HDAC Inhibition in Vascular Endothelial Cells Regulates the Expression of ncRNAs
<p>HDAC inhibitors regulate the expression of ncRNAs. Pie charts comparing (<b>a</b>) relative number of known mRNA and ncRNA; (<b>b</b>) relative number of mRNA and ncRNA genes detected in HAECs by RNA-seq, and relative number of mRNA and ncRNA differentially expressed in HAECs stimulated with HDAC inhibitors (<b>c</b>) SAHA and (<b>d</b>) TSA (FDR <span class="html-italic">p</span> value < 0.05); (<b>e</b>) A stacked bar chart compares percentages of known ncRNA classes, ncRNA classes detected in HAECs by RNA-seq, and the percentage of ncRNA classes differentially expressed by SAHA and TSA in HAECs (FDR <span class="html-italic">p</span> value < 0.05). Abbreviations: Mt rRNA: mitochondrial ribosomal RNA; Mt tRNA: mitochondrial transfer RNA; LRG gene: Locus Reference Genomic gene; rRNA: ribosomal RNA; snoRNA: Small nucleolar RNA; snRNA: small nuclear RNA; misc RNA: Miscellaneous RNA; miRNA: microRNA; lincRNA: long intergenic non-coding RNA.</p> "> Figure 2
<p>Dynamic histone acetylation changes at the ncRNA promoters by HDAC inhibition. Mean-Average (MA) plots show the fold changes (logFC, log2 of the fold change) and the relative read concentration (logCPM) for histone acetylation (H3K9/14ac) at (<b>a</b>) all genes and (<b>b</b>) ncRNA gene promoters, as well as histone methylation at (<b>c</b>) all genes and (<b>d</b>) ncRNA gene promoters. Red points indicates FDR <span class="html-italic">p</span> value < 0.05, and black indicates FDR <span class="html-italic">p</span> value > 0.05. The number of genes FDR < 0.05 is shown in parenthesis on top of each plot.</p> "> Figure 3
<p>Epigenetic regulation by SAHA is dependent on ncRNA type. Scatterplots plots of the fold changes (logFC) show the correlation between ncRNA expression (FDR <span class="html-italic">p</span> value < 0.05) and corresponding promoter (<b>a</b>) H3K9/14ac and (<b>b</b>) H3K4me3 (FDR <span class="html-italic">p</span> value < 0.05) in response to SAHA stimulation; (<b>c</b>) A scatterplot of the fold changes (logFC) shows the correlation between differential promoter H3K9/14ac and H3K4me3 (FDR <span class="html-italic">p</span> value < 0.05) for ncRNA genes that are either activated (blue) or suppressed (red) (FDR <span class="html-italic">p</span> value < 0.05). Linear model is shown in red and the Pearson’s correlation value is reported for each plot; (<b>d</b>) A heatmap showing the percentage of activated or suppressed genes that overlap with increased or decreased histone modification (defined on horizontal axis) for protein-coding genes and six ncRNA classes (vertical axis).</p> "> Figure 4
<p>ENCODE-TFBS analysis identified enrichment of EP300 at deacetylated ncRNA promoters. GSEA-ENCODE analysis was used to determine enrichment of transcription factors and chromatin-modifying enzymes at genes regulated by SAHA in HAECs. (<b>a</b>) A heatmap showing the normalised enrichment score (NES) for gene sets of EZH2 and EP300 target genes in multiple cell types for coding and non-coding gene expression and histone modifications in HAECs stimulated with SAHA; (<b>b</b>) Heatmaps showing logFC of the top EP300 target genes (protein-coding and lincRNA) deacetylated by SAHA and the logFC of the corresponding gene expression and H3K4me3 at gene promoters. H3K9/14ac (blue) and H3K4me3 (yellow) profiles are plotted for the lincRNAs (<b>c</b>) <span class="html-italic">NEAT1</span> and <span class="html-italic">MALAT1</span> and (<b>d</b>) <span class="html-italic">TP53</span> in control HAECs and those stimulated with SAHA and TSA. Profiles are plotted as the normalised read count and the horizontal axis represents the region surrounding the gene promoter in base pairs.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Pharmacological Inhibitors of HDAC Activity Regulate the Expression of ncRNAs
2.2. Chromatin Modifications Drive ncRNA Gene Activation and Suppression
3. Discussion
4. Materials and Methods
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ChIP-seq | Chromatin immunoprecipitation sequencing |
ENCODE | Encyclopedia of DNA Elements |
FDA | Food and Drug Administration |
FDR | False Discovery Rate |
GSEA | Gene Set Enrichment Analysis |
H3K27ac | Histone 3 lysine 27 acetylation |
H3K27me3 | Histone 3 lysine 27 trimethylation |
H3K4me1 | Histone 3 lysine 4 monomethylation |
H3K4me3 | Histone 3 lysine 4 trimethylation |
H3K9/14ac | Histone 3 lysine 9 and 14 acetylation |
H3K9ac | Histone 3 lysine 9 acetylation |
HAECs | Human Aortic Endothelial Cells |
HAT | Histone acetyltransferase |
HDAC | Histone deacetylase |
lincRNA | long intergenic non-coding RNA |
