A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices
"> Figure 1
<p>An outline of the main points of this review shown schematically.</p> "> Figure 2
<p>The fundamental design and operation of a proton-exchange membrane (PEM)-based electrochemical hydrogen device. Reprinted with permission from Ref. [<a href="#B68-nanomaterials-12-03581" class="html-bibr">68</a>]. Copyright 2019 Elsevier.</p> "> Figure 3
<p>A schematic representation of the tritium monitor in combination with the proton-conducting material. Reprinted with permission from Ref. [<a href="#B70-nanomaterials-12-03581" class="html-bibr">70</a>]. Copyright 2004 Taylor & Francis.</p> "> Figure 4
<p>(<b>a</b>) Change in hydrogen evolution rate with time for different electrode combinations, (<b>b</b>)Time series response of current (top panel), water vapor concentration at the anode outlet (middle panel), and hydrogen concentration (bottom panel) against enrichment characteristics. Reprinted with permission from Ref. [<a href="#B71-nanomaterials-12-03581" class="html-bibr">71</a>]. Copyright 2006 Elsevier.</p> "> Figure 5
<p>(<b>a</b>) Change in tritium concentration and hydrogen recovery rate with water vapor partial pressure, (<b>b</b>) relationship between the tritium concentration in anode compartmented the estimated tritium concentration. Reprinted with permission from Ref. [<a href="#B69-nanomaterials-12-03581" class="html-bibr">69</a>]. Copyright 2015 Taylor & Francis.</p> "> Figure 6
<p>(<b>a</b>) A schematic representation of hydrogen extraction system with proton-conducting ceramic on one end, (<b>b</b>) response of hydrogen evolution rate (top panel) and hydrogen, methane, and water vapor concentration (bottom panel) as a function of current. Reprinted with permission from Ref. [<a href="#B93-nanomaterials-12-03581" class="html-bibr">93</a>]. Copyright 2004 Taylor & Francis.</p> "> Figure 7
<p>SEM of electrode surface; (<b>a</b>) pasted electrode (a magnification of ×10,000), (<b>b</b>) plated electrode (a magnification of ×10,000) and (<b>c</b>) plated electrode (a magnification of ×50,000). Reprinted with permission from Ref. [<a href="#B81-nanomaterials-12-03581" class="html-bibr">81</a>]. Copyright 2004 Taylor & Francis.</p> "> Figure 8
<p>(<b>a</b>) Hydrogen evolution rate versus current under various temperatures, (<b>b</b>) The hydrogen evolution rate, and efficiency as a function of current (gas mass flow rates). Reprinted with permission from Ref. [<a href="#B80-nanomaterials-12-03581" class="html-bibr">80</a>]. Copyright 2014 Elsevier.</p> "> Figure 9
<p>(<b>a</b>) Schematic of H<sub>2</sub> sensor with a sintered CaZr<sub>0.9</sub>In<sub>0.1</sub>O<sub>3−δ</sub> (<b>b</b>) Experimental setup for hydrogen sensor in various partial pressure gases. Reprinted with permission from Ref. [<a href="#B89-nanomaterials-12-03581" class="html-bibr">89</a>]. Copyright 2016 Elsevier.</p> "> Figure 10
<p>Chemical composition of materials and the schematic of the fabrication process of the hydrogen sensor. Reprinted with permission from Ref. [<a href="#B83-nanomaterials-12-03581" class="html-bibr">83</a>]. Copyright 2012 Elsevier.</p> "> Figure 11
<p>(<b>a</b>) Operating principle of steam electrolysis cells based on proton-conducting electrolytes (<b>b</b>) SEM images of the cross section of SCYb interlayer SZCY-541 electrolyte (top), SCYb interlayer (middle) and nickel electrode (bottom) (<b>c</b>,<b>d</b>) hydrogen evolution rate of the steam electrolysis cell with SZCY-541 electrolyte, SSC-55 anode, nickel cathode and SCYb interlayer at 800 °C (<b>c</b>) and 600 °C (<b>d</b>). Reprinted with permission from Ref. [<a href="#B112-nanomaterials-12-03581" class="html-bibr">112</a>]. Copyright 2009 Elsevier.</p> "> Figure 12
<p>(<b>a</b>) Variation of current density and gas concentrations at the outlet of the anode and cathode as a function of applied voltage, (<b>b</b>) gas concentration change at the outlet as a function of temperature; here hydrogen, methane, carbon monoxide, carbon-di oxide, and water vapor are shown. Reprinted with permission from Ref. [<a href="#B97-nanomaterials-12-03581" class="html-bibr">97</a>]. Copyright 2010 Elsevier.</p> "> Figure 13
<p>Time evolution of hydrogen and water vapor at the cathode outlet under the wet atmosphere containing oxygen; (<b>a</b>) applied voltage and current, (<b>b</b>) concentration of water vapor and hydrogen. Reprinted with permission from Ref. [<a href="#B97-nanomaterials-12-03581" class="html-bibr">97</a>]. Copyright 2005 Taylor & Francis.</p> ">
Abstract
:1. Introduction
2. Proton-Conducting Zirconates
3. Electrochemical Hydrogen Device
3.1. Tritium Monitoring Systems
3.2. Tritium Recovery System
3.3. Hydrogen Sensors
3.4. Hydrogen Pumps
4. Electrochemical Device Applications
4.1. Tritium Monitoring Systems
4.2. Tritium Recovery Systems
4.3. Sensor Devices
4.4. Hydrogen Pumps
