Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges
"> Figure 1
<p>Total number of published papers reporting the properties of liquid crystals doped with ferroelectric nanomaterials versus time.</p> "> Figure 2
<p>(<b>a</b>) Number of papers published during the 2003–2017 period; and (<b>b</b>) major research highlights. Nematic liquid crystals (NLCs), cholesteric liquid crystals (ChLCs), smectic liquid crystals (SmLCs), ferroelectric liquid crystals (FLCs), antiferroelectric liquid crystals (AFLC), polymer dispersed liquid crystals (PDLC), blue phase liquid crystals (BLCs), liquid crystals (LC), electro-optics (EO), molecular dynamics simulation (MDS).</p> "> Figure 3
<p>(<b>a</b>) Macro-crystals prior to milling; (<b>b</b>) The obtained dispersion of milled ferroelectric nanoparticles in a fluid carrier (heptane); (<b>c</b>) Commercially available high-energy ball mill; (<b>d</b>) an average size of the milled nanoparticles vs. grinding time [<a href="#B8-nanomaterials-07-00361" class="html-bibr">8</a>]. A typical harvesting setup is shown in the inset (redrawn after [<a href="#B125-nanomaterials-07-00361" class="html-bibr">125</a>]).</p> "> Figure 4
<p>The twin cell placed in between two crossed polarizers: (<b>a</b>) the cell is filled with pure liquid crystals (this region is marked as “LC”) and liquid crystals doped with surfactant (oleic acid) (this region is marked as “LC/Surf.”); (<b>b</b>) the cell is filled with pure liquid crystals (marked as “LC”) and liquid crystals doped with ferroelectric nanoparticles (marked as “LC/FNP”).</p> ">
Abstract
:1. Liquid Crystals and Nanoparticles: Introduction
2. Liquid Crystals Doped with Ferroelectric Nanoparticles: A Brief Historical Overview
2.1. Early Developments (2003–2006)
2.2. Research Expansion (2007–2011)
2.3. Research Expansion, Globalization, and Validation (2012–2017)
3. Technology and Basic Properties of Liquid Crystals Doped with Ferroelectric Nanoparticles
3.1. Current Technology
3.2. Basic Properties of Liquid Crystals Doped with Ferroelectric Nanoparticles
4. Scientific and Technological Challenges
4.1. Issues Related to Nanoparticles
4.2. Stable and Aggregate-Free Dispersions
4.3. Issues Associated with the Choice of Guest-Host Materials
4.4. Experimental Procedures and Control Measurements
4.5. New Theoretical and Computational Models
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lagerwall, J.P.F.; Scalia, G. Liquid Crystals with Nano and Microparticles (Series in Soft Condensed Matter: Volume 7); World Scientific Publishing Co.: Singapore, 2016; pp. 461–920. [Google Scholar]
- Garbovskiy, Y.; Glushchenko, I. Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena. Crystals 2015, 5, 501–533. [Google Scholar] [CrossRef]
- Urbanski, M. On the impact of nanoparticle doping on the electro-optic response of nematic hosts. Liq. Cryst. Today 2015, 24, 102–115. [Google Scholar] [CrossRef]
- Blanc, C.; Coursault, D.; Lacaze, E. Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev. 2013, 1, 83–109. [Google Scholar] [CrossRef]
- Stamatoiu, O.; Mirzaei, J.; Feng, X.; Hegmann, T. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. Top. Curr. Chem. 2012, 318, 331–394. [Google Scholar] [PubMed]
- Brochard, F.; de Gennes, P.G. Theory of magnetic suspensions in liquid crystals. J. Phys. (Paris) 1970, 31, 691–708. [Google Scholar] [CrossRef]
- Mertelj, A.; Lisjak, D. Ferromagnetic nematic liquid crystals. Liq. Cryst. Rev. 2017, 5, 1–33. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, A. Liquid crystalline colloids of nanoparticles: Preparation, properties, and applications. Solid State Phys. 2011, 62, 1–74. [Google Scholar]
- Garbovskiy, Y.; Zribi, O.; Glushchenko, A. Emerging Applications of Ferroelectric Nanoparticles in Materials Technologies, Biology and Medicine. In Advances in Ferroelectrics; Peláiz-Barranco, A., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0885-6. [Google Scholar] [CrossRef]
- Mirzaei, J.; Reznikov, M.; Hegmann, T. Quantum dots as liquid crystal dopants. J. Mater. Chem. 2012, 22, 22350–22365. [Google Scholar] [CrossRef]
- Klimusheva, G.; Mirnaya, T.; Garbovskiy, Y. Versatile Nonlinear-Optical Materials Based on Mesomorphic Metal Alkanoates: Design, Properties, and Applications. Liq. Cryst. Rev. 2015, 3, 28–57. [Google Scholar] [CrossRef]
- Kumar, S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater. 2014, 6, e82. [Google Scholar] [CrossRef]
- Rahman, M.; Lee, W. Scientific duo of carbon nanotubes and nematic liquid crystals. J. Phys. D Appl. Phys. 2009, 42, 063001. [Google Scholar] [CrossRef]
