TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production
<p>Experimental diagram of the production of TEMPO-oxidized cellulose nanofibers (CNF).</p> "> Figure 2
<p>Evolution of the carboxyl content (CC) (black), cationic demand (CD) (white) and Net CD (grey) with increasing amounts of NaClO.</p> "> Figure 3
<p>Evolution of the specific surface (black, left vertical axis) and the fiber diameter (white, right vertical axis) with increasing amounts of NaClO.</p> "> Figure 4
<p>Production costs of the CNF obtained with different amounts of NaClO.</p> "> Figure 5
<p>Evolution of free swelling capacity (FSC) as a function of immersion time (in minutes).</p> "> Figure 6
<p>Effect of the specific surface on FSC at 60 min (<b>a</b>) and CRC (<b>b</b>) of CNF compared to fluff pulp and a commercial diaper absorbent.</p> "> Figure 7
<p>Field emission scanning electron microscopy (FE-SEM) images of aerogels prepared with CNF-5 (<b>a</b>), CNF-10 (<b>b</b>), CNF-15 (<b>c</b>) and CNF-25 (<b>d</b>).</p> "> Figure 8
<p>Diaper weight and amount of absorbent as function of the diaper size.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose Nanofibers
2.3. Characterizatoin of Cellulose Nanofibers
2.4. Preparation of the Aerogels
2.5. Characterization of Aerogels and Commercial Diapers
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; The General Assembly: New York, NY, USA, 2015; pp. 1–35. [Google Scholar]
- Timmermans, F.; Katainen, J. Circular Economy : Commission Welcomes European Parliament Adoption of New Rules on Single; Représentation de la Commission Européenne au Luxembourg: Luxembourg, 2019; pp. 30–31.
- EU Commission. Proposal for a Directive of the European Parliament and of the Council on the Reduction of the Impact of Certain Plastic Products on the Environment; EU Commission: Brussels, Belgium, 2018.
- Chen, X.; Shan, G.; Huang, J.; Huang, Z.; Weng, Z. Synthesis and Properties of Acrylic-Based Superabsorbent. J. Appl. Polym. Sci. 2004, 92, 619–624. [Google Scholar] [CrossRef]
- Mudiyanselage, T.; Neckers, D. Highly Absorbing Superabsorbent Polymer. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 1357–1364. [Google Scholar] [CrossRef]
- Brodin, F.W.; Lund, K.; Brelid, H.; Theliander, H. Reinforced absorbent material: A cellulosic composite of TEMPO-oxidized MFC and CTMP fibres. Cellulose 2012, 19, 1413–1423. [Google Scholar] [CrossRef]
- The Nappy Alliance. 2007. Available online: https://www.parliament.uk/documents/lords-committees/science-technology/st1nappyalliance.pdf (accessed on 25 July 2019).
- Parr, J. Nappy Alliance Welcomes Government Intervention. 2018. Available online: PreschoolNews.net (accessed on 25 July 2019).