Electrolyte Materials | Synthesis Method | Density | Electrode | Proton Conductivity (mS·cm−1)/Temperature (°C) | Atmospheres | Hydrogen Concentration (Unit)/Temperature (°C) | Working Temperature (°C) | Ref. |
---|---|---|---|---|---|---|---|---|
CaZr0.9In0.1O3− δ | Solid state reaction | N/A | ZnO/Pt | 2.01 ×1 0−4/700 | Wet Ar | 50–500 | 500–700 | [83] |
2.23 × 10−4/700 | Air | 50–500 | 500–700 | |||||
2.41 × 10−4/700 | 4000 ppm H2/Ar | 50–500 | 500–700 | |||||
CaZr0.95Mn0.05O3−α | N/A | Relative density 98% | Pt/Pt | N/A | N/A | N/A | N/A | [88] |
CaZr0.9In0.1O3−δ | Solid state reaction | N/A | N/A | N/A | N/A | N/A | N/A | [89] |
CaZr0.95Sc0.05O3−α | Glycine-nitrate combustion | Relative density 99% | Yttria stabilized zirconia/Pt | N/A | N/A | N/A | 675–750 | [103] |
CaZr0.9In0.1O3−δ | Glycine-nitrate combustion | N/A | Pt | N/A | N/A | N/A | N/A | [121] |
CaZr0.9In0.1O3−δ | N/A | N/A | Pd | N/A | N/A | N/A | N/A | [110] |
Electrolyte Materials | Fabrication Method | Thickness (µm) | Electrode Type | Feed Gas at Anode | Feed Gas at Cathode | Sample Gas | Flow Rate (L/min) | Temperature (°C) | Ref. |
---|---|---|---|---|---|---|---|---|---|
SrZr0.9Yb0.1O3−α | Solid state reaction | 500 | Pt | 1% O2 + 99% Ar | 1% H2 + 99% Ar | N/A | N/A | 600–800 | [112] |
SrZr0.9Yb0.1O3−α | Solid state reaction | 500 | Pd | N/A | N/A | 1% H2 + 99% Ar | N/A | 800 | [92] |
SrZr0.9Yb0.1O3−α | N/A | N/A | Ni/SiO2 | CH4-Ar or H2-Ar | N/A | CH4 + H2O | N/A | 600–800 | [114] |
SrZr0.95Yb0.05O3−α | Pecchini method | 200–300 | N/A | N/A | N/A | N/A | N/A | N/A | [115] |
SrZr0.8Yb0.2O3−α | N/A | 720 | Pt | Wet H2 gas or wet Ar | Wet Ar | N/A | 0.1 | N/A | [96] |
SrZr0.9Yb0.1O3−α | N/A | 1500 | Pt | CH4 + H2 | N/A | N/A | 0.1 | N/A | [97] |
5. Challenges and Prospects
5.1. Tritium Monitoring Systems
5.2. Tritium Recovery System
5.3. Sensor Devices
5.4. Hydrogen Pumps
6. Conclusions
- CaZr0.9In0.1O3−α and SrZr0.9Yb0.1O3−α proton conductors are extensively used for tritium monitoring. These materials have minimal interference with other radioactive molecules and perform well in higher temperature ranges.
- CaZr0.9In0.1O3−α, SrZr0.8In0.2O3−α, and SrZr0.9Yb0.1O3−α can be utilized in a tritium recovery system. Furthermore, since they have proton conductivity more than cerates, their performance as a tritium recovery system is superior.
- Using different concentrations of calcium zirconates and materials (CaZr0.9In0.1O3–δ, CaZr0.95Sc0.05O3–δ, CaZr1-xMnxO3-d), researchers were able to successfully implement an effective hydrogen sensor device that is capable of operating in an extensive temperature range and without the need for a reference electrode.
- CaZr0.9In0.1O3−α, SrZr0.9Y0.1O3−α, and SrZr0.9Yb0.1O3−α electrolyte zirconate materials have been used as electrochemical hydrogen pumps. These materials have excellent hydrogen extraction properties and can minimize the rate-limiting step.
- Zirconate-based tritium monitoring system faces the challenge of hydrogen rate fluctuation. In addition, the real-time concentration is sometimes unreliable because of low temporal resolution. Decontamination of the membrane separator is an additional challenge for the zirconate electrolyte tritium sensor.
- In a tritium recovery system, the main challenge is the operating temperature of the zirconate materials. Although alternate materials are adequate to address the issue, finding the perfect materials remains challenging.
- Challenges in hydrogen sensor devices include electrode/electrolyte material selection, doping concentration, and temperature dependence in performance.
- In electrochemical hydrogen pumps, material selection still poses a considerable challenge. Problems associated with overpotentials are a massive problem in anodic electrode materials. Moreover, there is a requirement for an innovative model with three-phase boundary conditions that will explain the correct emission and conductivity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, P.; Said, Z.; Kumar, A.; Nižetić, S.; Pandey, A.; Hoang, A.T.; Huang, Z.; Afzal, A.; Li, C.; Le, A.T.; et al. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy Fuels 2022, 36, 6626–6658. [Google Scholar] [CrossRef]
- Siram, O.; Sahoo, N.; Saha, U.K. Changing Landscape of India’s Renewable Energy and the Contribution of Wind Energy. Clean. Eng. Technol. 2022, 8, 100506. [Google Scholar] [CrossRef]
- Sircar, A.; Tripathi, G.; Bist, N.; Shakil, K.A.; Sathiyanarayanan, M. Emerging Technologies for Sustainable and Smart Energy; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003307402. [Google Scholar]
- Chia, S.R.; Nomanbhay, S.; Ong, M.Y.; Shamsuddin, A.H.B.; Chew, K.W.; Show, P.L. Renewable Diesel as Fossil Fuel Substitution in Malaysia: A Review. Fuel 2022, 314, 123137. [Google Scholar] [CrossRef]
- Karakoc, T.H.; Colpan, C.O.; Ekici, S.; Yetik, O. Promising Fuels and Green Energy Technologies for Aviation. Int. J. Green Energy 2022. [Google Scholar] [CrossRef]
