Gold Nanoparticle-Loaded Porous Poly(ethylene glycol) Nanosheets for Electrochemical Detection of H2O2
"> Figure 1
<p>Schematic illustration of the fabrication procedure for the PEG-AuNP composite films and nanosheets, along with the chemical structures of STAR-NH<sub>2</sub>, STAR-EPX, and ethanol-amine-like crosslinking bonds. A monomer of the PEG arms of the precursors (−EG−) is described by the formula (−O−CH<sub>2</sub>−CH<sub>2</sub>−).</p> "> Figure 2
<p>Si 2p (<b>a</b>), C 1s (<b>b</b>), O 1s (<b>c</b>) and Au 4f (<b>d</b>) XP spectra of SiO<sub>2</sub> passivated Si(100) substrate and the PEG-AuNP films on this substrate, prepared at a concentration of the 4-arm STAR-NH<sub>2</sub> and 4-arm STAR-EPX precursors in the primary solution of either 10 or 30 mg/mL. The positions of some peaks are traced by the vertical light gray dashed lines.</p> "> Figure 3
<p>(<b>a</b>) Large-scale SEM image of a PEG-AuNP film; (<b>b</b>) high-resolution SEM image of this film; and (<b>c</b>) an image of this film after its transfer onto supporting, quadratic Cu mesh. The gray and nearly white areas in (<b>a</b>) represent unfolded parts of the nanosheet and folds, respectively.</p> "> Figure 4
<p>(<b>a</b>) CV curves for the reference, pristine PEG film (blue line) and the composite PEG-AuNP film (red line); (<b>b</b>) 30 subsequent CV curves for the composite PEG-AuNPs’ film; the individual curves overlap strongly and cannot be distinguished. The measurements were performed in PBS at the presence of 2 mM H<sub>2</sub>O<sub>2</sub>. Inset: CV curve for the composite PEG-AuNP film at the presence of PBS only. The scan rate was set to 30 mV/s for all CV curves shown.</p> "> Figure 5
<p>(<b>a</b>) CV curves for the composite PEG-AuNP film acquired at different scan rates; (<b>b</b>) plot of the anodic peak current, <span class="html-italic">I<sub>p</sub></span> vs. <span class="html-italic">v</span><sup>1/2</sup> (black-filled squares) along with a linear fit of the experimental data (red dashed line).</p> "> Figure 6
<p>(<b>a</b>) Amperometric response of the composite PEG-AuNP film to increased H<sub>2</sub>O<sub>2</sub> concentration upon successive, stepwise addition of 20 μM (100–350 s), 50 μM (400–750 s), 100 μM (800–1250 s), and 200 μM (1300–1900 s) of H<sub>2</sub>O<sub>2</sub> to 50 mL of PBS buffer. Inset: zoomed presentation of the response to the smallest doses of H<sub>2</sub>O<sub>2</sub>. Several successive points in time of H<sub>2</sub>O<sub>2</sub> addition are exemplarily shown by vertical arrows. The potential was set to −0.2 V. (<b>b</b>) Current response to the H<sub>2</sub>O<sub>2</sub> concentration (black-filled circles), along with a linear fit to the experimental data (red dashed line).</p> "> Figure 7
<p>Amperometric response of the composite PEG-AuNP film to the stepwise injection of H<sub>2</sub>O<sub>2</sub> and potentially interfering substances into 50 mL of PBS. The potential was set to −0.2 V, which, according to the CV data (<a href="#nanomaterials-13-03137-f005" class="html-fig">Figure 5</a>), was the optimal value for the H<sub>2</sub>O<sub>2</sub> sensing by amperometry.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization by XPS
3.2. Characterization by SEM
3.3. Electrochemistry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell 2007, 26, 1–14. [Google Scholar] [CrossRef]
- Maji, S.K.; Sreejith, S.; Mandal, A.K.; Ma, X.; Zhao, Y. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: A hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 2014, 6, 13648–13656. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, Z.; Hao, Y.; Feng, L. Fabrication of H2O2-driven nanoreactors for innovative cancer treatments. Nanoscale 2019, 11, 16164–16186. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, Y.; Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985. [Google Scholar] [CrossRef]
- An, H.J.; Guo, C.H.; Li, D.D.; Liu, R.F.; Xu, X.Q.; Guo, J.W.; Ding, J.; Li, J.J.; Chen, W.; Zhang, J.X. Hydrogen peroxide-activatable nanoparticles for luminescence imaging and in situ triggerable photodynamic therapy of cancer. ACS Appl. Mater. Interfaces 2020, 12, 17230–17243. [Google Scholar] [CrossRef]