- Cock, L.S.; Guancha-Chalapud, M.A. Natural fibers for hydrogels production and their applications in agriculture. Acta Agron. 2017, 66, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Bai, B.; Ding, C.; Wang, H.; Suo, Y. Synthesis and properties of an ecofriendly superabsorbent composite by grafting the poly(acrylic acid) onto the surface of dopamine-coated sea buckthorn branches. Ind. Eng. Chem. Res. 2015, 54, 3268–3278. [Google Scholar] [CrossRef]
- McVeigh, K. Vanuatu to ban disposable nappies in plastics crackdown: “We had no choice”. The Guardian, 22 June 2019. [Google Scholar]
- Hubbe, M.A. Prospects for maintaining strength of paper and paperboard products while using less forest resources: A review. BioResources 2014, 9, 1634–1763. [Google Scholar] [CrossRef]
- Moberg, T.; Sahlin, K.; Yao, K.; Geng, S.; Westman, G.; Zhou, Q.; Oksman, K.; Rigdahl, M. Rheological properties of nanocellulose suspensions: Effects of fibril/particle dimensions and surface characteristics. Cellulose 2017, 24, 2499–2510. [Google Scholar] [CrossRef]
- Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef] [Green Version]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Hoeng, F.; Denneulin, A.; Bras, J. Use of nanocellulose in printed electronics: A review. Nanoscale 2016, 8, 13131–13154. [Google Scholar] [CrossRef]
- Delgado-aguilar, M. Towards the development of highly transparent, flexible and water-resistant bio-based nanopapers : Tailoring physico-mechanical properties. Cellulose 2019, 8, 6917–6932. [Google Scholar] [CrossRef]
- Ferrer, A.; Quintana, E.; Filpponen, I.; Solala, I.; Vidal, T.; Rodríguez, A.; Laine, J.; Rojas, O.J. Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 2012. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.; González, I.; Tarrés, Q.; Alcalà, M.; Pèlach, M.À.; Mutjé, P. Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications. BioResources 2015, 10, 5345–5355. [Google Scholar] [CrossRef]
- Saito, T.; Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 2004, 5, 1983–1989. [Google Scholar] [CrossRef]
- Henriksson, M.; Henriksson, G.; Berglund, L.A.; Lindström, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 2007, 43, 3434–3441. [Google Scholar] [CrossRef]
- Espinosa, E.; Tarrés, Q.; Delgado-Aguilar, M.; González, I.; Mutjé, P.; Rodríguez, A. Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 2016, 23, 837–852. [Google Scholar] [CrossRef]
- Corrêa, A.C.; de Teixeira, E.M.; Pessan, L.A.; Mattoso, L.H.C. Cellulose nanofibers from curaua fibers. Cellulose 2010, 17, 1183–1192. [Google Scholar] [CrossRef]
- Lindström, T.; Fellers, C.; Ankerfors, M.; Glad-Nordmark, G. On the strength mechanism of dry strengthening of paper with nanocellulose. In Proceedings of the Recent Advances in Cellulose Nanotechnology Research: Production, Characterization and Applications, Trondheim, Norway, 2014. [Google Scholar]
- Serra, A.; González, I.; Oliver-Ortega, H.; Tarrès, Q.; Delgado-Aguilar, M.; Mutjé, P. Reducing the amount of catalyst in TEMPO-oxidized cellulose nanofibers: Effect on properties and cost. Polymers 2017, 9, 557. [Google Scholar] [CrossRef]
- Lu, P.; Liu, R.; Liu, X.; Wu, M. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions. Nanomaterials 2018, 8, 800. [Google Scholar] [CrossRef]
- Sehaqui, H.; Zhou, Q.; Ikkala, O.; Berglund, L.A. Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 2011, 12, 3638–3644. [Google Scholar] [CrossRef]
- Tarrés, Q.; Oliver-Ortega, H.; Llop, M.; Pèlach, M.À.; Delgado-Aguilar, M.; Mutjé, P. Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose 2016, 23, 3077–3088. [Google Scholar] [CrossRef]