- Yadav, S.P.; Singh, S. Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 2016, 80, 38–76. [Google Scholar] [CrossRef]
- Reznikov, Y.; Buchnev, O.; Tereshchenko, O.; Reshetnyak, V.; Glushchenko, A.; West, J. Ferroelectric nematic suspension. Appl. Phys. Lett. 2003, 82, 1917–1919. [Google Scholar] [CrossRef]
- Ouskova, E.; Buchnev, O.; Reshetnyak, V.; Reznikov, Y.; Kresse, H. Dielectric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric Sn2P2S6 nanoparticles. Liq. Cryst. 2003, 30, 1235–1239. [Google Scholar] [CrossRef]
- Buchnev, O.; Glushchenko, A.; Reznikov, Y.; Reshetnyak, V.; Tereshchenko, O.; West, J. Diluted ferroelectric suspension of Sn2P2S6 nanoparticles in nematic liquid crystal. In Proceedings of the Ninth International Conference on Nonlinear Optics of Liquid and Photorefractive, Bellingham, WA, USA, 3 December 2003; Volume 5257, pp. 7–12. [Google Scholar]
- Buchnev, O.; Ouskova, E.; Reznikov, Y.; Reshetnyak, V.; Kresse, H.; Grabar, A. Enhanced dielectric response of liquid crystal ferroelectric suspension. Mol. Cryst. Liq. Cryst. 2004, 422, 47–55. [Google Scholar] [CrossRef]
- Reshetnyak, V. Effective dielectric function of ferroelectric LC suspensions. Mol. Cryst. Liq. Cryst. 2004, 421, 219–224. [Google Scholar] [CrossRef]
- Buchnev, O.; Cheon, C.I.; Glushchenko, A.; Reznikov, Y.; West, J.L. New non-synthetic method to modify properties of liquid crystals using micro- and nano-particles. J. Soc. Inf. Disp. 2005, 13, 749–754. [Google Scholar] [CrossRef]
- Glushchenko, A.V. Ferroelectric particles in liquid crystals and their outcome. In Proceedings of the International Conference on Optics of Liquid Crystals, Sand Clear Water Beach, FL, USA, 1–7 October 2005. [Google Scholar]
- Reznikov, Y.; Glushchenko, A.; Reshetnyak, V.; West, J. Liquid Crystal Cell Comprising Ferroelectric Particle Suspensions. Patent WO 2003060598 A2, 24 July 2003. [Google Scholar]
- Reznikov, Y.; Buluy, O.; Tereshchenko, O.; Glushchenko, A.; West, J. Ferroelectric particles liquid crystal dispersions. Proc. SPIE 2005, 5741, 171. [Google Scholar]
- Cheon, C.I.; Li, L.; Glushchenko, A.; West, J.L.; Reznikov, Y.; Kim, J.S.; Kim, D.H. Electro-optics of liquid crystals doped with ferroelectric nano-powder. SID Tech. Digest 2005, 2, 45. [Google Scholar] [CrossRef]
- Li, F.; Buchnev, O.; Cheon, C.; Glushchenko, A.; Reshetnyak, V.; Reznikov, Y.; Sluckin, T.J.; West, J.L. Orientational coupling amplification in ferroelectric nematic colloids. Phys. Rev. Lett. 2006, 97, 147801. [Google Scholar] [CrossRef] [PubMed]
- Glushchenko, A.; Cheon, C.; West, J.; Li, F.; Büyüktanir, E.; Reznikov, Y.; Buchnev, A. Ferroelectric particles in liquid crystals: Recent frontiers. Mol. Cryst. Liq. Cryst. 2006, 453, 227–237. [Google Scholar] [CrossRef]
- Reshetnyak, V.Y.; Shelestiuk, S.M.; Sluckin, T.J. Freedericksz transition threshold in nematic liquid crystals filled with ferroelectric nano-particles. Mol. Cryst. Liq. Cryst. 2006, 454, 201/[603]–206/[608]. [Google Scholar] [CrossRef]
- Li, F.; West, J.; Glushchenko, A.; Cheon, C.; Reznikov, Y. Ferroelectric nanoparticle/liquid-crystal colloids for display applications. J. SID 2006, 14, 523–527. [Google Scholar] [CrossRef]
- Glushchenko, A.V.; West, J.L.; Li, F.; Zhang, K.; Atkuri, H.M. Electro-Optic Properties of Ferroelectric Nanoparticles in Liquid Crystal Dispersions. In Proceedings of the SID 2007 International Symposium, Long Beach, CA, USA, 20–25 May 2007. [Google Scholar]
- Glushchenko, A.; Buchnev, O.; Iljin, A.; Kurochkin, O.; Reznikov, Y. Cholesteric colloid of ferroelectric nano-particles. In SID Symposium Digest of Technical Papers; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; Volume 38, pp. 1086–1089. [Google Scholar]
- Glushchenko, A.; Cheon, C.; West, J.; Reznikov, Y. Invited paper: Applications of ferroelectric particles/liquid crystal colloids. Proc. SPIE 2007, 6487, 6487-0T. [Google Scholar]
- Cook, G.; Glushchenko, A.V.; Reshetnyak, V.Y.; Saleh, M.A.; Evans, D.R. Hybrid Liquid Crystal Inorganic Photorefractives. In Proceedings of the 12th International Topical Meeting on Optics of Liquid Crystals (OLC-07), Puebla, Mexico, 1–5 October 2007. [Google Scholar]
- Kaczmarek, M.; Dyadyusha, A.; D’Alessandro, G.; Buchnev, O. Hybrid liquid crystal nanomaterials with improved photorefractive response. In Proceedings of the Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, Squaw Creek, CA, USA, 14 October 2007. [Google Scholar]
