Association between Eating Speed and Classical Cardiovascular Risk Factors: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Krauss, R.M.; Eckel, R.H.; Howard, B.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdman, J.W., Jr.; Kris-Etherton, P.; Goldberg, I.J.; Kotchen, T.A.; et al. AHA Dietary Guidelines: Revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Stroke 2000, 31, 2751–2766. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.; Almiron-Roig, E.; Rutters, F.; de Graaf, C.; Forde, C.G.; Tudur Smith, C.; Nolan, S.J.; Jebb, S.A. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger 1–3. Am. J. Clin. Nutr. 2014, 100, 123–151. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Ard, J.; Baskin, M.L.; Chiuve, E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K. Meal Timing and Frequency: Implications for cardiovascular disease prevention: A scientific statement from the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, L.D. Less frequent eating predicts greater BMI and waist circumference in female adolescents. Am. J. Clin. Nutr. 2012, 95, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.J.; Wang, Y.; Cheskin, L.J. Relationship between frequency of eating and cardiovascular disease mortality in U.S. adults: The NHANES III follow-up study. Ann. Epidemiol. 2017, 26, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.L.; Madden, C.; Gray, A.; Waters, D.; Horwath, C. Faster Self-Reported Speed of Eating Is Related to Higher Body Mass Index in a Nationwide Survey of Middle-Aged Women. J. Am. Diet. Assoc. 2011, 111, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Tamakoshi, K.; Yatsuya, H.; Murata, C.; Sekiya, A.; Wada, K.; Zhang, H.M.; Matsushita, K.; Sugiura, K.; Takefuji, S.; et al. Eating fast leads to obesity: Findings based on self-administered questionnaires among middle-aged Japanese men and women. J. Epidemiol. 2006, 16, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Kim, D.H.; Jang, J.S.; Nam, G.E.; Shin, Y.N.; Bok, A.R.; Kim, M.J.; Cho, K.H. Eating rate is associated with cardiometabolic risk factors in Korean adults. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 635–641. [Google Scholar] [CrossRef] [PubMed]
- van den Boer, J.H.W.; Kranendonk, J.; van de Wiel, A.; Feskens, E.J.M.; Geelen, A.; Mars, M. Self-reported eating rate is associated with weight status in a Dutch population: A validation study and a cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.L.; Gray, A.; Horwath, C.C. Speed of eating and 3-year BMI change: A nationwide prospective study of mid-age women. Public Health Nutr. 2016, 19, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, S.; Imatoh, T.; Miyazaki, M.; Babazono, A.; Momose, Y.; Baba, M.; Uryu, Y.; Une, H. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. Appetite 2011, 57, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Hurst, Y.; Fukuda, H. Effects of changes in eating speed on obesity in patients with diabetes: A secondary analysis of longitudinal health check-up data. BMJ Open 2018, 8, e019589. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, T.; Hirakawa, Y.; Nakamura, U.; Kiyohara, Y.; Kitazono, T.; Ninomiya, T. Association between eating rate and obesity: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1589. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Young, A.J.; Rood, J.C.; Montain, S.J. Independent and Combined Effects of Eating Rate and Energy Density on Energy Intake, Appetite, and Gut Hormones. Obes. Biol. Integr. Physiol. 2013, 21, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Tamakoshi, K.; Yatsuya, H.; Wada, K.; Matsushita, K.; OuYang, P.; Hotta, Y.; Takefuji, S.; Mitsuhashi, H.; Sugiura, K.; et al. Eating fast leads to insulin resistance: Findings in middle-aged Japanese men and women. Prev. Med. 2008, 46, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Yang, K.; Huang, F.; Liu, X.; Li, X.; Luo, Y.; Wu, L.; Guo, X. Association between self-reported eating speed and metabolic syndrome in a Beijing adult population: A cross-sectional study. BMC Public Health 2018, 18, 855. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Martínez-González, M.Á.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fiol, M.; Wärnberg, J.; Arós, F.; Ruíz-Gutiérrez, V.; Lamuela-Raventós, R.M.; et al. Cohort profile: Design and methods of the PREDIMED study. Int. J. Epidemiol. 2012, 41, 377–385. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.J.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.A.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish men. The MARATHOM Investigators. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Garcia, M.; Aguilar, A.; Molina, L.; Covas, M.I.; Marrugat, J. Validation of the Minnesota Leisure Time Physical Activity Questionnaire In Spanish Women. Investigators of the MARATDON Group. Med. Sci. Sports Exerc. 2000, 32, 1431–1437. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Rubio, M.A.; Barbany, M.; Moreno, B.; Grupo Colaborativo de la SEEDO. SEEDO 2007 Consensus for the evaluation of overweight and obesity and the establishment of therapeutic intervention criteria. Med. Clin. 2007, 128, 184–196. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 13, 1–13. [Google Scholar] [CrossRef]
- Tanaka, Y.; Wake, N.; Kato, K. Letters to the Editor. Menopause 2009, 16, 424. [Google Scholar] [CrossRef]
- Maruyama, K.; Sato, S.; Ohira, T.; Maeda, K.; Noda, H.; Kubota, Y.; Nishimura, S.; Kitamura, A.; Kiyama, M.; Okada, T.; et al. The joint impact on being overweight of self reported behaviours of eating quickly and eating until full: Cross sectional survey. BMJ 2008, 337, a2002. [Google Scholar] [CrossRef]
- Lee, J.S.; Mishra, G.; Hayashi, K.; Watanabe, E.; Mori, K.; Kawakubo, K. Combined eating behaviors and overweight: Eating quickly, late evening meals, and skipping breakfast. Eat. Behav. 2016, 21, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Kawai, K.; Yanagisawa, M.; Yokoyama, H.; Kuribayashi, N.; Sugimoto, H.; Oishi, M.; Wada, T.; Iwasaki, K.; Kanatsuka, A.; et al. Self-reported rate of eating is significantly associated with body mass index in Japanese patients with type 2 diabetes. Japan Diabetes Clinical Data Management Study Group (JDDM26). Appetite 2012, 59, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Kral, J.G.; Buckley, M.C.; Kissileff, H.R.; Schaffner, F. Metabolic correlates of eating behavior in severe obesity. Int. J. Obes. 2001, 25, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Haruyama, Y.; Muto, T.; Yamazaki, T. Association between eating speed and metabolic syndrome in a three-year population-based cohort study. J. Epidemiol. 2015, 25, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Yamane, M.; Ekuni, D.; Mizutani, S.; Kataoka, K.; Sakumoto-Kataoka, M.; Kawabata, Y.; Omori, C.; Azuma, T.; Tomofuji, T.; Iwasaki, Y.; et al. Relationships between eating quickly and weight gain in Japanese University students: A longitudinal study. Obesity 2014, 22, 2262–2266. [Google Scholar] [CrossRef]