- Tarrés, Q.; Boufi, S.; Mutjé, P.; Delgado-Aguilar, M. Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: Morphological, optical, thermal and mechanical properties. Cellulose 2017, 24, 3943–3954. [Google Scholar] [CrossRef]
- Peng, B.L.; Dhar, N.; Liu, H.L.; Tam, K.C. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can. J. Chem. Eng. 2011, 89, 1191–1206. [Google Scholar] [CrossRef]
- Koga, H.; Saito, T.; Kitaoka, T.; Nogi, M.; Suganuma, K.; Isogai, A. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 2013, 14, 1160–1165. [Google Scholar] [CrossRef]
- Lizundia, E.; Delgado-Aguilar, M.; Mutjé, P.; Fernández, E.; Robles-Hernandez, B.; de la Fuente, M.R.; Vilas, J.L.; León, L.M. Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose 2016, 23, 1997–2010. [Google Scholar] [CrossRef]
- Boufi, S.; Belgacem, M.N. Modified cellulose fibres for adsorption of dissolved organic solutes. Cellulose 2006. [Google Scholar] [CrossRef]
- Boufi, S.; González, I.; Delgado-Aguilar, M.; Tarrès, Q.; Pèlach, M.À.; Mutjé, P. Nanofibrillated cellulose as an additive in papermaking process: A review. Carbohydr. Polym. 2016, 154, 151–166. [Google Scholar] [CrossRef]
- Li, Q.; McGinnis, S.; Sydnor, C.; Wong, A.; Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain. Chem. Eng. 2013, 1, 919–928. [Google Scholar] [CrossRef]
- Fiol, N.; Vásquez, M.G.; Pereira, M.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M. TEMPO-oxidized cellulose nanofibers as potential Cu(II) adsorbent for wastewater treatment. Cellulose 2019, 26, 903–916. [Google Scholar] [CrossRef]
- Ho, T.T.T.; Zimmermann, T.; Hauert, R.; Caseri, W. Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 2011, 18, 1391–1406. [Google Scholar] [CrossRef] [Green Version]
- Batmaz, R.; Mohammed, N.; Zaman, M.; Minhas, G.; Berry, R.M.; Tam, K.C. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 2014, 21, 1655–1665. [Google Scholar] [CrossRef]
- Cervin, N.T.; Aulin, C.; Larsson, P.T.; Wågberg, L. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 2012, 19, 401–410. [Google Scholar] [CrossRef]
- Sehaqui, H.; Zhou, Q.; Berglund, L.A. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos. Sci. Technol. 2011, 71, 1593–1599. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef]
- Zhang, Z.; Sèbe, G.; Rendtsch, D.; Zimmermann, T.; Tingaut, P. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 2014, 26, 2659–2668. [Google Scholar] [CrossRef]
- Benkaddour, A.; Journoux-Lapp, C.; Jradi, K.; Robert, S.; Daneault, C. Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: Amidation and esterification process. J. Mater. Sci. 2014, 49, 2832–2843. [Google Scholar] [CrossRef]
- Prashad, V.; Cho, D.; Tseng, J.; Tsang, L.; Louie, M.C. Book Reviews. Amerasia J. 2000, 26, 205–221. [Google Scholar] [CrossRef]
- Gu, F.; Wang, W.; Cai, Z.; Xue, F.; Jin, Y.; Zhu, J.Y. Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose 2018, 25, 2861–2871. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.; González, I.; Pèlach, M.A.; De La Fuente, E.; Negro, C.; Mutjé, P. Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 2015, 22, 789–802. [Google Scholar] [CrossRef]
- Makoui, K.B.; Chatterjee, P.K. Cross-Linked Pore Containing Microfibrillated Cellulose Prepared by Freezing and Solvent Exchange. U.S. Patent No. 4,689,118, 25 August 1987. [Google Scholar]
- Chatterjee, P.K.; Makoui, K.B. Freeze Dried Microfibrilar Cellulose. U.S. Patent No. 4,474,949, 2 October 1984. [Google Scholar]
- Brodin, F.W.; Theliander, H. Absorbent materials based on kraft pulp: Preparation and material characterization. BioResources 2012, 7, 1666–1686. [Google Scholar] [CrossRef]
- Mendoza, L.; Hossain, L.; Downey, E.; Scales, C.; Batchelor, W.; Garnier, G. Carboxylated nanocellulose foams as superabsorbents. J. Colloid Interface Sci. 2019, 538, 433–439. [Google Scholar] [CrossRef]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef]