- West, J.L.; Li, F.; Zhang, K.; Atkuri, H.M.; Glushchenko, A.V. Electro-optic properties of ferroelectric nanoparticle/liquid crystal dispersions. In SID Symposium Digest of Technical Papers; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; Volume 38, pp. 1090–1092. [Google Scholar]
- Buchnev, O.; Dyadyusha, A.; Kaczmarek, M.; Reshetnyak, V.; Reznikov, Y. Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals. J. Opt. Soc. Am. B 2007, 24, 1512–1516. [Google Scholar] [CrossRef]
- Čopič, M.; Mertelj, A.; Buchnev, O.; Reznikov, Y. Coupled director and polarization fluctuations in suspensions of ferroelectric nanoparticles in nematic liquid crystals. Phys. Rev. E 2007, 76, 011702. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Glushchenko, A.; Reshetnyak, V.; Beckel, E.; Saleh, M.; Evans, D. Liquid crystal inorganic hybrid photorefractives. In Proceedings of the 2008 IEEE/LEOS Winter Topical Meeting Series, Sorrento, Italy, 14–16 January 2008; pp. 129–130. [Google Scholar]
- Cook, G.; Glushchenko, A.V.; Reshetnyak, V.; Griffith, A.T.; Saleh, M.A.; Evans, D.R. Nanoparticle doped organic-inorganic hybrid photorefractives. Opt. Express 2008, 16, 4015–4022. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.; Buchnev, O.; Nandhakumar, I. Ferroelectric nanoparticles in low refractive index liquid crystals for strongelectro-optic response. Appl. Phys. Lett. 2008, 92, 103307. [Google Scholar] [CrossRef]
- Atkuri, H.; Cook, G.; Evans, D.R.; Glushchenko, A.; Reshetnyak, V.; Reznikov, Y.; West, J.; Zhang, K. Preparation of ferroelectric nanoparticles and their use in organic-inorganic liquid crystal hybrid photorefractives. J. Opt. A Pure Appl. Opt. 2009, 11, 024006. [Google Scholar] [CrossRef]
- Mikulko, A.; Arora, P.; Glushchenko, A.; Lapanik, A.; Haase, W. Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid-crystalline mixture. Europhys. Lett. 2009, 87, 27009. [Google Scholar] [CrossRef]
- Kurochkin, O.; Buchnev, O.; Iljin, A.; Park, S.K.; Kwon, S.B.; Grabar, O.; Reznikov, Y. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A Pure Appl. Opt. 2009, 11, 024003. [Google Scholar] [CrossRef]
- Atkuri, H.M.; Zhang, K.; West, J.L. Fabrication of paraelectric nanocolloidal liquid crystals. Mol. Cryst. Liq. Cryst. 2009, 508, 183/[545]–190/[552]. [Google Scholar] [CrossRef]
- Akimoto, M.; Kundu, S.; Isomura, K.; Hirayama, I.; Kobayashi, S.; Takatoh, K. Improvement of electro-optical characteristics of liquid crystal display by nanoparticle-embedded alignment layers. Mol. Cryst. Liq. Cryst. 2009, 508, 1/[363]–13/[375]. [Google Scholar] [CrossRef]
- Scolari, L.; Gauza, S.; Xianyu, H.; Zhai, L.; Eskildsen, L.; Tanggaard Alkeskjold, T.; Wu, S.-T.; Bjarklev, A. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals. Opt. Express 2009, 17, 3754–3764. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.R.; Cook, G.; Saleh, M.A. Recent advances in photorefractive two-beam coupling. Opt. Mater. 2009, 31, 1059–1060. [Google Scholar] [CrossRef]
- Lopatina, L.M.; Selinger, J.V. Theory of ferroelectric nanoparticles in nematic liquid crystals. Phys. Rev. Lett. 2009, 102, 197802. [Google Scholar] [CrossRef] [PubMed]
- Kurochkin, O.; Atkuri, H.; Buchnev, O.; Glushchenko, A.; Grabar, O.; Karapinar, R.; Reshetnyak, V.; West, J.; Reznikov, Y. Nano-colloids of Sn2P2S6 in nematic liquid crystal pentyl-cianobiphenile. Condens. Matter Phys. 2010, 13, 33701. [Google Scholar] [CrossRef]
- Cook, G.; Barnes, J.L.; Basun, S.A.; Evans, D.R.; Ziolo, R.F.; Ponce, A.; Reshetnyak, V.Y.; Glushchenko, A.; Banerjee, P.P. Harvesting single ferroelectric domain stressed nanoparticles for optical and ferroic applications. J. Appl. Phys. 2010, 108, 064309. [Google Scholar] [CrossRef]
- Cook, G.; Reshetnyak, V.Y.; Ponce, A.; Ziolo, R.F.; Basun, S.A.; Evans, D.R. Improved holographic beam coupling through selective harvesting of single domain ferroelectric nanoparticles. In Proceedings of the Biomedical Optics and 3-D Imaging, Miami, FL, USA, 12–14 April 2010. [Google Scholar]
- Pereira, M.S.S.; Canabarro, A.A.; de Oliveira, I.N.; Lyra, M.L.; Mirantsev, L.V. A molecular dynamics study of ferroelectric nanoparticles immersed in a nematic liquid crystal. Eur. Phys. J. E 2010, 31, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Blach, J.-F.; Saitzek, S.; Legrand, C.; Dupont, L.; Henninot, J.-F.; Warenghem, M. BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization. J. Appl. Phys. 2010, 107, 074102. [Google Scholar] [CrossRef]
