Chitosan-Functionalized Hydroxyapatite-Cerium Oxide Heterostructure: An Efficient Adsorbent for Dyes Removal and Antimicrobial Agent
<p>The XRD spectra of (<b>a</b>) pure HAP and (<b>b</b>) CS-HAP-CeO<sub>2</sub> heterostructure. The symbol (●) indicates cerium oxide peaks whereas, (◆) represents chitosan peak.</p> "> Figure 2
<p>The SEM images of (<b>a</b>,<b>b</b>) pure HAP and (<b>c</b>,<b>d</b>) CS-HAP-CeO<sub>2</sub> heterostructure. The arrows represent the CeO<sub>2</sub> nanotubes embedded in HAP nanomatrix.</p> "> Figure 3
<p>The (<b>a</b>) TEM (inset shows single nanotube) and (<b>b</b>) HR-TEM images of CS-HAP-CeO<sub>2</sub> heterostructure.</p> "> Figure 4
<p>The EDX spectrum of CS-HAP-CeO<sub>2</sub> heterostructure.</p> "> Figure 5
<p>Selectivity studies of CS-HAP-CeO<sub>2</sub> heterostructure toward different dyes.</p> "> Figure 6
<p>Effects of pH (<b>a</b>), adsorbent dosage (g) (<b>b</b>), contact time (min) (<b>c</b>), and initial concentrations (mg/L) (<b>d</b>) on the adsorption of CR dye onto CS-HAP-CeO<sub>2</sub> heterostructure.</p> "> Figure 7
<p>Plots of pseudo-first-order and pseudo-second-order kinetic model for adsorption of CR onto CS-HAP-CeO<sub>2</sub> heterostructure adsorbents.</p> "> Figure 8
<p>Linearized Irving Langmuir (<b>a</b>), Heurbet Freundlich (<b>b</b>), Mikhail Temkin (<b>c</b>), and Dubinin Radushkevich (<b>d</b>) isotherm adsorption models of CR dye onto CS-HAP-CeO<sub>2</sub> heterostructure.</p> "> Figure 9
<p>Plot of ln K vs. 1/T for thermodynamic parameters calculation.</p> "> Figure 10
<p>FTIR spectra of CS-HAP-CeO<sub>2</sub> heterostructure before and after CR dye adsorption.</p> "> Figure 11
<p>Mechanism of adsorption of CR onto CS-HAP-CeO<sub>2</sub> heterostructure.</p> "> Figure 12
<p>Bar illustrations demonstrating <span class="html-italic">E. coli</span> supplemented with different amounts of HAP and CS-HAP-CeO<sub>2</sub> heterostructure (peak enlargement indicates <span class="html-italic">E. coli</span> deprived of HAP and CS-HAP-CeO<sub>2</sub>). Considerable difference (* <span class="html-italic">p</span> ≤ 0.05) was perceived between control and treatments. Substantial variance in bacteriostatic effect with HAP and CS-HAP-CeO<sub>2</sub> at high quantity was envisaged. * <span class="html-italic">p</span> ≤ 0.05, *** <span class="html-italic">p</span> ≤ 0.001 suggestively different from virgin culture.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Hydroxyapatite (HAP)
2.2. Synthesis of Chitosan Coated Cerium Oxide-HAP Heterostructure (CS-HAP-CeO2)
2.3. Characterization
2.4. Adsorption Studies
2.5. Antimicrobial Activity
3. Results
3.1. Sythesis and Characterization
3.2. Adsorption Studies
3.2.1. Adsorbate Selectivity
3.2.2. Effect of pH
3.2.3. Effect of Adsorbent Dose
3.2.4. Effect of Contact Time
3.2.5. Effect Temperatures
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Thermodynamic Studies
3.6. CR Dye Adsorption Mechanism
3.7. Antimicrobial
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Con sent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helaly, M.N.; El-Metwally, M.A.; El-Hoseiny, H.; Omar, S.A.; El-Sheery, N.I. Effect of nanoparticles on biological contamination of ‘in vitro’cultures and organogenic regeneration of banana. Aust. J. Crop Sci. 2014, 8, 612. [Google Scholar]
- Nawab, J.; Khan, S.; Khan, M.A.; Sher, H.; Rehamn, U.U.; Ali, S.; Shah, S.M. Potentially toxic metals and biological contamination in drinking water sources in chromite mining-impacted areas of Pakistan: A comparative study. Expo. Health 2017, 9, 275–287. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, A.; Siddiqi, Z.-M. Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. J. Mol. Liq. 2016, 219, 359–367. [Google Scholar] [CrossRef]