- Toyama, K.; Zhao, X.; Kuranuki, S.; Oguri, Y.; Kashiwa, E.; Yoshitake, Y.; Nakamura, T. The effect of fast eating on the thermic effect of food in young Japanese women. Int. J. Food Sci. Nutr. 2015, 66, 140–147. [Google Scholar] [CrossRef]
- Shah, M.; Crisp, K.; Adams-Huet, B.; Dart, L.; Bouza, B.; Franklin, B.; Phillips, M. The Effect of Eating Speed at Breakfast on Appetite Hormone Responses and Daily Food Consumption. J. Investig. Med. 2015, 63, 22–28. [Google Scholar] [CrossRef]
- Shah, M.; Copeland, J.; Dart, L.; Adams-Huet, B.; James, A.; Rhea, D. Slower eating speed lowers energy intake in normal-weight but not overweight/obese subjects. J. Acad. Nutr. Diet. 2014, 114, 393–402. [Google Scholar] [CrossRef]
- Lee, S.; Ko, B.J.; Gong, Y.; Han, K.; Lee, A.; Han, B.D.; Yoon, Y.J.; Park, S.; Kim, J.H.; Mantzoros, C.S. Self-reported eating speed in relation to non-alcoholic fatty liver disease in adults. Eur. J. Nutr. 2016, 55, 327–333. [Google Scholar] [CrossRef]
Eating Speed Categories | ||||
---|---|---|---|---|
Slow n = 181 | Medium n = 251 | Fast n = 360 | pa Value | |
Women, % (n) | 54.70 (99) | 49.40 (124) | 63.61 (229) | <0.01 |
Age, years | 68.82 ± 5.72 | 68.20 ± 5.81 | 66.37 ± 5.78 | <0.01 |
BMI (kg/m2) | 29.19 ± 3.50 | 29.40 ± 3.14 | 30.00 ± 3.32 | 0.01 |
Obesity, % (n) | 41.44 (75) | 41.04 (103) | 50.56 (182) | 0.03 |
Waist circumference (cm) | ||||
Women | 99.23 ± 9.65 | 98.27 ± 7.80 | 99.79 ± 8.56 | 0.28 |
Men | 102.74 ± 9.03 | 103.37 ± 8.45 | 103.24 ± 8.41 | 0.87 |
Smokers, % (n) | ||||
Current | 10.50 (19) | 13.55 (34) | 10.28 (37) | 0.24 |
Former | 26.52 (48) | 27.09 (68) | 21.67 (78) | |
Never smoker | 62.98 (114) | 59.36 (149) | 68.06 (245) | |
Physical activity, MET/min/day | 264 ± 217 | 291 ± 311 | 250 ± 259 | 0.19 |
Education level, % (n) | ||||
Low-medium | 92.82 (168) | 94.82 (238) | 93.61 (337) | 0.68 |
High | 7.18 (13) | 5.18 (13) | 6.39 (23) | |
Prosthesis use, % (n) | 59.67 (108) | 54.18 (136) | 46.94 (169) | 0.02 |
Medication use, % (n) | ||||
Oral antidiabetics | 38.12 (69) | 34.26 (86) | 32.22 (116) | 0.39 |
Insulin | 7.73 (14) | 5.98 (15) | 6.11 (22) | 0.72 |
Hypocholesterolemic agents | 38.12 (69) | 45.02 (113) | 47.22 (170) | 0.13 |
Antihypertensive agents | 72.93 (132) | 74.50 (187) | 75.28 (271) | 0.84 |
Biochemical Parameters | ||||
Glucose, mg/dL | 123.57 ± 46.66 | 121.83 ± 36.98 | 118.47 ± 36.00 | 0.31 |
Triglycerides, mg/dL—median (IQR) b | 107.60 [76.00–141.97] | 120.90 [87.94–154.89] | 122.32 [92.73–166.10] | <0.01 |
Total cholesterol, mg/dL | 207.95 ± 39.15 | 208.38 ± 40.26 | 209.67 ± 36.62 | 0.86 |
HDL-cholesterol, mg/dL—median (IQR) | ||||
Women | 58.13 [48.00–65.70] | 56.09 [49.90–66.61] | 55.34 [48.98–65.57] | 0.50 |
Men | 51.85 [44.08–58.80] | 48.10 [42.30–55.34] | 48.74 [42.00–55.98] | 0.03 |
Systolic blood pressure, mmHg | 151.59 ± 19.23 | 150.46 ± 17.86 | 149.72 ± 18.26 | 0.53 |
Diastolic blood pressure, mmHg | 81.83 ± 10.75 | 82.99 ± 9.24 | 84.13 ± 9.09 | 0.03 |
Eating Speed Categories | ||||
---|---|---|---|---|
Slow n = 181 | Medium n = 251 | Fast n = 360 | pa Value | |