- Gogoi, P.; Tudu, B.; Saikia, P. Hydrogen Fuel: Clean Energy Production Technologies. In Status and Future Challenges for Non-conventional Energy Sources Volume 1; Springer: Berlin/Heidelberg, Germany, 2022; pp. 133–154. [Google Scholar]
- Khan, M.; Das, R.C.; Casey, J.; Reese, B.L.; Akintunde, B.; Pathak, A.K. Near Room Temperature Magnetocaloric Properties in Ni Deficient (Mn0.525Fe0.5)Ni0.975Si0.95Al0.05. AIP Adv. 2022, 12, 035227. [Google Scholar] [CrossRef]
- Hossain, M.K.; Raihan, G.A.; Akbar, M.A.; Kabir Rubel, M.H.; Ahmed, M.H.; Khan, M.I.; Hossain, S.; Sen, S.K.; Jalal, M.I.E.; El-Denglawey, A. Current Applications and Future Potential of Rare Earth Oxides in Sustainable Nuclear, Radiation, and Energy Devices: A Review. ACS Appl. Electron. Mater. 2022, 4, 3327–3353. [Google Scholar] [CrossRef]
- Andrews, J.; Rezaei Niya, S.M.; Ojha, R. Electrochemical Hydrogen Storage in Porous Carbons with Acidic Electrolytes: Uncovering the Potential. Curr. Opin. Electrochem. 2022, 31, 100850. [Google Scholar] [CrossRef]
- Sedighi, F.; Ghiyasiyan-Arani, M.; Behpour, M. Ternary Nanocomposites of Ce2W2O9/CoWO4/Porous Carbon; Design, Structural Study and Electrochemical Hydrogen Storage Application. Fuel 2022, 310, 122218. [Google Scholar] [CrossRef]
- Hossain, M.K.; Rubel, M.H.K.; Akbar, M.A.; Ahmed, M.H.; Haque, N.; Rahman, M.F.; Hossain, J.; Hossain, K.M. A Review on Recent Applications and Future Prospects of Rare Earth Oxides in Corrosion and Thermal Barrier Coatings, Catalysts, Tribological, and Environmental Sectors. Ceram. Int. 2022, 48, 32588–32612. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton-Conducting Oxides. Annu. Rev. Mater. Res. 2003, 33, 333–359. [Google Scholar] [CrossRef]
- Colomban, P. Proton Conductors and Their Applications: A Tentative Historical Overview of the Early Researches. Solid State Ion. 2019, 334, 125–144. [Google Scholar] [CrossRef]
- Duan, C.; Huang, J.; Sullivan, N.; O’Hayre, R. Proton-Conducting Oxides for Energy Conversion and Storage. Appl. Phys. Rev. 2020, 7, 011314. [Google Scholar] [CrossRef]
- Leonard, K.; Druce, J.; Thoreton, V.; Kilner, J.A.; Matsumoto, H. Exploring Mixed Proton/Electron Conducting Air Electrode Materials in Protonic Electrolysis Cell. Solid State Ion. 2018, 319, 218–222. [Google Scholar] [CrossRef]
- Hossain, M.K.; Chanda, R.; El-Denglawey, A.; Emrose, T.; Rahman, M.T.; Biswas, M.C.; Hashizume, K. Recent Progress in Barium Zirconate Proton Conductors for Electrochemical Hydrogen Device Applications: A Review. Ceram. Int. 2021, 47, 23725–23748. [Google Scholar] [CrossRef]
- Hussain, S.; Li, Y. Review of Solid Oxide Fuel Cell Materials: Cathode, Anode, and Electrolyte. Energy Transit. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Harada, K.; Tanii, R.; Matsushima, H.; Ueda, M.; Sato, K.; Haneda, T. Effects of Water Transport on Deuterium Isotope Separation during Polymer Electrolyte Membrane Water Electrolysis. Int. J. Hydrog. Energy 2020, 45, 31389–31395. [Google Scholar] [CrossRef]
- Adhikari, S.; Fernando, S. Hydrogen Membrane Separation Techniques. Ind. Eng. Chem. Res. 2006, 45, 875–881. [Google Scholar] [CrossRef]
- Li, Y.; Kappis, K.; Papavasiliou, J.; Fu, Z.; Chen, L.; Li, H.; Vlachos, D.E.; Avgouropoulos, G. Insights on the Electrochemical Performance of a Molten Proton Conductor Fuel Cell with Internal Methanol Reformer. J. Power Sources 2022, 542, 231813. [Google Scholar] [CrossRef]
- Bonanos, N. Perovskite Proton Conductor. In Encyclopedia of Applied Electrochemistry; Springer: New York, NY, USA, 2014; pp. 1514–1520. [Google Scholar]
- Pei, K.; Zhou, Y.; Xu, K.; Zhang, H.; Ding, Y.; Zhao, B.; Yuan, W.; Sasaki, K.; Choi, Y.; Chen, Y.; et al. Surface Restructuring of a Perovskite-Type Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. Nat. Commun. 2022, 13, 2207. [Google Scholar] [CrossRef]
- Rubel, M.H.K.; Mitro, S.K.; Hossain, M.K.; Hossain, K.M.; Rahaman, M.M.; Hossain, J.; Mondal, B.K.; Akter, A.; Rahman, M.F.; Ahmed, I.; et al. First-Principles Calculations to Investigate Physical Properties of Single-Cubic (Ba0.82K0.18)(Bi0.53Pb0.47)O3 Novel Perovskite Superconductor. Mater. Today Commun. 2022, 33, 104302. [Google Scholar] [CrossRef]
- Rubel, M.H.K.; Hossain, M.A.; Hossain, M.K.; Hossain, K.M.; Khatun, A.A.; Rahaman, M.M.; Ferdous Rahman, M.; Hossain, M.M.; Hossain, J. First-Principles Calculations to Investigate Structural, Elastic, Electronic, Thermodynamic, and Thermoelectric Properties of CaPd3B4O12 (B = Ti, V) Perovskites. Results Phys. 2022, 42, 105977. [Google Scholar] [CrossRef]
- De Souza, E.C.C.; Muccillo, R. Properties and Applications of Perovskite Proton Conductors. Mater. Res. 2010, 13, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Liu, Z.; Chen, M.; Zhu, Z.; Cao, D.; Liu, J. Electrochemical Performance and Chemical Stability of Proton-conducting BaZr0.8−xCexY0.2O3−δ Electrolytes. J. Am. Ceram. Soc. 2022, 105, 5711–5724. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. J. Nanomater. 2018, 2018, 8148072. [Google Scholar] [CrossRef]