- Sathishkumar, K.; Alsalhi, M.S.; Sanganyado, E.; Devanesan, S.; Arulprakash, A.; Rajasekar, A. Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent. J. Photochem. Photobiol. B Biol. 2019, 200, 111655. [Google Scholar] [CrossRef]
- Dawlet, A.; Talip, D.; Mi, H.Y. Removal of mercury from aqueous solution using sheep bone charcoal. Procedia Environ. Sci. 2013, 18, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Alqadami, A.A.; Khan, M.A.; Otero, M.; Siddiqui, M.R.; Jeon, B.-H.; Batoo, K.M. A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water. J. Clean. Prod. 2018, 178, 293–304. [Google Scholar] [CrossRef]
- Panneerselvam, K.; Arul, K.T.; Warrier, A.R.; Asokan, K.; Dong, C.-L. Rapid adsorption of industrial pollutants using metal ion doped hydroxyapatite. AIP Conf. Proc. 2019, 2117, 020004. [Google Scholar]
- Manatunga, D.C.; De Silva, R.M.; De Silva, K.N.; De Silva, N.; Premalal, E. Metal and polymer-mediated synthesis of porous crystalline hydroxyapatite nanocomposites for environmental remediation. R. Soc. Open Sci. 2018, 5, 171557. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Cao, W.; Guan, H.; Lei, X.; Wang, X.; Tu, Y.; Marchetti, A.; Kong, X. A novel polyalcohol-coated hydroxyapatite for the fast adsorption of organic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2018, 548, 85–91. [Google Scholar] [CrossRef]
- Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017, 347, 48–76. [Google Scholar] [CrossRef]
- Piccirillo, C.; Castro, P. Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives. J. Environ. Manag. 2017, 193, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Tommalieh, M.; Ibrahium, H.A.; Awwad, N.S.; Menazea, A. Gold nanoparticles doped polyvinyl alcohol/chitosan blend via laser ablation for electrical conductivity enhancement. J. Mol. Struct. 2020, 1221, 128814. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Ghaedi, M. Green preparation of dual-template chitosan-based magnetic water-compatible molecularly imprinted biopolymer. Carbohydr. Polym. 2020, 236, 116102. [Google Scholar] [CrossRef] [PubMed]
- Al-Kahtani, S.H.; Sofian, B.E.-D.E. Estimating preference change in meat demand in Saudi Arabia. Agric. Econ. 1995, 12, 91–98. [Google Scholar] [CrossRef]
- Gholami, H.; Ghaedi, M.; Arabi, M.; Ostovan, A.; Bagheri, A.R.; Mohamedian, H. Application of molecularly imprinted biomembrane for advancement of matrix solid-phase dispersion for clean enrichment of parabens from powder sunscreen samples: Optimization of chromatographic conditions and green approach. ACS Omega 2019, 4, 3839–3849. [Google Scholar] [CrossRef] [Green Version]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal. Chem. 2020, 128, 115923. [Google Scholar] [CrossRef]
- Menazea, A.; Eid, M.; Ahmed, M. Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite. Int. J. Biol. Macromol. 2020, 147, 194–199. [Google Scholar] [CrossRef]
- Madni, A.; Kousar, R.; Naeem, N.; Wahid, F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 2021, 6, 11–25. [Google Scholar] [CrossRef]
- Saad, E.M.; Elshaarawy, R.F.; Mahmoud, S.A.; El-Moselhy, K.M. New ulva lactuca algae based chitosan bio-composites for bioremediation of Cd (II) ions. J. Bioresour. Bioprod. 2021, 6, 223–242. [Google Scholar] [CrossRef]
- Jian, S.; Tian, Z.; Zhang, K.; Duan, G.; Yang, W.; Jiang, S. Hydrothermal synthesis of Ce-doped ZnO heterojunction supported on carbon nanofibers with high visible light photocatalytic activity. Chem. Res. Chin. Univ. 2021, 37, 565–570. [Google Scholar] [CrossRef]