- Gupta, M.; Satpathy, I.; Roy, A.; Pratibha, R. Nanoparticle induced director distortion and disorder in liquid crystal-nanoparticle dispersions. J. Colloid Interface Sci. 2010, 352, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Domenici, V.; Zupancic, B.; Laguta, V.V.; Belous, A.G.; V’yunov, O.I.; Remskar, M.; Zalar, B. PbTiO3 nanoparticles embedded in a liquid crystalline elastomer matrix: Structural and ordering properties. J. Phys. Chem. C 2010, 114, 10782–10789. [Google Scholar] [CrossRef]
- Liang, H.-H.; Xiao, Y.-Z.; Hsh, F.-J.; Wu, C.-C.; Lee, J.-Y. Enhancing the electro-optical properties of ferroelectric liquid crystals by doping ferroelectric nanoparticles. Liq. Cryst. 2010, 37, 255–261. [Google Scholar] [CrossRef]
- Herrington, M.R.; Buchnev, O.; Kaczmarek, M.; Nandhakumar, I. The effect of the size of BaTiO3 nanoparticles on the electro-optic properties of nematic liquid crystals. Mol. Cryst. Liq. Cryst. 2010, 527, 72/[228]–79/[235]. [Google Scholar] [CrossRef]
- Cook, G.; Reshetnyak, V.Y.; Ziolo, R.F.; Basun, S.A.; Banerjee, P.P.; Evans, D.R. Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles. Opt. Express 2010, 18, 17339–17345. [Google Scholar] [CrossRef] [PubMed]
- Meneses-Franco, A.; Trujillo-Rojo, V.H.; Soto-Bustamante, E.A. Synthesis and characterization of pyroelectric nanocomposite formed of BaTiO3 nanoparticles and a smectic liquid crystal matrix. Phase Transit. 2010, 83, 1037–1047. [Google Scholar] [CrossRef]
- West, J.L.; Cheon, C., II; Glushchenko, A.V.; Reznikov, Y.; Li, F. Non-Synthetic Method for Modifying Properties of Liquid Crystals. U.S. Patent 7758773 B2, 20 July 2010. [Google Scholar]
- Evans, D.R.; Basun, S.A.; Cook, G.; Pinkevych, I.P.; Reshetnyak, V.Y. Electric field interactions and aggregation dynamics of ferroelectric nanoparticles in isotropic fluid suspensions. Phys. Rev. B 2011, 84, 174111. [Google Scholar] [CrossRef]
- Coondoo, I.; Goel, P.; Malik, A.; Biradar, A.M. Dielectric and polarization properties of BaTiO3 nanoparticle/ferroelectric liquid crystal colloidal suspension. Integr. Ferroelectr. 2011, 125, 81–88. [Google Scholar] [CrossRef]
- Paul, S.N.; Dhar, R.; Verma, R.; Sharma, S.; Dabrowski, R. Change in dielectric and electro-optical properties of a nematic material (6CHBT) due to the dispersion of BaTiO3 nanoparticles. Mol. Cryst. Liq. Cryst. 2011, 545, 105/[1329]–111/[1335]. [Google Scholar] [CrossRef]
- Basun, S.A.; Cook, G.; Reshetnyak, V.Y.; Glushchenko, A.V.; Evans, D.R. Dipole moment and spontaneous polarization of ferroelectric nanoparticles in a nonpolar fluid suspension. Phys. Rev. B 2011, 84, 024105. [Google Scholar] [CrossRef]
- Shelestiuk, S.M.; Reshetnyak, V.Y.; Sluckin, T.J. Frederiks transition in ferroelectric liquid-crystal nanosuspensions. Phys. Rev. E 2011, 83, 041705. [Google Scholar] [CrossRef] [PubMed]
- Lopatina, L.M.; Selinger, J.V. Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals. Phys. Rev. E 2011, 84, 041703. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Roy, S.K.; Acharya, S.; Chakrabarti, P.K.; Zurowska, M.; Dabrowski, R. Effect of multiferroic BiFeO3 nanoparticles on electro-optical and dielectric properties of a partially fluorinated orthoconic antiferroelectric liquid crystal mixture. EPL 2011, 96, 47003. [Google Scholar] [CrossRef]
- Wang, L.; He, W.; Xiao, X.; Wang, M.; Wang, M.; Yang, P.; Zhou, Z.; Yang, H.; Yu, H.; Lu, Y. Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. J. Mater. Chem. 2012, 22, 19629–19633. [Google Scholar] [CrossRef]
- Evans, D.R.; Cook, G. Enhanced Dynamic Holography in Organic-Inorganic Hybrid Devices. In Proceedings of the Biomedical Optics and 3D Imaging, Miami, FL, USA, 28 April–2 May 2012. [Google Scholar]
- Ghandevosyan, A.A.; Hakobyan, R.S. Decrease in the Threshold of Electric Freedericksz Transition in Nematic Liquid Crystals Doped with Ferroelectric Nanoparticles. J. Contemp. Phys. (Armen. Acad. Sci.) 2012, 47, 33–35. [Google Scholar] [CrossRef]
- Hasegawa, M. Characterization of BaTiO3 nanoparticles suspension in liquid crystals. J. Photopolym. Sci. Technol. 2012, 25, 295–299. [Google Scholar] [CrossRef]
- Mertelj, A.; Cmok, L.; Copic, M.; Cook, G.; Evans, D.R. Critical behavior of director fluctuations in suspensions of ferroelectric nanoparticles in liquid crystals at the nematic to smectic-A phase transition. Phys. Rev. E 2012, 85, 021705. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.; Zimmermann, N.; Kumar, S.; Evans, D.R.; Cook, G.; Kitzerow, H.-S. Doping the nematic liquid crystal 5CB with milled BaTiO3 nanoparticles. Phys. Rev. E 2012, 86, 051704. [Google Scholar] [CrossRef] [PubMed]