- Yang, Y.; Ling, X.; Qiu, W.; Bian, J.; Zhang, X.; Chen, Q. Surface-Enhanced Raman Scattering Spectroscopy Reveals the Phonon Softening of Yttrium-Doped Barium Zirconate Thin Films. J. Phys. Chem. C 2022, 126, 10722–10728. [Google Scholar] [CrossRef]
- Nur Syafkeena, M.A.; Zainor, M.L.; Hassan, O.H.; Baharuddin, N.A.; Othman, M.H.D.; Tseng, C.-J.; Osman, N. Review on the Preparation of Electrolyte Thin Films Based on Cerate-Zirconate Oxides for Electrochemical Analysis of Anode-Supported Proton Ceramic Fuel Cells. J. Alloys Compd. 2022, 918, 165434. [Google Scholar] [CrossRef]
- Peltzer, D.; Múnera, J.; Cornaglia, L. Study of the Sorption Properties of Alkali Zirconate-Based Sorbents at High Temperature in the Presence of Water and Low CO2 Concentration. J. Alloys Compd. 2022, 895, 162419. [Google Scholar] [CrossRef]
- Rashid, N.L.R.M.; Samat, A.A.; Jais, A.A.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A.; Wan Isahak, W.N.R. Review on Zirconate-Cerate-Based Electrolytes for Proton-Conducting Solid Oxide Fuel Cell. Ceram. Int. 2019, 45, 6605–6615. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, M.; Liu, Z.; Liu, J. A Comparative Investigation on Protonic Ceramic Fuel Cell Electrolytes BaZr0.8Y0.2O3−δ and BaZr0.1Ce0.7Y0.2O3−δ with NiO as Sintering Aid. Ceram. Int. 2022, 48, 17208–17216. [Google Scholar] [CrossRef]
- Yamanaka, S.; Fujikane, M.; Hamaguchi, T.; Muta, H.; Oyama, T.; Matsuda, T.; Kobayashi, S.; Kurosaki, K. Thermophysical Properties of BaZrO3 and BaCeO3. J. Alloys Compd. 2003, 359, 109–113. [Google Scholar] [CrossRef]
- Kurosaki, K.; Adachi, J.; Maekawa, T.; Yamanaka, S. Thermal Conductivity Analysis of BaUO3 and BaZrO3 by Semiempirical Molecular Dynamics Simulation. J. Alloys Compd. 2006, 407, 49–52. [Google Scholar] [CrossRef]
- Borland, H.; Llivina, L.; Colominas, S.; Abellà, J. Proton Conducting Ceramics for Potentiometric Hydrogen Sensors for Molten Metals. Fusion Eng. Des. 2013, 88, 2431–2435. [Google Scholar] [CrossRef]
- Tanaka, M.; Ohshima, T. Recovery of Hydrogen from Gas Mixture by an Intermediate-Temperature Type Proton Conductor. Fusion Eng. Des. 2010, 85, 1038–1043. [Google Scholar] [CrossRef]
- Pergolesi, D.; Fabbri, E.; D’Epifanio, A.; Di Bartolomeo, E.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E. High Proton Conduction in Grain-Boundary-Free Yttrium-Doped Barium Zirconate Films Grown by Pulsed Laser Deposition. Nat. Mater. 2010, 9, 846–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assabumrungrat, S.; Sangtongkitcharoen, W.; Laosiripojana, N.; Arpornwichanop, A.; Charojrochkul, S.; Praserthdam, P. Effects of Electrolyte Type and Flow Pattern on Performance of Methanol-Fuelled Solid Oxide Fuel Cells. J. Power Sources 2005, 148, 18–23. [Google Scholar] [CrossRef]
- Sun, W.; Liu, M.; Liu, W. Chemically Stable Yttrium and Tin Co-Doped Barium Zirconate Electrolyte for Next Generation High Performance Proton-Conducting Solid Oxide Fuel Cells. Adv. Energy Mater. 2013, 3, 1041–1050. [Google Scholar] [CrossRef]
- Hossain, M.K.; Biswas, M.C.; Chanda, R.K.; Rubel, M.H.K.; Khan, M.I.; Hashizume, K. A Review on Experimental and Theoretical Studies of Perovskite Barium Zirconate Proton Conductors. Emerg. Mater. 2021, 4, 999–1027. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.H. Progress in Proton-conducting Oxides as Electrolytes for Low-temperature Solid Oxide Fuel Cells: From Materials to Devices. Energy Sci. Eng. 2021, 9, 984–1011. [Google Scholar] [CrossRef]
- Schwandt, C.; Fray, D.J. The Titanium/Hydrogen System as the Solid-State Reference in High-Temperature Proton Conductor-Based Hydrogen Sensors. J. Appl. Electrochem. 2006, 36, 557–565. [Google Scholar] [CrossRef]
- Tanaka, M.; Sugiyama, T.; Ohshima, T.; Yamamoto, I. Extraction of Hydrogen and Tritium Using High-Temperature Proton Conductor for Tritium Monitoring. Fusion Sci. Technol. 2011, 60, 1391–1394. [Google Scholar] [CrossRef]
- Miller, J.M.; Bokwa, S.R.; Macdonald, D.S.; Verrall, R.A. Tritium Recovery from Lithium Zirconate Spheres. Fusion Technol. 1991, 19, 996–999. [Google Scholar] [CrossRef]
- Hossain, M.K.; Tamura, H.; Hashizume, K. Visualization of Hydrogen Isotope Distribution in Yttrium and Cobalt Doped Barium Zirconates. J. Nucl. Mater. 2020, 538, 152207. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hashizume, K.; Hatano, Y. Evaluation of the Hydrogen Solubility and Diffusivity in Proton-Conducting Oxides by Converting the PSL Values of a Tritium Imaging Plate. Nucl. Mater. Energy 2020, 25, 100875. [Google Scholar] [CrossRef]
- Hossain, M.K.; Iwasa, T.; Hashizume, K. Hydrogen Isotope Dissolution and Release Behavior in Y-doped BaCeO3. J. Am. Ceram. Soc. 2021, 104, 6508–6520. [Google Scholar] [CrossRef]
- Hossain, M.K.; Yamamoto, T.; Hashizume, K. Effect of Sintering Conditions on Structural and Morphological Properties of Y- and Co-Doped BaZrO3 Proton Conductors. Ceram. Int. 2021, 47, 27177–27187. [Google Scholar] [CrossRef]