- Ahmad, T.; Iqbal, A.; Halim, S.A.; Uddin, J.; Khan, A.; El Deeb, S.; Al-Harrasi, A. Recent advances in electrochemical sensing of hydrogen peroxide (H2O2) released from cancer cells. Nanomaterials 2022, 12, 1475. [Google Scholar] [CrossRef]
- Lew, T.T.S.; Koman, V.B.; Silmore, K.S.; Seo, J.S.; Gordiichuk, P.; Kwak, S.-Y.; Park, M.; Ang, M.C.-Y.; Khong, D.T.; Lee, M.A.; et al. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nat. Plants 2020, 6, 404–415. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Z.; Huang, P.J.; Liu, J. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Chaichi, M.J.; Ehsani, M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sens. Actuators B 2016, 223, 713–722. [Google Scholar] [CrossRef]
- Meier, J.; Hofferber, E.M.; Stapleton, J.A.; Iverson, N.M. Hydrogen peroxide sensors for biomedical applications. Chemosensors 2019, 7, 64. [Google Scholar] [CrossRef]
- Patel, V.; Kruse, P.; Selvaganapathy, P.R. Solid state sensors for hydrogen peroxide detection. Biosensors 2021, 11, 9. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Duan, H.; Oveissi, F.; Farajikhah, S.; Dehghani, F.; Naficy, S. Flexible sensors for hydrogen peroxide detection: A critical review. ACS Appl. Mater. Interfaces 2022, 14, 20491–20505. [Google Scholar] [CrossRef]
- Yagatia, A.K.; Leeb, T.; Minc, J.; Choi, J.-W. Electrochemical performance of gold nanoparticle–cytochrome c hybrid interface for H2O2 detection. Colloids Surf. B Biointerfaces 2012, 92, 161–167. [Google Scholar] [CrossRef]
- Murugan, P.; Nagarajan, R.D.; Sundramoorthy, A.K.; Ganapathy, D.; Atchudan, R.; Nallaswamy, D.; Khosla, A. Electrochemical detection of H2O2 using an activated glassy carbon electrode. ECS Sens. Plus 2022, 1, 034401. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q.; Guo, A.; Wang, X.; Wang, Y.; Long, Y.; Fan, G. Carbon-nanosheet-driven spontaneous deposition of Au nanoparticles for efficient electrochemical utilizations toward H2O2 generation and detection. Chem. Eng. J. 2022, 445, 136586. [Google Scholar] [CrossRef]
- Gao, F.; Yuan, R.; Chai, Y.; Chen, S.; Cao, S.; Tang, M. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on nano-Au/Thi/poly p-aminobenzene sulfonic acid-modified glassy carbon electrode. J. Biochem. Biophys. Methods 2007, 70, 407–413. [Google Scholar] [CrossRef]
- Feng, J.-J.; Zhao, G.; Xu, J.-J.; Chen, H.-Y. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal. Biochem. 2005, 342, 280–286. [Google Scholar] [CrossRef]
- Chen, L.; Lu, G. Direct electrochemistry and electrocatalysis of hybrid film assembled by polyelectrolyte–surfactant polymer, carbon nanotubes and hemoglobin. J. Electroanal. Chem. 2006, 597, 51–59. [Google Scholar] [CrossRef]
- Kosto, Y.; Zanut, A.; Franchi, S.; Yakovlev, Y.; Khalakhan, I.; Matolín, V.; Prince, K.C.; Valenti, G.; Paolucci, F.; Tsud, N. Electrochemical activity of the polycrystalline cerium oxide films for hydrogen peroxide detection. Appl. Surf. Sci. 2019, 488, 351–359. [Google Scholar] [CrossRef]
- Portorreal-Bottier, A.; Gutierrez-Tarrino, S.; Calvente, J.J.; Andreu, R.; Roldan, E.; Ona-Burgos, P.; Olloqui-Sariego, J.L. Enzyme-like activity of cobalt-MOF nanosheets for hydrogen peroxide electrochemical sensing. Sens. Actuators B 2022, 368, 132129. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Q.; Xiao, Y.; Li, D.; Jiang, X.; Wu, P. Cobalt-based layered double hydroxide nanosheet-supported AuNPs for high performance electrochemical H2O2 detection. App. Surf. Sci. 2023, 630, 157463. [Google Scholar] [CrossRef]
- Bai, Z.; Li, G.; Liang, J.; Su, J.; Zhang, Y.; Chen, H.; Huang, Y.; Sui, W.; Zhao, Y. Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells. Biosens. Bioelectron. 2016, 82, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, Y.; Guo, X.; Sun, D. Self-supporting electrochemical sensors for monitoring of cell-released H2O2 based on metal nanoparticle/MOF nanozymes. Microchem. J. 2022, 181, 107715. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, B.; Liu, H.; Liu, Z.; Zhang, X.; Zheng, X.; Liu, Q. FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuat. B 2018, 259, 775–783. [Google Scholar] [CrossRef]
- Xia, C.; He, W.; Yang, X.F.; Gao, P.F.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. Plasmonic Hot-Electron-Painted Au@Pt Nanoparticles as Efficient Electrocatalysts for Detection of H2O2. Anal. Chem. 2022, 94, 13440–13446. [Google Scholar] [CrossRef] [PubMed]