- Al-Shwaiman, H.A.; Akshhayya, C.; Syed, A.; Bahkali, A.H.; Elgorban, A.M.; Das, A.; Varma, R.S.; Khan, S.S. Fabrication of intimately coupled CeO2/ZnFe2O4 nano-heterojunction for visible-light photocatalysis and bactericidal application. Mater. Chem. Phys. 2022, 279, 125759. [Google Scholar] [CrossRef]
- Tomic, N.M.; Dohcevic-Mitrovic, Z.D.; Paunović, N.M.; Mijin, D.A.Z.; Radić, N.D.; Grbic, B.V.; Askrabic, S.M.; Babić, B.M.; Bajuk-Bogdanovic, D.V. Nanocrystalline CeO2−δ as effective adsorbent of azo dyes. Langmuir 2014, 30, 11582–11590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, S.; Shi, F.; Hu, R.; Liu, Y.; Chen, Y.; Jiang, W.; Yuan, X.; Hu, J.; Zhang, K.; Jiang, S. Electrospun magnetic La2O3–CeO2–Fe3O4 composite nanofibers for removal of fluoride from aqueous solution. Compos. Commun. 2022, 33, 101194. [Google Scholar] [CrossRef]
- Amna, T. Valorization of bone waste of Saudi Arabia by synthesizing hydroxyapatite. Appl. Biochem. Biotechnol. 2018, 186, 779–788. [Google Scholar] [CrossRef]
- Selim, S.E.; Meligi, G.A.; Abdelhamid, A.E.; Mabrouk, M.A.; Hussain, A.I. Novel Composite Films Based on Acrylic Fibers Waste/Nano-chitosan for Congo Red Adsorption. J. Polym. Environ. 2022, 30, 2642–2657. [Google Scholar] [CrossRef]
- Amna, T.; Hassan, M.S.; Barakat, N.A.; Pandeya, D.R.; Hong, S.T.; Khil, M.-S.; Kim, H.Y. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl. Microbiol. Biotechnol. 2012, 93, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Guvensen, N.C.; Demir, S.; Ozdemir, G. Effects of magnesium and calcium cations on biofilm formation by Sphingomonas Paucimobilis from an industrial environment. Fresenius Environ. Bull. 2012, 21, 3685–3692. [Google Scholar] [CrossRef]
- Djuričić, B.; Pickering, S. Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceram. Soc. 1999, 19, 1925–1934. [Google Scholar] [CrossRef]
- El Boujaady, H.; Mourabet, M.; El Rhilassi, A.; Bennani-Ziatni, M.; El Hamri, R.; Taitai, A. Adsorption of a textile dye on synthesized calcium deficient hydroxyapatite (CDHAp): Kinetic and thermodynamic studies. J. Mater. Environ. Sci. 2016, 7, 4049–4063. [Google Scholar]
- Nusrath, K.; Muraleedharan, K. Synthesis, characterization and thermal decomposition kinetics of cerium oxalate rods. Devagiri J. Sci. 2016, 2, 118–120. [Google Scholar]
- Kumar, S.; Koh, J. Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anirudhan, T.; Ramachandran, M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf. Environ. Prot. 2015, 95, 215–225. [Google Scholar] [CrossRef]
- Allen, S.J.; Mckay, G.; Khader, K. Equilibrium adsorption isotherms for basic dyes onto lignite. J. Chem. Technol. Biotechnol. 1989, 45, 291–302. [Google Scholar] [CrossRef]
- Kaur, S.; Rani, S.; Mahajan, R.K. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. J. Chem. 2013, 2013, 628582. [Google Scholar] [CrossRef]
- Purkait, M.K.; Maiti, A.; Dasgupta, S.; De, S. Removal of congo red using activated carbon and its regeneration. J. Hazard. Mater. 2007, 145, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Phạm, V.T.; Hong-Tham, N.; Tran, T.; Nguyen, D.; Le, H.; Nguyen, T.; Vo, D.-V.; Le, N.; Nguyen, D.C. Kinetics, Isotherm, Thermodynamics, and Recyclability of Exfoliated Graphene-Decorated MnFe2O4 Nanocomposite Towards Congo Red Dye. J. Chem. 2019, 2019, 5234585. [Google Scholar] [CrossRef]
- Astuti, D.; Aprilita, N.; Mudasir, M. Adsorption of the anionic dye of congo red from aqueous solution using a modified natural zeolite with benzalkonium chloride. Rasayan J. Chem. 2020, 13, 845–852. [Google Scholar] [CrossRef]
- Parvin, S.; Hussain, M.; Akter, F.; Biswas, B. Removal of Congo Red by Silver Carp (Hypophthalmichthys molitrix) Fish Bone Powder: Kinetics, Equilibrium, and Thermodynamic Study. J. Chem. 2021, 2021, 9535644. [Google Scholar] [CrossRef]