- Hossain, M.K.; Yamamoto, T.; Hashizume, K. Isotopic Effect of Proton Conductivity in Barium Zirconates for Various Hydrogen-Containing Atmospheres. J. Alloys Compd. 2022, 903, 163957. [Google Scholar] [CrossRef]
- Han, D.; Liu, X.; Bjørheim, T.S.; Uda, T. Yttrium-Doped Barium Zirconate-Cerate Solid Solution as Proton Conducting Electrolyte: Why Higher Cerium Concentration Leads to Better Performance for Fuel Cells and Electrolysis Cells. Adv. Energy Mater. 2021, 11, 2003149. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Wang, B.; Sun, L.; Li, F.; Xue, Z.; Zhou, G.; Liu, B.; Nian, H. Theoretical and Experimental Investigations on High Temperature Mechanical and Thermal Properties of BaZrO3. Ceram. Int. 2018, 44, 16475–16482. [Google Scholar] [CrossRef]
- Draber, F.M.; Ader, C.; Arnold, J.P.; Eisele, S.; Grieshammer, S.; Yamaguchi, S.; Martin, M. Publisher Correction: Nanoscale Percolation in Doped BaZrO3 for High Proton Mobility. Nat. Mater. 2020, 19, 577. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Hashizume, K. Dissolution and Release Behavior of Hydrogen Isotopes from Barium-Zirconates. Proc. Int. Exch. Innov. Conf. Eng. Sci. 2020, 6, 34–39. [Google Scholar] [CrossRef]
- Perrichon, A.; Jedvik Granhed, E.; Romanelli, G.; Piovano, A.; Lindman, A.; Hyldgaard, P.; Wahnström, G.; Karlsson, M. Unraveling the Ground-State Structure of BaZrO3 by Neutron Scattering Experiments and First-Principles Calculations. Chem. Mater. 2020, 32, 2824–2835. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, A.M.; Hossain, S.; Radenahmad, N.; Petra, P.M.I.; Somalu, M.R.; Rahman, S.M.H.; Eriksson, S.G.; Azad, A.K. Synthesis and Characterization of Sm1-xZrxFe1-yMgyO3 (x, y = 0.5, 0.7, 0.9) as Possible Electrolytes for SOFCs. Key Eng. Mater. 2018, 765, 49–53. [Google Scholar] [CrossRef]
- Dai, H.; Kou, H.; Wang, H.; Bi, L. Electrochemical Performance of Protonic Ceramic Fuel Cells with Stable BaZrO3-Based Electrolyte: A Mini-Review. Electrochem. Commun. 2018, 96, 11–15. [Google Scholar] [CrossRef]
- Park, K.-Y.; Seo, Y.; Kim, K.B.; Song, S.-J.; Park, B.; Park, J.-Y. Enhanced Proton Conductivity of Yttrium-Doped Barium Zirconate with Sinterability in Protonic Ceramic Fuel Cells. J. Alloys Compd. 2015, 639, 435–444. [Google Scholar] [CrossRef]
- Yoo, Y.; Lim, N. Performance and Stability of Proton Conducting Solid Oxide Fuel Cells Based on Yttrium-Doped Barium Cerate-Zirconate Thin-Film Electrolyte. J. Power Sources 2013, 229, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Shafi, S.P.; Bi, L.; Boulfrad, S.; Traversa, E. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. ECS Trans. 2015, 68, 503–508. [Google Scholar] [CrossRef]
- Bi, L.; Traversa, E. Synthesis Strategies for Improving the Performance of Doped-BaZrO3 Materials in Solid Oxide Fuel Cell Applications. J. Mater. Res. 2014, 29, 1–15. [Google Scholar] [CrossRef]
- Dai, H. Proton Conducting Solid Oxide Fuel Cells with Chemically Stable BaZr0.75Y0.2Pr0.05O3−δ Electrolyte. Ceram. Int. 2017, 43, 7362–7365. [Google Scholar] [CrossRef]
- Liu, Y.; Ran, R.; Tade, M.O.; Shao, Z. Structure, Sinterability, Chemical Stability and Conductivity of Proton-Conducting BaZr0.6M0.2Y0.2O3−δ Electrolyte Membranes: The Effect of the M Dopant. J. Memb. Sci. 2014, 467, 100–108. [Google Scholar] [CrossRef]
- Loureiro, F.J.A.; Nasani, N.; Reddy, G.S.; Munirathnam, N.R.; Fagg, D.P. A Review on Sintering Technology of Proton Conducting BaCeO3-BaZrO3 Perovskite Oxide Materials for Protonic Ceramic Fuel Cells. J. Power Sources 2019, 438, 226991. [Google Scholar] [CrossRef]
- Rajendran, S.; Thangavel, N.K.; Ding, H.; Ding, Y.; Ding, D.; Reddy Arava, L.M. Tri-Doped BaCeO3–BaZrO3 as a Chemically Stable Electrolyte with High Proton-Conductivity for Intermediate Temperature Solid Oxide Electrolysis Cells (SOECs). ACS Appl. Mater. Interfaces 2020, 12, 38275–38284. [Google Scholar] [CrossRef] [PubMed]
- Jurewicz, K.; Frackowiak, E.; Béguin, F. Towards the Mechanism of Electrochemical Hydrogen Storage in Nanostructured Carbon Materials. Appl. Phys. A 2004, 78, 981–987. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Han, S.D.; Stetter, J.R. Review of Electrochemical Hydrogen Sensors. Chem. Rev. 2009, 109, 1402–1433. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, P. Electrochemical Hydrogen Compression (EHC) Solutions for Hydrogen Infrastructure. Fuel Cells Bull. 2014, 2014, 12–16. [Google Scholar] [CrossRef]
- Keçebaş, A.; Kayfeci, M.; Bayat, M. Electrochemical Hydrogen Generation. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 299–317. [Google Scholar]
- Tanaka, M.; Sugiyama, T. Development of a Tritium Monitor Combined with an Electrochemical Tritium Pump Using a Proton Conducting Oxide. Fusion Sci. Technol. 2015, 67, 600–603. [Google Scholar] [CrossRef]
- Tanaka, M.; Katahira, K.; Asakura, Y.; Uda, T.; Iwahara, H.; Yamamoto, I. Hydrogen Extraction Characteristics of Proton-Conducting Ceramics under a Wet Air Atmosphere for a Tritium Stack Monitor. J. Nucl. Sci. Technol. 2004, 41, 1013–1017. [Google Scholar] [CrossRef]