MedDiet b adherence (0–14 points) | 8.18 ± 1.97 | 8.34 ± 1.99 | 8.22 ± 1.83 | 0.64 |
Energy intake (Kcal) | 2290 ± 512 | 2271 ± 557 | 2282 ± 533 | 0.94 |
Eating frequency, % (n) | ||||
1–2 meals/day | 15.17 (27) | 12.75 (32) | 19.17 (69) | 0.10 |
>3 meals/day | 84.83 (151) | 87.25 (219) | 80.83 (291) | |
Macronutrient distribution | ||||
Carbohydrate (g/day) | 228 ± 66 | 227 ± 68 | 231 ± 72 | 0.75 |
Carbohydrate, % of total energy | 39.85 ± 6.68 | 39.84 ± 6.12 | 40.23 ± 6.57 | 0.70 |
Protein (g/day) | 93 ± 22 | 93 ± 21 | 95 ± 21 | 0.23 |
Protein, % of total energy | 16.40 ± 2.57 | 16.59 ± 2.40 | 17.00 ± 2.58 | 0.02 |
Lipid (g/day) | 103 ± 26 | 104 ± 29 | 103 ± 27 | 0.95 |
Lipid, % of total energy | 40.77 ± 6.19 | 41.00 ± 5.93 | 40.71 ± 6.21 | 0.84 |
Dietary fiber (g/day) | 23.03 ± 7.54 | 23.18 ± 7.87 | 23.68 ± 7.65 | 0.58 |
Alcohol intake (g/day) | 10.65 ± 17.53 | 8.88 ± 12.41 | 7.33 ± 12.36 | 0.03 |
Eating Speed Categories | |||
---|---|---|---|
Slow | Medium | Fast | |
n = 181 | n = 251 | n = 360 | |
Obesity % (n) | 41.4 (75) | 41 (103) | 50.6 (182) |
Crude model | 1 (Ref.) | 0.99 (0.79–1.24) | 1.22 (1.00–1.49) |
Adjusted model a | 1 (Ref.) | 0.99 (0.80–1.24) | 1.15 (0.94–1.40) |
Metabolic syndrome % (n) | 59.70 (108) | 61.00 (153) | 64.40 (232) |
Crude model | 1 (Ref.) | 1.02 (0.88–1.19) | 1.08 (0.94–1.24) |
Adjusted model b | 1 (Ref.) | 1.02 (0.88–1.18) | 0.99 (0.86–1.14) |
Metabolic syndrome components | |||
Central obesity % (n) | 74.60 (135) | 74.10 (186) | 78.90 (284) |
Crude model | 1 (Ref.) | 0.99 (0.89–1.11) | 1.06 (0.95–1.17) |
Adjusted model b | 1 (Ref.) | 1.00 (0.91–1.10) | 0.95 (0.87–1.04) |
Hypertriglyceridemia % (n) | 21.60 (39) | 29.10 (73) | 34.20 (123) |
Crude model | 1 (Ref.) | 1.35 (0.97–1.89) | 1.59 (1.16–2.17) |
Adjusted model b | 1 (Ref.) | 1.32 (0.95–1.85) | 1.47 (1.08–2.02) |
Low HDL-C % (n) | 22.10 (40) | 21.10 (53) | 23.90 (86) |
Crude model | 1 (Ref.) | 0.96 (0.67–1.37) | 1.08 (0.78–1.50) |
Adjusted model b | 1 (Ref.) | 0.96 (0.68–1.37) | 0.94 (0.68–1.30) |
High Blood Pressure % (n) | 96.10 (174) | 95.60 (240) | 96.40 (347) |
Crude model | 1 (Ref.) | 0.99 (0.96–1.03) | 1.00 (0.97–1.04) |
Adjusted model b | 1 (Ref.) | 1.00 (0.96–1.03) | 1.00 (0.97–1.04) |
High fasting glucose % (n) | 65.20 (118) | 65.70 (165) | 61.10 (220) |
Crude model | 1 (Ref.) | 1.01 (0.88–1.16) | 0.94 (0.82–1.07) |
Adjusted model b | 1 (Ref.) | 1.00 (0.87–1.15) | 0.92 (0.80–1.06) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz-Graniel, I.; Babio, N.; Mendez, I.; Salas-Salvadó, J. Association between Eating Speed and Classical Cardiovascular Risk Factors: A Cross-Sectional Study. Nutrients 2019, 11, 83. https://doi.org/10.3390/nu11010083
Paz-Graniel I, Babio N, Mendez I, Salas-Salvadó J. Association between Eating Speed and Classical Cardiovascular Risk Factors: A Cross-Sectional Study. Nutrients. 2019; 11(1):83. https://doi.org/10.3390/nu11010083
Chicago/Turabian StylePaz-Graniel, Indira, Nancy Babio, Ignacio Mendez, and Jordi Salas-Salvadó. 2019. "Association between Eating Speed and Classical Cardiovascular Risk Factors: A Cross-Sectional Study" Nutrients 11, no. 1: 83. https://doi.org/10.3390/nu11010083
APA StylePaz-Graniel, I., Babio, N., Mendez, I., & Salas-Salvadó, J. (2019). Association between Eating Speed and Classical Cardiovascular Risk Factors: A Cross-Sectional Study. Nutrients, 11(1), 83. https://doi.org/10.3390/nu11010083