M.; Tipton, K.D.; Aarsland, A.; Wolf, S.E.; Wolfe, R.R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am. J. Physiol. 1997, 273, E99–E107. [Google Scholar] [CrossRef]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Attaix, D.; Ventadour, S.; Codran, A.; Béchet, D.; Taillandier, D.; Combaret, L. The ubiquitin–proteasome system and skeletal muscle wasting. Essays Biochem. 2005, 41, 173. [Google Scholar] [CrossRef]
- Ogasawara, R.; Fujita, S.; Hornberger, T.A.; Kitaoka, Y.; Makanae, Y.; Nakazato, K.; Naokata, I. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Goncalves, M.D.; Pistilli, E.E.; Balduzzi, A.; Birnbaum, M.J.; Lachey, J.; Khurana, T.S.; Ahima, R.S. Akt deficiency attenuates muscle size and function but not the response to ActRIIB inhibition. PLoS ONE 2010, 5, e12707. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Sung, B.; Kang, Y.J.; Kim, D.H.; Lee, Y.; Hwang, S.Y.; Yoon, J.H.; Yoo, M.A.; Kim, C.M.; Chung, H.Y.; et al. The combination of ursolic acid and leucine potentiates the differentiation of C2C12 murine myoblasts through the mTOR signaling pathway. Int. J. Mol. Med. 2015, 35, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Pistilli, E.E.; Bogdanovich, S.; Goncalves, M.D.; Ahima, R.S.; Lachey, J.; Seehra, J.; Khurana, T.S. Targeting the activin type IIB receptor to improve muscle mass and function in the mdx mouse model of Duchenne muscular dystrophy. Am. J. Pathol. 2011, 178, 1287–1297. [Google Scholar] [CrossRef]
- Benziane, B.; Burton, T.J.; Scanlan, B.; Galuska, D.; Canny, B.J.; Chibalin, A.V.; Zierath, J.R.; Stepto, N.K. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1427–E1438. [Google Scholar] [CrossRef] [Green Version]
- Snijders, T.; Nederveen, J.P.; Bell, K.E.; Lau, S.W.; Mazara, N.; Kumbhare, D.A.; Phillips, S.M.; Parise, G. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. J. Physiol. 2019, 597, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Reid, K.F.; Naumova, E.N.; Carabello, R.J.; Phillips, E.M.; Fielding, R.A. Lower extremity muscle mass predicts functional performance in mobility-limited elders. J. Nutr. Health Aging 2008, 12, 493–498. [Google Scholar] [CrossRef]
- Jackman, S.R.; Witard, O.C.; Philp, A.; Wallis, G.A.; Baar, K.; Tipton, K.D. Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Front. Physiol. 2017, 8, 390. [Google Scholar] [CrossRef]
- Chevessier, F.; Girard, E.; Molgó, J.; Bartling, S.; Koenig, J.; Hantaï, D.; Witzemann, V. A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions. Hum. Mol. Genet. 2008, 17, 3577–3595. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.B.; Bush, Z.; McGinnis, G.R.; Rowe, G.C. Adult skeletal muscle deletion of Mitofusin 1 and 2 impedes exercise performance and training capacity. J. Appl. Physiol. 2019, 126, 341–353. [Google Scholar] [CrossRef]
- Li, J.; King, N.C.; Sinoway, L.I. ATP concentrations and muscle tension increase linearly with muscle contraction. J. Appl. Physiol. 2003, 95, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, S.; Vanschoonbeek, K.; Verdijk, L.B.; Koopman, R.; Wodzig, W.K.W.H.; Dendale, P.; Van Loon, L.J.C. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am. J. Clin. Nutr. 2009, 89, 1468–1475. [Google Scholar] [CrossRef]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Metab. 2006, 291, E381–E387. [Google Scholar] [CrossRef] [Green Version]
Amino Acid | Percentage (%) | Dietary Intake (g/kg/day) |
---|---|---|
Histidine | 10 | 0.150 |
Isoleucine | 10 | 0.150 |
Leucine | 21 | 0.315 |
Lysine | 18 | 0.270 |
Methionine | 4 | 0.060 |
Phenylalanine | 12 | 0.180 |
Threonine | 14 | 0.210 |
Valine | 10 | 0.150 |
Tryptophan | 1 | 0.015 |
Total | 100 | 1.5 |
No. | Genes | Sequence | |
---|---|---|---|
1 | MyoD | Forward | 5′ ACCAACGCTGATCGCCGCAA 3′ |
Reverse | 3′ GCAGCGGTCCAGGTGCGTAG 5′ | ||
2 | Myogenin | Forward | 5′ TGTGTCGGTGGACCGGAGGA 3′ |
Reverse | 3′ CCGCTGGTTGGGGTGGAGCA 5′ | ||
3 | Atrogin-1 | Forward | 5′ GACTGGACTTCTCGACTGCC 3′ |
Reverse | 3′ TCAGGGATGTGAGCTGTGAC 5′ | ||
4 | MuRF1 | Forward | 5′ AAGCAGGTGCCACTCTCTGT 3′ |
Reverse | 3′ AGCTTCACACCTGTCCTTCG 5′ | ||
5 | LC3 | Forward | 5′ CACTGCTCTGTCTTGTGTAGGTTG 3′ |
Reverse | 3′ TCGTTGTGCCTTTATTAGTGCATC 5′ | ||
6 | P62 | Forward | 5′ CCCAGTGTCTTGGCATTCTT 3′ |
Reverse | 3′ AGGGAAAGCAGAGGAAGCTC 5′ | ||
7 | MuSK | Forward | 5′ TGAGAACTGCCCCTTGGAACT 3′ |
Reverse | 3′ GGGTCTATCAGCAGGCAGCTT 5′ | ||
8 | AchR | Forward | 5′ CATCGAGGGCGTGAAGTACA 3′ |
Reverse | 3′ ATTCCTCAGCGGCGTTATTG 5′ | ||
9 | GAPDH | Forward | 5′ CACCATCTTCCAGGAGCGAG 3′ |
Reverse | 3′ CCTTCTCCATGGTGGTGAAGAC 5′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Park, S.; Kim, Y.; Jung, J.; Lee, J.; Chang, Y.; Lee, S.P.; Park, B.-C.; Wolfe, R.R.; Choi, C.S.; et al. Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, and Dietary Essential Amino Acids Improved Muscle Quality in Mice. Nutrients 2021, 13, 1508. https://doi.org/10.3390/nu13051508
Jang J, Park S, Kim Y, Jung J, Lee J, Chang Y, Lee SP, Park B-C, Wolfe RR, Choi CS, et al. Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, and Dietary Essential Amino Acids Improved Muscle Quality in Mice. Nutrients. 2021; 13(5):1508. https://doi.org/10.3390/nu13051508
Chicago/Turabian StyleJang, Jiwoong, Sanghee Park, Yeongmin Kim, Jiyeon Jung, Jinseok Lee, Yewon Chang, Sang Pil Lee, Bum-Chan Park, Robert R. Wolfe, Cheol Soo Choi, and et al. 2021. "Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, and Dietary Essential Amino Acids Improved Muscle Quality in Mice" Nutrients 13, no. 5: 1508. https://doi.org/10.3390/nu13051508
APA StyleJang, J., Park, S., Kim, Y., Jung, J., Lee, J., Chang, Y., Lee, S. P., Park, B.-C., Wolfe, R. R., Choi, C. S., & Kim, I.-Y. (2021). Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, and Dietary Essential Amino Acids Improved Muscle Quality in Mice. Nutrients, 13(5), 1508. https://doi.org/10.3390/nu13051508