- Tanaka, M.; Asakura, Y.; Uda, T.; Katahira, K.; Tsuji, N.; Iwahara, H. Hydrogen Enrichment by Means of Electrochemical Hydrogen Pump Using Proton-Conducting Ceramics for a Tritium Stack Monitor. Fusion Eng. Des. 2006, 81, 1371–1377. [Google Scholar] [CrossRef]
- Tanaka, M.; Asakura, Y.; Uda, T.; Katahira, K.; Iwahara, H.; Tsuji, N.; Yamamoto, I. Studies on Hydrogen Extraction Characteristics of Proton-Conducting Ceramics and Their Applications to a Tritium Recovery System and a Tritium Monitor. Fusion Sci. Technol. 2005, 48, 51–54. [Google Scholar] [CrossRef]
- Hossain, M.K. Study on Hydrogen Isotopes Behavior in Proton Conducting Zirconates and Rare Earth Oxides. Ph.D. Thesis, Kyushu University, Fukuoka, Japan, 2021. [Google Scholar]
- Hossain, M.K.; Ahmed, M.H.; Khan, M.I.; Miah, M.S.; Hossain, S. Recent Progress of Rare Earth Oxides for Sensor, Detector, and Electronic Device Applications: A Review. ACS Appl. Electron. Mater. 2021, 3, 4255–4283. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hashizume, K.; Jo, S.; Kawaguchi, K.; Hatano, Y. Hydrogen Isotope Dissolution and Release Behavior of Rare Earth Oxides. Fusion Sci. Technol. 2020, 76, 553–566. [Google Scholar] [CrossRef]
- Hossain, M.K.; Kawaguchi, K.; Hashizume, K. Isotopic Effect of Proton Conductivity in Gadolinium Sesquioxide. Fusion Eng. Des. 2021, 171, 112555. [Google Scholar] [CrossRef]
- Khalid Hossain, M.; Kawaguchi, K.; Hashizume, K. Conductivity of Gadolinium (III) Oxide (Gd2O3) in Hydrogen-Containing Atmospheres. Proc. Int. Exch. Innov. Conf. Eng. Sci. 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Hossain, M.K.; Kawaguchi, K.; Hashizume, K. Protonic Conductivity and Isotope Dependency in Rare-Earth Gadolinium Oxide. In Proceedings of the 22nd Cross Straits Symposium on Energy and Environmental Science and Technology (CSS-EEST22), Fukuoka, Japan, 2–3 December 2020; Kyushu University: Fukuoka, Japan, 2020; pp. 15–16. [Google Scholar]
- Fukada, S.; Suemori, S.; Onoda, K. Overall Conductivity and Electromotive Force of SrZr0:9Yb0:1O3–a Cell System Supplied with Moist CH 4. J. Nucl. Sci. Technol. 2007, 44, 1324–1329. [Google Scholar] [CrossRef]
- Xia, T.; He, C.; Yang, H.; Zhao, W.; Yang, L. Hydrogen Extraction Characteristics of High-Temperature Proton Conductor Ceramics for Hydrogen Isotopes Purification and Recovery. Fusion Eng. Des. 2014, 89, 1500–1504. [Google Scholar] [CrossRef]
- Tanaka, M.; Katahira, K.; Asakura, Y.; Uda, T.; Iwahara, H.; Yamamoto, I. Effect of Plated Platinum Electrode on Hydrogen Extraction Performance Using CaZrO3-Based Proton-Conducting Ceramic for Tritium Recovery System. J. Nucl. Sci. Technol. 2004, 41, 95–97. [Google Scholar] [CrossRef]
- Tanaka, M. Extraction of Hydrogen into Vacuum by Electrochemical Hydrogen Pump for Hydrogen Isotope Recovery. Fusion Eng. Des. 2012, 87, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, L.; Shao, G.; Li, Y. A Novel Amperometric Hydrogen Sensor Based on Nano-Structured ZnO Sensing Electrode and CaZr0.9In0.1O3−δ Electrolyte. Sens. Actuators B Chem. 2012, 173, 85–92. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Y.; Bai, X.; Chen, K.; Guan, B.-O. High-Sensitivity and Fast-Response Fiber-Tip Fabry–Pérot Hydrogen Sensor with Suspended Palladium-Decorated Graphene. Nanoscale 2019, 11, 15821–15827. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Huang, W. Influence of Grain Interior and Grain Boundaries on Transport Properties of Scandium-doped Calcium Zirconate. J. Am. Ceram. Soc. 2020, 103, 2653–2662. [Google Scholar] [CrossRef]
- Zeba, I.; Ramzan, M.; Ahmad, R.; Shakil, M.; Rizwan, M.; Rafique, M.; Sarfraz, M.; Ajmal, M.; Gillani, S.S.A. First-Principles Computation of Magnesium Doped CaZrO3 Perovskite: A Study of Phase Transformation, Bandgap Engineering and Optical Response for Optoelectronic Applications. Solid State Commun. 2020, 313, 113907. [Google Scholar] [CrossRef]
- Dunyushkina, L.A.; Khaliullina, A.S.; Meshcherskikh, A.N.; Pankratov, A.A. Sintering and Conductivity of Sc-Doped CaZrO3 with Fe2O3 as a Sintering Aid. Ceram. Int. 2021, 47, 10565–10573. [Google Scholar] [CrossRef]
- Okuyama, Y.; Nagamine, S.; Nakajima, A.; Sakai, G.; Matsunaga, N.; Takahashi, F.; Kimata, K.; Oshima, T.; Tsuneyoshi, K. Proton-Conducting Oxide with Redox Protonation and Its Application to a Hydrogen Sensor with a Self-Standard Electrode. RSC Adv. 2016, 6, 34019–34026. [Google Scholar] [CrossRef]
- Chen, J.; Wu, S.; Zhang, F.; Lü, S.; Mao, Y. Calcination Temperature Dependence of Synthesis Process and Hydrogen Sensing Properties of In-Doped CaZrO3. Mater. Chem. Phys. 2016, 172, 87–97. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Y.; Cui, C.; Wang, S.; Xie, B.; Peng, R.; Chen, C.; Zhan, Z. Preparation and Characterization of Symmetrical Protonic Ceramic Fuel Cells as Electrochemical Hydrogen Pumps. J. Power Sources 2020, 457, 228036. [Google Scholar] [CrossRef]