- Warenghem, M.; Henninot, J.F.; Blach, J.F.; Buchnev, O.; Kaczmarek, M. Combined ellipsometry and refractometry technique for characterisation of liquid crystal based nanocomposites. Rev. Sci. Instrum. 2012, 83, 035103. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.K.; Sinha, A. Development of a Phenomenological Model on Surface Stabilized Ferroelectric Liquid Crystal Nanocomposite. IOSR J. Appl. Phys. (IOSRJAP) 2012, 1, 33–38. [Google Scholar] [CrossRef]
- Klein, S.; Richardson, R.M.; Greasty, R.; Jenkins, R.; Stone, J.; Thomas, M.R.; Sarua, A. The influence of suspended nanoparticles on the Frederiks threshold of the nematic host. Philos. Trans. R. Soc. A 2013, 371, 20120253. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.; Zimmermann, N.; Kumar, S.; Evans, D.R.; Cook, G.; Martínez, M.F.; Kitzerow, H.-S. X-ray scattering of nematic liquid crystal nanodispersion with negative dielectric anisotropy. Appl. Opt. 2013, 52, E1–E5. [Google Scholar] [CrossRef] [PubMed]
- Rudzki, A.; Evans, D.R.; Cook, G.; Haase, W. Size dependence of harvested BaTiO3 nanoparticles on the electro-optic and dielectric properties of ferroelectric liquid crystal nanocolloids. Appl. Opt. 2013, 52, E6–E14. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Kumar, A.; Tripathi, S.; Haranath, D.; Biradar, A.M. Faster and highly luminescent ferroelectric liquid crystal doped with ferroelectric BaTiO3 nanoparticles. Appl. Phys. Lett. 2013, 102, 222902. [Google Scholar] [CrossRef]
- Lahiri, T.; Majumder, T.P.; Ghosh, N.K. Theory of nanoparticles doped in ferroelectric liquid crystals. J. Appl. Phys. 2013, 113, 064308. [Google Scholar] [CrossRef]
- Sigdel, K.P.; Iannacchione, G.S. Calorimetric study of phase transitions in ocylcyanobiphenyl-barium titanate nanoparticle dispersions. J. Chem. Phys. 2013, 139, 204906. [Google Scholar] [CrossRef] [PubMed]
- Chaudharya, A.; Malik, P.; Mehra, R.; Raina, K.K. Influence of ZnO nanoparticle concentration on electro-optic and dielectric properties of ferroelectric liquid crystal mixture. J. Mol. Liq. 2013, 188, 230–236. [Google Scholar] [CrossRef]
- Lorenz, A.; Zimmermann, N.; Kumar, S.; Evans, D.R.; Cook, G.; Martínez, M.F.; Kitzerow, H.-S. Doping a Mixture of Two Smectogenic Liquid Crystals with Barium Titanate Nanoparticles. J. Phys. Chem. B 2013, 117, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.; AgraKooijman, D.M.; Zimmermann, N.; Kitzerow, H.-S.; Evans, D.R.; Kumar, S. Bilayers in nanoparticle-doped polar mesogens. Phys. Rev. E 2013, 88, 062505. [Google Scholar] [CrossRef] [PubMed]
- Hakobyan, M.R.; Alaverdyan, R.B.; Hakobyan, R.S.; Chilingaryan, Y.S. Enhanced physical properties of nematics doped with ferroelectric nanoparticles. Armen. J. Phys. 2014, 7, 11–18. [Google Scholar]
- Shukla, R.K.; Liebig, C.M.; Evans, D.R.; Haase, W. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSC Adv. 2014, 4, 18529–18536. [Google Scholar] [CrossRef]
- Basu, R.; Garvey, A. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal. Appl. Phys. Lett. 2014, 105, 151905. [Google Scholar] [CrossRef]
- Hakobyan, M.R. Onsager theory of nematic liquid crystals doped with ferroelectric nanoparticles. Proc. Yerevan State Univ. 2014, 2, 54–59. [Google Scholar]
- Darla, M.R.; Hegde, S.; Varghese, S. Effect of BaTiO3 Nanoparticle on Electro-Optical Properties of Polymer Dispersed Liquid Crystal Displays. J. Cryst. Process Technol. 2014, 4, 60–63. [Google Scholar] [CrossRef]
- Basu, R. Soft memory in a ferroelectric nanoparticle-doped liquid crystal. Phys. Rev. E 2014, 89, 022508. [Google Scholar] [CrossRef] [PubMed]
- Podoliak, N.; Buchnev, O.; Herrington, M.; Mavrona, E.; Kaczmarek, M.; Kanaras, A.G.; Stratakis, E.; Blach, J.; Henninot, J.; Warenghem, M. Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 2014, 4, 46068–46074. [Google Scholar] [CrossRef]
- Mavrona, E.; Chodorow, U.; Barnes, M.E.; Parka, J.; Palka, N.; Saitzek, S.; Blach, J.-F.; Apostolopoulos, V.; Kaczmarek, M. Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region. AIP Adv. 2015, 5, 077143. [Google Scholar] [CrossRef]
- Kurochkin, O.; Mavrona, E.; Apostolopoulos, V.; Blach, J.-F.; Henninot, J.-F.; Kaczmarek, M.; Saitzek, S.; Sokolova, M.; Reznikov, Y. Electrically charged dispersions of ferroelectric nanoparticles. Appl. Phys. Lett. 2015, 106, 043111. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, I. Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals. Appl. Phys. Lett. 2015, 107, 041106. [Google Scholar] [CrossRef]
- Lin, Y.; Douali, R.; Dubois, F.; Segovia-Mera, A.; Daoudi, A. On the phase transitions of 8CB/Sn2P2S6 liquid crystal nanocolloids. Eur. Phys. J. E 2015, 38, 103. [Google Scholar] [CrossRef] [PubMed]