- Jiang, H.; Cao, Y.; Zeng, F.; Xie, Z.; He, F. A Novel Fe3O4/Graphene Oxide Composite Prepared by Click Chemistry for High-Efficiency Removal of Congo Red from Water. J. Nanomater. 2021, 2021, 9716897. [Google Scholar] [CrossRef]
- Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 2022, 427, 130011. [Google Scholar] [CrossRef]
- Chen, Y.; Hanshe, M.; Sun, Z.; Zhou, Y.; Mei, C.; Duan, G.; Zheng, J.; Shiju, E.; Jiang, S. Lightweight and anisotropic cellulose nanofibril/rectorite composite sponges for efficient dye adsorption and selective separation. Int. J. Biol. Macromol. 2022, 207, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Çiner, F. Application of Fenton reagent and adsorption as advanced treatment processes for removal of Maxilon Red GRL. Glob. Nest J. 2018, 20, 1–6. [Google Scholar]
- Shoukat, S.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study. Microporous Mesoporous Mater. 2017, 239, 180–189. [Google Scholar] [CrossRef]
- Alamrani, N.; Al_Aoh, H. Elimination of Congo Red Dye from Industrial Wastewater Using Teucrium polium L. as a Low-Cost Local Adsorbent. Adsorpt. Sci. Technol. 2021, 2021, 5728696. [Google Scholar] [CrossRef]
- Zhang, F.; Yin, Y.; Qiao, C.; Luan, Y.-N.; Guo, M.; Xiao, Y.; Liu, C. Anionic Dye Removal by Polypyrrole-Modified Red Mud and Its Application to a Lab-Scale Column: Adsorption Performance and Phytotoxicity Assessment. Adsorpt. Sci. Technol. 2021, 2021, 7694783. [Google Scholar] [CrossRef]
- Omidi, S.; Kakanejadifard, A. Eco-friendly synthesis of graphene–chitosan composite hydrogel as efficient adsorbent for Congo red. RSC Adv. 2018, 8, 12179–12189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirbazari, A.E.; Saberikhah, E.; Badrouh, M.; Emami, M.S. Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resour. Ind. 2014, 6, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Nasuha, N.; Hameed, B.; Din, A.T.M. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J. Hazard. Mater. 2010, 175, 126–132. [Google Scholar] [CrossRef]
- Al-Salihi, S.; Jasim, A.M.; Fidalgo, M.M.; Xing, Y. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells. Chemosphere 2022, 286, 131769. [Google Scholar] [CrossRef]
- Al-Shehri, H.S.; Almudaifer, E.; Alorabi, A.Q.; Alanazi, H.S.; Alkorbi, A.S.; Alharthi, F.A. Effective adsorption of crystal violet from aqueous solutions with effective adsorbent: Equilibrium, mechanism studies and modeling analysis. Environ. Pollut. Bioavailab. 2021, 33, 214–226. [Google Scholar] [CrossRef]
- Ding, L.; Li, B.; Mi, J. The Effective Removal of Congo Red Dye from Aqueous Solution Using Fly Ash/CeO2 Composite Material. Appl. Mech. Mater. 2014, 535, 671–674. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, B.; Jiang, X.; Ji, Y. Dual function magnetic hydroxyapatite nanopowder for removal of malachite green and Congo red from aqueous solution. Powder Technol. 2016, 302, 207–214. [Google Scholar] [CrossRef]
- Du, Q.; Sun, J.; Li, Y.; Yang, X.; Wang, X.; Wang, Z.; Xia, L. Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 2014, 245, 99–106. [Google Scholar] [CrossRef]
- Chahkandi, M. Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle. Mater. Chem. Phys. 2017, 202, 340–351. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Abdalla, M.A.; Khan, M.R.; Alothman, Z.A. Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: Equilibrium, kinetic, and thermodynamic studies. J. Chem. Eng. Data 2016, 61, 3806–3813. [Google Scholar] [CrossRef]
- Rao, R.; Jin, P.; Huang, Y.; Hu, C.; Dong, X.; Tang, Y.; Wang, F.; Luo, F.; Fang, S. A surface control strategy of CeO2 nanocrystals for enhancing adsorption removal of Congo red. Colloid Interface Sci. Commun. 2022, 49, 100631. [Google Scholar] [CrossRef]