- Matsumoto, H. Extraction and Production of Hydrogen Using High-Temperature Proton Conductor. Solid State Ion. 2002, 152–153, 715–720. [Google Scholar] [CrossRef]
- Sakai, T.; Matsumoto, H.; Yamamoto, R.; Kudo, T.; Okada, S.; Watanabe, M.; Hashimoto, S.; Takamura, H.; Ishihara, T. Performance of Palladium Electrode for Electrochemical Hydrogen Pump Using Strontium-Zirconate-Based Proton Conductors. Ionics 2009, 15, 665–670. [Google Scholar] [CrossRef]
- Tanaka, M.; Katahira, K.; Asakura, Y.; Uda, T.; Iwahara, H.; Yamamoto, I. Hydrogen Extraction Using One-End Closed Tube Made of CaZrO3-Based Proton-Conducting Ceramic for Tritium Recovery System. J. Nucl. Sci. Technol. 2004, 41, 61–67. [Google Scholar] [CrossRef]
- Tanaka, M.; Asakura, Y.; Uda, T. Performance of the Electrochemical Hydrogen Pump of a Proton-Conducting Oxide for the Tritium Monitor. Fusion Eng. Des. 2008, 83, 1414–1418. [Google Scholar] [CrossRef] [Green Version]
- Uchida, H. Relation between Proton and Hole Conduction in SrCeO3-Based Solid Electrolytes under Water-Containing Atmospheres at High Temperatures. Solid State Ion. 1983, 11, 117–124. [Google Scholar] [CrossRef]
- Tanaka, M.; Asakura, Y.; Uda, T. Experimental Study on Electrochemical Hydrogen Pump of SrZrO3-Based Oxide. Fusion Sci. Technol. 2008, 54, 479–482. [Google Scholar] [CrossRef]
- Tanaka, M.; Katahira, K.; Asakura, Y.; Ohshima, T. Hydrogen Pump Using a High-Temperature Proton Conductor for Nuclear Fusion Engineering Applications. Solid State Ion. 2010, 181, 215–218. [Google Scholar] [CrossRef]
- Han, J.; Wen, Z.; Zhang, J.; Wu, X.; Lin, B. Electrical Conductivity of Fully Densified Nano CaZr0.90In0.10O3−δ Ceramics Prepared by a Water-Based Gel Precipitation Method. Solid State Ion. 2009, 180, 154–159. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Cui, S.; Wang, C. Preparation and Electrical Properties of Sc-Doped CaZrO3. Acta Metall. Sin. 2013, 48, 575–578. [Google Scholar] [CrossRef]
- Yang, W.; Li, G.; Sui, Z. Coprecipitating Synthesis and Impedance Study of CaZr1−xInxO3−σ. J. Mater. Sci. Lett. 1998, 17, 241–243. [Google Scholar] [CrossRef]
- Matsumoto, H. Hydrogen Isotope Cell and Its Application to Hydrogen Isotope Sensing. Solid State Ion. 2000, 136–137, 173–177. [Google Scholar] [CrossRef]
- Matsumoto, H.; Takeuchi, K.; Iwahara, H. Electromotive Force of Hydrogen Isotope Cell with a High Temperature Proton-conducting Solid Electrolyte CaZr0.90In0.10O3−α. J. Electrochem. Soc. 2019, 146, 1486–1491. [Google Scholar] [CrossRef]
- Kalyakin, A.S.; Lyagaeva, J.G.; Chuikin, A.Y.; Volkov, A.N.; Medvedev, D.A. A High-Temperature Electrochemical Sensor Based on CaZr0.95Sc0.05O3–δ for Humidity Analysis in Oxidation Atmospheres. J. Solid State Electrochem. 2019, 23, 73–79. [Google Scholar] [CrossRef]
- Zhou, M.; Ahmad, A. Sol–Gel Processing of In-Doped CaZrO3 Solid Electrolyte and the Impedimetric Sensing Characteristics of Humidity and Hydrogen. Sens. Actuators B Chem. 2008, 129, 285–291. [Google Scholar] [CrossRef]
- Iwahara, H.; Asakura, Y.; Katahira, K.; Tanaka, M. Prospect of Hydrogen Technology Using Proton-Conducting Ceramics. Solid State Ion. 2004, 168, 299–310. [Google Scholar] [CrossRef]
- Kang, B.S.; Heo, Y.W.; Tien, L.C.; Norton, D.P.; Ren, F.; Gila, B.P.; Pearton, S.J. Hydrogen and Ozone Gas Sensing Using Multiple ZnO Nanorods. Appl. Phys. A 2005, 80, 1029–1032. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.W.; Yang, Y.; Huang, H.; Lee, Y.C.; Tan, O.K.; Vayssieres, L. Hydrothermally Grown Oriented ZnO Nanorod Arrays for Gas Sensing Applications. Nanotechnology 2006, 17, 4995–4998. [Google Scholar] [CrossRef]
- Liao, L.; Lu, H.B.; Li, J.C.; He, H.; Wang, D.F.; Fu, D.J.; Liu, C.; Zhang, W.F. Size Dependence of Gas Sensitivity of ZnO Nanorods. J. Phys. Chem. C 2007, 111, 1900–1903. [Google Scholar] [CrossRef]
- Shao, C.; Chang, Y.; Long, Y. High Performance of Nanostructured ZnO Film Gas Sensor at Room Temperature. Sens. Actuators B Chem. 2014, 204, 666–672. [Google Scholar] [CrossRef]
- Ohshima, T.; Kondo, M.; Tanaka, M.; Muroga, T.; Sagara, A. Hydrogen Transport in Molten Salt Flinak Measured by Solid Electrolyte Sensors with Pd Electrode. Fusion Eng. Des. 2010, 85, 1841–1846. [Google Scholar] [CrossRef]
- Kurita, N.; Fukatsu, N.; Ito, K.; Ohashi, T. Protonic Conduction Domain of Indium-doped Calcium Zirconate. J. Electrochem. Soc. 2019, 142, 1552–1559. [Google Scholar] [CrossRef]
- Sakai, T.; Matsushita, S.; Matsumoto, H.; Okada, S.; Hashimoto, S.; Ishihara, T. Intermediate Temperature Steam Electrolysis Using Strontium Zirconate-Based Protonic Conductors. Int. J. Hydrog. Energy 2009, 34, 56–63. [Google Scholar] [CrossRef]
- Sakai, T.; Matsumoto, H.; Kudo, T.; Yamamoto, R.; Niwa, E.; Okada, S.; Hashimoto, S.; Sasaki, K.; Ishihara, T. High Performance of Electroless-Plated Platinum Electrode for Electrochemical Hydrogen Pumps Using Strontium-Zirconate-Based Proton Conductors. Electrochim. Acta 2008, 53, 8172–8177. [Google Scholar] [CrossRef]