- Dalir, N.; Javadian, S.; Gilani, A.G. The ferroelectricity effect of nanoparticles on thermodynamics and electro-optics of novel cyanobiphenyl eutectic binary mixture liquid crystals. J. Mol. Liq. 2015, 209, 336–345. [Google Scholar] [CrossRef]
- Rasna, M.V.; Cmok, L.; Evans, D.R.; Mertelj, A.; Dhara, S. Phase transitions, optical, dielectric and viscoelastic properties of colloidal suspensions of BaTiO3 nanoparticles and cyanobiphenyl liquid crystals. Liq. Cryst. 2015, 42, 1059–1067. [Google Scholar] [CrossRef]
- Xu, X.W.; Zhang, X.W.; Luo, D.; Dai, H.T. Low voltage polymer-stabilized blue phase liquid crystal reflective display by doping ferroelectric nanoparticles. Opt. Express 2015, 23, 32267–32273. [Google Scholar] [CrossRef] [PubMed]
- Cîrtoaje, C.; Petrescun, E.; Stoian, V. Electrical Freedericksz transitions in nematic liquid crystals containing ferroelectric nanoparticles. Physica E 2015, 67, 23–27. [Google Scholar] [CrossRef]
- Nayek, P.; Li, G. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device. Sci. Rep. 2015, 5, 10845. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kishore, A.; Sinha, A. Analog switching in the nanocolloids of ferroelectric liquid crystals. Appl. Phys. Lett. 2016, 108, 262903. [Google Scholar] [CrossRef]
- Evans, D.R.; Cook, G.; Reshetnyak, V.Y.; Liebig, C.M.; Basun, S.A.; Banerjee, P.P. Inorganic-Organic Photorefractive Hybrids. In Photorefractive Organic Materials and Applications; Blanche, P.-A., Ed.; Springer: Berlin, Germany, 2016; Volume 240, pp. 223–247. [Google Scholar]
- Hsiao, Y.-C.; Huang, S.-M.; Yeh, E.-R.; Lee, W. Temperature-dependent electrical and dielectric properties of nematic liquid crystals doped with ferroelectric particles. Displays 2016, 44, 61–65. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Electrical properties of liquid crystal nanocolloids analysed from perspectives of the ionic purity of nano-dopants. Liq. Cryst. 2016, 43, 648–653. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Effect of ferroelectric nanoparticles on the isotropic-smectic-A phase transition. EPL 2016, 114, 56002. [Google Scholar] [CrossRef]
- Shukla, R.K.; Evans, D.R.; Haase, W. Ferroelectric BaTiO3 and LiNbO3 nanoparticles dispersed in ferroelectric liquid crystal mixtures: Electrooptic and dielectric parameters influenced by properties of the host, the dopant and the measuring cell. Ferroelectrics 2016, 500, 141–152. [Google Scholar] [CrossRef]
- Ibragimov, T.D.; Imamaliyev, A.R.; Bayramov, G.M. Formation of local electric fields in the ferroelectric BaTiO3 particles-liquid crystal colloids. Ferroelectrics 2016, 495, 60–68. [Google Scholar] [CrossRef]
- Mishra, M.; Dabrowski, R.S.; Dhar, R. Thermodynamical, optical, electrical and electro-optical studies of a room temperature nematic liquid crystal 4-pentyl-4′-cyanobiphenyl dispersed with barium titanate nanoparticles. J. Mol. Liq. 2016, 213, 247–254. [Google Scholar] [CrossRef]
- Ibragimov, T.D.; Imamaliyev, A.R.; Bayramov, G.M. Electro-optic properties of the BaTiO3—Liquid crystal 5CВ colloid. Optik 2016, 127, 2278–2281. [Google Scholar] [CrossRef]
- Ibragimov, T.D.; Imamaliyev, A.R.; Bayramov, G.M. Influence of barium titanate particles on electro-optic characteristicsof liquid crystalline mixture H-37. Optik 2016, 127, 1217–1220. [Google Scholar] [CrossRef]
- Shim, H.; Lyu, H.-K.; Allabergenov, B.; Garbovskiy, Y.; Glushchenko, A.; Choi, B. Enhancement of frequency modulation response time for polymer-dispersed liquid crystal. Liq. Cryst. 2016, 43, 1390–1396. [Google Scholar] [CrossRef]
- Shim, H.; Lyu, H.-K.; Allabergenov, B.; Garbovskiy, Y.; Glushchenko, A.; Choi, B. Switchable Response of Ferroelectric Nanoparticle Doped Polymer-Dispersed Liquid Crystals. J. Nanosci. Nanotechnol. 2016, 16, 11125–11129. [Google Scholar] [CrossRef]
- Lin, Y.; Daoudi, A.; Segovia-Mera, A.; Dubois, F.; Legrand, C.; Douali, R. Electric field effects on phase transitions in the 8CB liquid crystal doped with ferroelectric nanoparticles. Phys. Rev. E 2016, 93, 062702. [Google Scholar]
- Rzoska, S.J.; Starzonek, S.; Drozd-Rzoska, A.; Czuprynski, K.; Chmiel, K.; Gaura, G.; Michulec, A.; Szczypek, B.; Walas, W. Impact of BaTiO3 nanoparticles on pretransitional effects in liquid crystalline dodecylcyanobiphenyl. Phys. Rev. E 2016, 93, 020701(R). [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, O.V.; Kovalchuk, T.M.; Kucheriavchenkova, N.M.; Sydorchuk, V.V.; Khalameida, S.V. Multiferroic based on nematic liquid crystal and nanoparticles. Semicond. Phys. Quantum Electron. Optoelectron. 2016, 19, 285–289. [Google Scholar] [CrossRef]