- Meyerbroker, N.; Kriesche, T.; Zharnikov, M. Novel ultrathin poly(ethylene glycol) films as flexible platform for biological applications and plasmonics. ACS Appl. Mater. Interfaces 2013, 5, 2641–2649. [Google Scholar] [CrossRef]
- Zhao, Z.; Zharnikov, M. Exploiting epoxy-rich poly(ethylene glycol) films for highly selective ssDNA sensing via electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 2023, 25, 26538–26548. [Google Scholar] [CrossRef]
- Zhao, Z.; Das, S.; Zharnikov, M. Tuning the properties of poly(ethylene glycol) films and membranes by the molecular weight of the precursors. ACS Appl. Polym. Mater. 2022, 4, 645–653. [Google Scholar] [CrossRef]
- Meyerbroker, N.; Zharnikov, M. Hydrogel nanomembranes as templates for patterned deposition of nanoparticles on arbitrary substrates. ACS Appl. Mater. Interfaces 2014, 6, 14729–14735. [Google Scholar] [CrossRef]
- Meyerbroker, N.; Zharnikov, M. Ultraflexible, freestanding nanomembranes based on poly(ethylene glycol). Adv. Mater. 2014, 26, 3328–3332. [Google Scholar] [CrossRef] [PubMed]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Shein, J.B.; Lai, L.M.H.; Kggers, P.K.; Paddon-Row, M.N.; Gooding, J.J. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 2009, 25, 11121–11128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Das, S.; Zharnikov, M. Poly(ethylene glycol)−fullerene composite films and free-standing nanosheets for flexible electronic devices and sensors. ACS Appl. Nano Mater. 2023, 6, 2151–2161. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.E.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastian, J., Ed.; PerkinElmer Corp.: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Ratner, M.; Castner, D. Electron spectroscopy for chemical analysis. In Surface Analysis—The Principal Techniques; Vickerman, J., Ed.; John Wiley & Sons: Chichester, NH, USA, 1997; pp. 43–98. [Google Scholar]
- Hüfner, S. Photoelectron Spectroscopy: Principles and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003. [Google Scholar]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Hao, B.; Song, T.; Ye, M.; Liu, X.; Qiu, J.; Huang, X.; Lub, G.; Qian, W. Gold/SH-functionalized nanographene oxide/polyamidamine/poly(ethylene glycol) nanocomposites for enhanced non-enzymatic hydrogen peroxide detection. Biomater. Sci. 2020, 8, 6037–6044. [Google Scholar] [CrossRef]
- Gholami, M.; Koivisto, B. A Flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into nafion. Appl. Surf. Sci. 2019, 467–468, 112–118. [Google Scholar] [CrossRef]
- Chu, W.; Zhou, Q.; Li, S.; Zhao, W.; Li, N.; Zheng, J. Oxidation and sensing of ascorbic acid and dopamine onself-assembled gold nanoparticles incorporated within polyaniline film. Appl. Surf. Sci. 2015, 353, 425–432. [Google Scholar] [CrossRef]
- Zhan, T.; Feng, X.Z.; Cheng, Y.Y.; Han, G.C.; Zhen, Z.; Kraatz, H. Electrochemical sensor for ultrasensitive sensing of biotin based on heme conjugated with gold nanoparticles and its electrooxidation mechanism. Food Chem. 2023, 429, 136997. [Google Scholar] [CrossRef]
- Lin, W.; Insley, T.; Tuttle, M.D.; Zhu, L.; Berthold, D.A.; Král, P.; Rienstra, C.M.; Murphy, C.J. Control of protein orientation on gold nanoparticles. J. Phys. Chem. C 2015, 119, 21035–21043. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zharnikov, M. Gold Nanoparticle-Loaded Porous Poly(ethylene glycol) Nanosheets for Electrochemical Detection of H2O2. Nanomaterials 2023, 13, 3137. https://doi.org/10.3390/nano13243137
Zhao Z, Zharnikov M. Gold Nanoparticle-Loaded Porous Poly(ethylene glycol) Nanosheets for Electrochemical Detection of H2O2. Nanomaterials. 2023; 13(24):3137. https://doi.org/10.3390/nano13243137
Chicago/Turabian StyleZhao, Zhiyong, and Michael Zharnikov. 2023. "Gold Nanoparticle-Loaded Porous Poly(ethylene glycol) Nanosheets for Electrochemical Detection of H2O2" Nanomaterials 13, no. 24: 3137. https://doi.org/10.3390/nano13243137
APA StyleZhao, Z., & Zharnikov, M. (2023). Gold Nanoparticle-Loaded Porous Poly(ethylene glycol) Nanosheets for Electrochemical Detection of H2O2. Nanomaterials, 13(24), 3137. https://doi.org/10.3390/nano13243137