- Fukada, S.; Suemori, S.; Onoda, K. Rate Determining Step of Direct Hydrogen and Electricity Production in SrZr0.9Yb0.1O3−a Fuel Cell Supplied with CH4+H2O. Energy Convers. Manag. 2009, 50, 1249–1255. [Google Scholar] [CrossRef]
- Chen, C.-T.; Kim, S.K.; Ibbotson, M.; Yeung, A.; Kim, S. Thermionic Emission of Protons across a Grain Boundary in 5 Mol% Y-Doped SrZrO3, a Hydrogen Pump. Int. J. Hydrog. Energy 2012, 37, 12432–12437. [Google Scholar] [CrossRef]
- Oyama, Y.; Kojima, A.; Li, X.; Cervera, R.B.; Tanaka, K.; Yamaguchi, S. Phase Relation in the BaO–ZrO2–YO1.5 System: Presence of Separate BaZrO3 Phases and Complexity in Phase Formation. Solid State Ion. 2011, 197, 1–12. [Google Scholar] [CrossRef]
- Müller, J.; Kreuer, K.; Maier, J.; Matsuo, S.; Ishigame, M. A Conductivity and Thermal Gravimetric Analysis of a Y-Doped SrZrO3 Single Crystal. Solid State Ion. 1997, 97, 421–427. [Google Scholar] [CrossRef]
- Yajima, T.; Suzuki, H.; Yogo, T.; Iwahara, H. Protonic Conduction in SrZrO3-Based Oxides. Solid State Ion. 1992, 51, 101–107. [Google Scholar] [CrossRef]
- Huang, H.; Ishigame, M.; Shin, S. Protonic Conduction in the Single Crystals of Y-Doped SrZrO3. Solid State Ion. 1991, 47, 251–255. [Google Scholar] [CrossRef]
- Higuchi, T.; Tsukamoto, T.; Sata, N.; Hiramoto, K.; Ishigame, M.; Shin, S. Protonic Conduction in the Single Crystals of SrZr0.95M0.05O3 (M=Y, Sc, Yb, Er). Jpn. J. Appl. Phys. 2001, 40, 4162–4163. [Google Scholar] [CrossRef]
- Kalyakin, A.S.; Lyagaeva, J.Y.; Volkov, A.N.; Medvedev, D.A. Unusual Oxygen Detection by Means of a Solid State Sensor Based on a CaZr0.9In0.1O3–δ Proton-Conducting Electrolyte. J. Electroanal. Chem. 2019, 844, 23–26. [Google Scholar] [CrossRef]
- Asakura, Y.; Sugiyama, T.; Kawano, T.; Uda, T.; Tanaka, M.; Tsuji, N.; Katahira, K.; Iwahara, H. Application of Proton-Conducting Ceramics and Polymer Permeable Membranes for Gaseous Tritium Recovery. J. Nucl. Sci. Technol. 2004, 41, 863–870. [Google Scholar] [CrossRef]
- Taniguchi, N.; Kuroha, T.; Nishimura, C.; Iijima, K. Characteristics of Novel BaZr0.4Ce0.4In0.2O3 Proton Conducting Ceramics and Their Application to Hydrogen Sensors. Solid State Ion. 2005, 176, 2979–2983. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Li, Y.; Zhou, H.; He, Z.; Liu, H.; Dai, L. A Limiting Current Hydrogen Sensor Based on BaHf0.8Fe0.2O3−δ Dense Diffusion Barrier and BaHf0.7Sn0.1In0.2O3−δ Protonic Conductor. Ceram. Int. 2022, 48, 22113–22123. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Yu, J.; Li, L.; Zhang, X. A New Application of CeZr1-O2 as Dense Diffusion Barrier in Limiting Current Oxygen Sensor. Sens. Actuators B Chem. 2019, 285, 391–397. [Google Scholar] [CrossRef]
- Van de Voorde, M. (Ed.) Utilization of Hydrogen for Sustainable Energy and Fuels; De Gruyter: Berlin, Germany, 2021; ISBN 9783110596274. [Google Scholar]
Electrolyte Materials | Proportional Counter Volume (m3) | Mixing Ratio | Flow Rate (L/min) | Sensitive Volume (L) | Tritium Counting Efficiency (%) | Calibration Factor (kBq/m3 per cps) | Background Rate in Tritium Channel (cps) | Minimum Detectable Activities (Bq/m3) | Ref. |
---|---|---|---|---|---|---|---|---|---|
CaZr0.9In0.1O3−α | 0.0013 | 1:04 | 0.2 air/0.8 P10 | 0.26 | 55 | 7 | 0.4–3 | 100–5400 | [69] |
CaZr0.9In0.1O3−α | 0.0013 | N/A | 0.091 | N/A | N/A | N/A | N/A | 1300 | [70] |
Electrolyte Materials | Sintering Condition | Sample Gas Mixture Used at Anode | Sample Gas Mixture Used at Cathode | Electrode Type | Operating Temperature (°C) | Ref. |
---|---|---|---|---|---|---|
CaZr0.9In0.1O3−α | 800 °C for 1 h | He + H2 | He | Pt | 650–800 | [80] |
SrZr0.9Yb0.1O3−α | N/A | CH4 + H2 | O2 + H2O | Ni/SiO2 and NiO/SiO2 | 600–700 | [79] |
CaZr0.9In0.1O3−α | N/A | N/A | N/A | Pt | 800 | [93] |
CaZr0.9In0.1O3−α | N/A | N/A | N/A | Pt | 800 | [81] |
CaZr0.9In0.1O3−α | N/A | N/A | N/A | Pt | 700 | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.K.; Hasan, S.M.K.; Hossain, M.I.; Das, R.C.; Bencherif, H.; Rubel, M.H.K.; Rahman, M.F.; Emrose, T.; Hashizume, K. A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices. Nanomaterials 2022, 12, 3581. https://doi.org/10.3390/nano12203581
Hossain MK, Hasan SMK, Hossain MI, Das RC, Bencherif H, Rubel MHK, Rahman MF, Emrose T, Hashizume K. A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices. Nanomaterials. 2022; 12(20):3581. https://doi.org/10.3390/nano12203581
Chicago/Turabian StyleHossain, M. Khalid, S. M. Kamrul Hasan, M. Imran Hossain, Ranjit C. Das, H. Bencherif, M. H. K. Rubel, Md. Ferdous Rahman, Tanvir Emrose, and Kenichi Hashizume. 2022. "A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices" Nanomaterials 12, no. 20: 3581. https://doi.org/10.3390/nano12203581
APA StyleHossain, M. K., Hasan, S. M. K., Hossain, M. I., Das, R. C., Bencherif, H., Rubel, M. H. K., Rahman, M. F., Emrose, T., & Hashizume, K. (2022). A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices. Nanomaterials, 12(20), 3581. https://doi.org/10.3390/nano12203581