- Al-Zangana, S.; Turner, M.; Dierking, I. A comparison between size dependent paraelectric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. J. Appl. Phys. 2017, 121, 085105. [Google Scholar] [CrossRef]
- Dubey, R.; Mishra, A.; Singh, K.N.; Alapati, P.R.; Dhar, R. Electric behaviour of a Schiff's base liquid crystal compound doped with a low concentration of BaTiO3 nanoparticles. J. Mol. Liq. 2017, 225, 496–501. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Effect of ferroelectric nanoparticles on the dielectric permittivity in the isotropic phase of the isotropic-smectic-A phase transition. J. Mol. Liq. 2017, 225, 462–466. [Google Scholar] [CrossRef]
- Lin, Y.; Daoudi, A.; Dubois, F.; Segovia-Mera, A.; Legrand, C.; Douali, R. Correlation between dielectric properties and phase transitions of 8CB/Sn2P2S6 liquid crystal nanocolloids. J. Mol. Liq. 2017, 232, 123–129. [Google Scholar] [CrossRef]
- Poursamad, J.B.; Hallaji, T. Freedericksz transition in smectic-A liquid crystals doped by ferroelectric nanoparticles. Physica B 2017, 504, 112–115. [Google Scholar] [CrossRef]
- Chodorow, U.; Mavrona, E.; Palka, N.; Strzezysz, O.; Garbat, K.; Saitzek, S.; Blach, J.F.; Apostolopoulos, V.; Kaczmarek, M.; Parka, J. Terahertz properties of liquid crystals doped with ferroelectric BaTiO3 nanoparticles. Liq. Cryst. 2017, 44, 1207–1215. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Nanoparticle enabled thermal control of ions in liquid crystals. Liq. Cryst. 2017, 44, 948–955. [Google Scholar] [CrossRef]
- Kumar, R.; Srikanth, K.; Nandiraju, T.; Rao, V.S.; Ghosh, S. Elastic and dielectric properties of ferroelectric nanoparticles/bent-core nematic liquid crystal blend. Eur. Phys. J. E 2017, 40, 75. [Google Scholar]
- Lin, Y.; Daoudi, A.; Dubois, F.; Blacj, J.F.; Henninot, J.F.; Kurochkin, O.; Grabar, A.; Segoiva-Mera, A.; Legrand, C.; Douali, R. A comparative study of nematic liquid crystals doped with harvested and nonm-harvested ferroelectric nanoparticles: Phase tranasitions and dielectric properties. RSC Adv. 2017, 7, 35438–35444. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, A. Optical/ferroelectric characterization of BaTiO3 and PbTiO3 colloidal nanoparticles and their applications in hybrid materials technologies. Appl. Opt. 2013, 52, E34–E39. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, Y.; Glushchenko, A.; Garbovskiy, Y. Ferromagnetic and Ferroelectric Nanoparticles in Liquid Crystals. In Liquid Crystals with Nano and Microparticles; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2016; Volume 2, pp. 657–693. ISBN 978-981-4619-25-7. [Google Scholar]
- Matsuyama, A. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle. J. Chem. Phys. 2009, 131, 204904. [Google Scholar] [CrossRef] [PubMed]
- Gruverman, A.; Kholkin, A. Nanoscale ferroelectrics: Processing, characterization and future trends. Rep. Prog. Phys. 2006, 69, 2443–2474. [Google Scholar] [CrossRef]
- Prodanov, M.F.; Pogorelova, N.V.; Kryshtal, A.P.; Klymchenko, A.S.; Mely, Y.; Semynozhenko, V.P.; Krivoshey, A.I.; Reznikov, Y.A.; Yarmolenko, S.N.; Goodby, J.W.; et al. Thermodynamically Stable Dispersions of Quantum Dots in a Nematic Liquid Crystal. Langmuir 2013, 29, 9301–9309. [Google Scholar] [CrossRef] [PubMed]
- Zribi, O.; Garbovskiy, Y.; Glushchenko, A. Single step colloidal processing of stable aqueous dispersions of ferroelectric nanoparticles for biomedical imaging. Mater. Res. Express 2014, 1, 045401. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Switching between purification and contamination regimes governed by the ionic purity of nanoparticles dispersed in liquid crystals. Appl. Phys. Lett. 2016, 108, 121104. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Ions in liquid crystals doped with nanoparticles: Conventional and counterintuitive temperature effects. Liq. Cryst. 2017, 44, 1402–1408. [Google Scholar] [CrossRef]
Studied Samples | Observed Effects | Reference |
---|---|---|
Quasi-spherical (20 ± 10 nm) ferroelectric nanoparticles (Sn2P2S6, ~0.3 vol. %) were dispersed in 5CB. Nanoparticles were prepared by means of mechanical wet grinding. To provide the stability of nano-colloids, oleic acid was used as surfactant. | Several samples were prepared. The obtained results were dependent on the pre-history of the sample indicating possible aging of ferroelectric dispersions. As a result, both increase and decrease of the order parameter (on the order of 5–10%) and of the clearing point (on the order of 1–10 deg.) was demonstrated. | [48] |