logCPM | Log of the counts per million |
logFC | log of the fold change |
miRNA | microRNA |
ncRNA | non-coding RNA |
NIH | National Institute of Health |
ORF | Open Reading Frame |
RNA-seq | RNA sequencing |
SAHA | Suberanilohydroxamic acid |
TFBS | Transcription Factor Binding Sites |
TSA | Trichostatin A |
References
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2015, 17, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Yates, A.; Akanni, W.; Amode, M.R.; Barrell, D.; Billis, K.; Carvalho-Silva, D.; Cummins, C.; Clapham, P.; Fitzgerald, S.; Gil, L.; et al. Ensembl 2016. Nucleic Acids Res. 2016, 44, D710-6. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, M.T.; Bar, C.; Thum, T. Non-coding RNAs as modulators of the cardiac fibroblast phenotype. J. Mol. Cell. Cardiol. 2016, 92, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fullwood, M.J. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genom. Proteom. Bioinform. 2016, 14, 42–54. [Google Scholar] [CrossRef] [PubMed]
- St. Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet. 2015, 31, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Amin, V.; Harris, R.A.; Onuchic, V.; Jackson, A.R.; Charnecki, T.; Paithankar, S.; Lakshmi Subramanian, S.; Riehle, K.; Coarfa, C.; Milosavljevic, A. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nat. Commun. 2015, 6, 6370. [Google Scholar] [CrossRef] [PubMed]
- Nervi, C.; De Marinis, E.; Codacci-Pisanelli, G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin. Epigenetics 2015, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Sawas, A.; Radeski, D.; O’Connor, A.O. Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: A perspective review. Ther. Adv. Hematol. 2015, 6, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Rafehi, H.; Balcerczyk, A.; Lunke, S.; Kaspi, A.; Ziemann, M.; Kn, H.; Okabe, J.; Khurana, I.; Ooi, J.; Khan, A.W.; et al. Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Res. 2014, 24, 1271–1284. [Google Scholar] [CrossRef] [PubMed]
- Marinova, Z.; Leng, Y.; Leeds, P.; Chuang, D.M. Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons. Neuropharmacology 2011, 60, 1109–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalik, K.M.; You, X.; Manavski, Y.; Doddaballapur, A.; Zornig, M.; Braun, T.; John, D.; Ponomareva, Y.; Chen, W.; Uchida, S.; et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 2014, 114, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Tannous, P.; Lu, G.; Berenji, K.; Rothermel, B.A.; Olson, E.N.; Hill, J.A. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 2006, 113, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Ooi, J.Y.; Tuano, N.K.; Rafehi, H.; Gao, X.M.; Ziemann, M.; Du, X.J.; El-Osta, A. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics 2015, 10, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.P.; Gysemans, C.; Lundh, M.; Dahllof, M.S.; Noesgaard, D.; Schmidt, S.F.; Mandrup, S.; Birkbak, N.; Workman, C.T.; Piemonti, L.; et al. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection. Proc. Natl. Acad. Sci. USA 2014, 111, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.M.; Shin, S.; Cha, H.J.; Yoon, Y.; Bae, S.; Jung, J.H.; Lee, S.M.; Lee, S.J.; Park, I.C.; Jin, Y.W.; et al. Suberoylanilide hydroxamic acid (SAHA) changes microRNA expression profiles in A549 human non-small cell lung cancer cells. Int. J. Mol. Med. 2009, 24, 45–50. [Google Scholar] [PubMed]
- Zhang, S.; Cai, X.; Huang, F.; Zhong, W.; Yu, Z. Effect of trichostatin a on viability and microRNA expression in human pancreatic cancer cell line BxPC-3. Exp. Oncol. 2008, 30, 265–268. [Google Scholar] [PubMed]
- Scott, G.K.; Mattie, M.D.; Berger, C.E.; Benz, S.C.; Benz, C.C. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006, 66, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Mathiyalagan, P.; Okabe, J.; Chang, L.; Su, Y.; Du, X.J.; El-Osta, A. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res. 2014, 42, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafehi, H.; El-Osta, A. HDAC Inhibition in Vascular Endothelial Cells Regulates the Expression of ncRNAs. Non-Coding RNA 2016, 2, 4. https://doi.org/10.3390/ncrna2020004
Rafehi H, El-Osta A. HDAC Inhibition in Vascular Endothelial Cells Regulates the Expression of ncRNAs. Non-Coding RNA. 2016; 2(2):4. https://doi.org/10.3390/ncrna2020004
Chicago/Turabian StyleRafehi, Haloom, and Assam El-Osta. 2016. "HDAC Inhibition in Vascular Endothelial Cells Regulates the Expression of ncRNAs" Non-Coding RNA 2, no. 2: 4. https://doi.org/10.3390/ncrna2020004
APA StyleRafehi, H., & El-Osta, A. (2016). HDAC Inhibition in Vascular Endothelial Cells Regulates the Expression of ncRNAs. Non-Coding RNA, 2(2), 4. https://doi.org/10.3390/ncrna2020004