- Rodionova, G.; Saito, T.; Lenes, M.; Eriksen, Ø.; Gregersen, Ø.; Kuramae, R.; Isogai, A. TEMPO-Mediated Oxidation of Norway Spruce and Eucalyptus Pulps: Preparation and Characterization of Nanofibers and Nanofiber Dispersions. J. Polym. Environ. 2013. [Google Scholar] [CrossRef]
- Zhu, H.; Parvinian, S.; Preston, C.; Vaaland, O.; Ruan, Z.; Hu, L. Transparent nanopaper with tailored optical properties. Nanoscale 2013, 5, 3787–3792. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, R.; Saito, T.; Okita, Y.; Isogai, A. Relationship between Length and Degree of Polymerization of TEMPO-Oxidized Cellulose Nanofibrils. Biomacromolecules 2012, 13, 842–849. [Google Scholar] [CrossRef]
- Rouger, J.; Mutjé, P. Correlation between the cellulose fibres beating and the fixation of a soluble cationic polymer. Br. Polym. J. 1984, 16, 83–86. [Google Scholar] [CrossRef]
- Carrasco, F.; Mutjé, P.; Pelach, M.A. Control of retention in paper-making by colloid titration and zeta potential techniques. Wood Sci. Technol. 1998, 32, 145–155. [Google Scholar] [CrossRef]
- Aulin, C.; Netrval, J.; Wagberg, L.; Lindstrom, T. Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 2010, 6, 3298–3305. [Google Scholar] [CrossRef]
- Lavoine, N.; Bergström, L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A 2017, 5, 16105–16117. [Google Scholar] [CrossRef]
- Donius, A.E.; Liu, A.; Berglund, L.A.; Wegst, U.G.K. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting. J. Mech. Behav. Biomed. Mater. 2014, 37, 88–99. [Google Scholar] [CrossRef]
NaClO (mmol/g) | T at 600 nm (%) | Yield of Fibrillation (%) | DP (-) | WRV (gH2O/g) |
---|---|---|---|---|
5 | 80.2 ± 1.2 | 94.61 ± 1.63 | 488 ± 21 | 8.21 ± 0.31 |
10 | 81.8 ± 1.6 | 97.82 ± 2.16 | 232 ± 18 | 11.03 ± 0.53 |
15 | 84.7 ± 2.1 | 98.89 ± 1.05 | 199 ± 9 | 12.79 ± 0.44 |
25 | 88.0 ± 1.7 | 99.13 ± 0.68 | 169 ± 6 | 13.08 ± 0.47 |
Diaper Size | Recommended Baby’s Size (kg) | Absorption Capacity (g) | Required Amount of Absorbent (g) | ||||
---|---|---|---|---|---|---|---|
Commercial | CNF-5 | CNF-10 | CNF-15 | CNF-25 | |||
0 | 1.5–2.5 | 106.69 | 1.83 | 1.88 | 1.39 | 1.26 | 1.18 |
1 | 2–5 | 145.17 | 2.49 | 2.56 | 1.89 | 1.72 | 1.61 |
2 | 4–8 | 181.31 | 3.11 | 3.19 | 2.36 | 2.15 | 2.01 |
3 | 7–11 | 428.51 | 7.35 | 7.54 | 5.59 | 5.07 | 4.76 |
NaClO (mmol/g) | 50% Deformation | 100% Deformation | ||
---|---|---|---|---|
σcA (Pa) | Liquid Release (%) | σcA (Pa) | Liquid Release (%) | |
5 | 590 ± 42 | 26.41 ± 1.26 | Disintegrated | |
10 | 980 ± 63 | 23.73 ± 1.83 | Disintegrated | |
15 | 1860 ± 101 | 19.65 ± 0.97 | 38.65 ± 2.10 | |
25 | 3060 ± 176 | 12.19 ± 1.05 | 26.12 ± 1.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patiño-Masó, J.; Serra-Parareda, F.; Tarrés, Q.; Mutjé, P.; Espinach, F.X.; Delgado-Aguilar, M. TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production. Nanomaterials 2019, 9, 1271. https://doi.org/10.3390/nano9091271
Patiño-Masó J, Serra-Parareda F, Tarrés Q, Mutjé P, Espinach FX, Delgado-Aguilar M. TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production. Nanomaterials. 2019; 9(9):1271. https://doi.org/10.3390/nano9091271
Chicago/Turabian StylePatiño-Masó, Josefina, Ferran Serra-Parareda, Quim Tarrés, Pere Mutjé, F. Xavier Espinach, and Marc Delgado-Aguilar. 2019. "TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production" Nanomaterials 9, no. 9: 1271. https://doi.org/10.3390/nano9091271
APA StylePatiño-Masó, J., Serra-Parareda, F., Tarrés, Q., Mutjé, P., Espinach, F. X., & Delgado-Aguilar, M. (2019). TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production. Nanomaterials, 9(9), 1271. https://doi.org/10.3390/nano9091271