Ferroelectric nanoparticles (BaTiO3; 1–4 vol. %; ~150 nm) were dispersed in 5CB. Nanoparticles were prepared by means of mechanical wet grinding. To provide the stability of nano-colloids, oleic acid was used as a surfactant. | An increase in the clearing point, , from 35.2 °C to 36.6 °C. The threshold voltage (the Freedericksz transition, ) was reduced from 0.79 V to 0.54 V. The order parameter was increased from 0.55 to 0.60. The turn-on time is decreased from 450 ms to 300 ms whereas the turn-off time is increased from 5.26 s to 7.75 s. | [52] |
Ferroelectric nanoparticles (BaTiO3; ~1 wt. %; 30–50 nm) and (Sn2P2S6, ~200 nm) were dispersed in 5CB. Nanoparticles were prepared by means of mechanical wet grinding. To provide the stability of nano-colloids, oleic acid was used as a surfactant. | Signigicant (~2-fold) increase of the dielectric constants and 10–20% increase in the birefringence | [26] |
Nanoparticles (BaTiO3; ~0.5 wt. %; ~4–40 nm) were dispersed in 5CB. Nanoparticles were prepared by means of mechanical wet grinding. The ferroelectricity of nanoparticles was not confirmed by experiments. To provide the stability of nano-colloids several surfactants including oleic acid were used. | An apparent shift of the Freedericksz transition towards a slightly higher value (according to electro-optical measurements) was not confirmed by capacitance measurements. The use of surfactants made of “nematogenic” molecules results in much more stable suspensions as compared to the use of oleic acid. | [75] |
Ferroelectric nanoparticles (BaTiO3; 0.33–0.50 vol. %; ~50 nm) were dispersed in 5CB. | The threshold voltage (the Freedericksz transition, ) was reduced from 0.64 V to 0.56 V (0.33 vol. %) and 0.51 V (0.50 vol. %). | [98] |
BaTiO3 nanoparticles (~100 nm; 0.05–5 wt. %) were dispersed in 5CB. No data on the ferroelectricity of the dispersed nanoparticles. | A decrease in the clearing point, (by about ~2 °C) was observed. The nematic temperature range is shortened with an increase in the concentration of nanoparticles. A decrease in the the dielectric anisotropy (from 13.1 to 11.2). The reduction of the threshold voltage from 1.02 V to 0.94 V. The splay elastic constant () is decreased from 16.50 pN to 11.13 pN (0.05 wt. %), 7.91 pN (0.5 wt. %), and to 8.88 pN (5.0 wt. %). Both increase (~100 times, at 0.05 wt. %) and decrease (~10 times, at 5.0 wt. %) in the electrical conductivity measured along the director was observed. | [107] |
Ferroelectric nanoparticles (BaTiO3; ~0.2–0.4 wt. %; ~12 nm) were dispersed in 5CB. Nanoparticles were prepared by means of mechanical wet grinding and harvested. To provide the stability of nano-colloids (over a few months), oleic acid was used as a surfactant. | A decrease in the clearing point, (by about 2.5 °C) was observed. The enthalpy of this transition () remains almost unchanged. The nematic temperature range is shortened with an increase in the concentration of nanoparticles. Practically no change in the birefringence and the dielectric anisotropy. The splay elastic constant () is practically not affected by nanoparticles while the bend elastic constant(K33) decreases (~20%). The decrease (~20%) in the rotational viscosity . | [96] |
Relatively large BaTiO3 particles (~600 nm; ~1 wt. %) were dispersed in 5CB (oleic acid was used as a surfactant). | A decrease in the clearing point, , from 35.2 °C to 32.4 °C, and in the rotational viscosity from 0.081 Pa·s (pristine liquid crystals) to 0.078 Pa·s (liquid crystal nanocolloids). The reduction of the Freedericksz transition from 1.3 V to 0.3 V. The switching time: the turn-on time is decreased (~10%) whereas the turn-off time is increased (>50%). | [108] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbovskiy, Y.; Glushchenko, A. Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges. Nanomaterials 2017, 7, 361. https://doi.org/10.3390/nano7110361
Garbovskiy Y, Glushchenko A. Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges. Nanomaterials. 2017; 7(11):361. https://doi.org/10.3390/nano7110361
Chicago/Turabian StyleGarbovskiy, Yuriy, and Anatoliy Glushchenko. 2017. "Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges" Nanomaterials 7, no. 11: 361. https://doi.org/10.3390/nano7110361
APA StyleGarbovskiy, Y., & Glushchenko, A. (2017). Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges. Nanomaterials, 7(11), 361. https://doi.org/10.3390/nano7110361