- Azeez, L.; Adebisi, S.A.; Adejumo, A.L.; Busari, H.K.; Aremu, H.K.; Olabode, O.A.; Awolola, O. Adsorptive properties of rod-shaped silver nanoparticles-functionalized biogenic hydroxyapatite for remediating methylene blue and congo red. Inorg. Chem. Commun. 2022, 142, 109655. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Karthikeyan, P.; Ramkumar, K.; Meenakshi, S. Effective removal of organic pollutants by adsorption onto chitosan supported graphene oxide-hydroxyapatite composite: A novel reusable adsorbent. J. Mol. Liq. 2020, 318, 114200. [Google Scholar] [CrossRef]
- Bensalah, H.; Younssi, S.A.; Ouammou, M.; Gurlo, A.; Bekheet, M.F. Azo dye adsorption on an industrial waste-transformed hydroxyapatite adsorbent: Kinetics, isotherms, mechanism and regeneration studies. J. Environ. Chem. Eng. 2020, 8, 103807. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, N.T.; Nguyen, V.A. In Situ Synthesis and Characterization of ZnO/Chitosan Nanocomposite as an Adsorbent for Removal of Congo Red from Aqueous Solution. Adv. Polym. Technol. 2020, 2020, 3892694. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.C.; Araújo, M.E.B.; Rodrigues, A.M.; Vitorino, M.D.B.C.; Cartaxo, J.M.; Menezes, R.R.; Neves, G.A. Adsorption Behavior of Crystal Violet and Congo Red Dyes on Heat-Treated Brazilian Palygorskite: Kinetic, Isothermal and Thermodynamic Studies. Materials 2021, 14, 5688. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, M. Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics. J. Taibah Univ. Sci. 2016, 10, 664–674. [Google Scholar] [CrossRef] [Green Version]
- Mladenovic, N.; Petkovska, J.; Dimova, V.; Dimitrovski, D.; Jordanov, I. Circular economy approach for rice husk modification: Equilibrium, kinetic, thermodynamic aspects and mechanism of Congo red adsorption. Cellulose 2022, 29, 503–525. [Google Scholar] [CrossRef]
- Cui, M.; Li, Y.; Sun, Y.; Wang, H.; Li, M.; Li, L.; Xu, W. Study on adsorption performance of MgO/Calcium alginate composite for congo red in wastewater. J. Polym. Environ. 2021, 29, 3977–3987. [Google Scholar] [CrossRef]
- Extross, A.; Waknis, A.; Tagad, C.; Gedam, V.; Pathak, P. Adsorption of congo red using carbon from leaves and stem of water hyacinth: Equilibrium, kinetics, thermodynamic studies. Int. J. Environ. Sci. Technol. 2022, in press. [Google Scholar] [CrossRef]
- Amna, T.; Hassan, M.S.; El-Newehy, M.H.; Alghamdi, T.; Moydeen Abdulhameed, M.; Khil, M.-S. Biocompatibility Computation of Muscle Cells on Polyhedral Oligomeric Silsesquioxane-Grafted Polyurethane Nanomatrix. Nanomaterials 2021, 11, 2966. [Google Scholar] [CrossRef]
- Amna, T.; Alghamdi, A.A.; Shang, K.; Hassan, M.S. Nigella Sativa-Coated Hydroxyapatite Scaffolds: Synergetic Cues to Stimulate Myoblasts Differentiation and Offset Infections. Tissue Eng. Regen. Med. 2021, 18, 787–795. [Google Scholar] [CrossRef]
- Ann, L.C.; Mahmud, S.; Bakhori, S.K.M.; Sirelkhatim, A.; Mohamad, D.; Hasan, H.; Seeni, A.; Rahman, R.A. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int. 2014, 40, 2993–3001. [Google Scholar] [CrossRef]
- Soletti, L.D.S.; Ferreira, M.E.C.; Kassada, A.T.; Abreu Filho, B.a.D.; Bergamasco, R.; Yamaguchi, N.U. Manganese ferrite graphene nanocomposite synthesis and the investigation of its antibacterial properties for water treatment purposes. Rev. Ambiente Água 2020, 15, e2515. [Google Scholar] [CrossRef]
- Goudarzi, M.R.; Bagherzadeh, M.; Fazilati, M.; Riahi, F.; Salavati, H.; Esfahani, S.S. Evaluation of antibacterial property of hydroxyapatite and zirconium oxide-modificated magnetic nanoparticles against Staphylococcus aureus and Escherichia coli. IET Nanobiotechnol. 2019, 13, 449–455. [Google Scholar] [CrossRef]
Model | Parameters | Value |
---|---|---|
Co: 100 mg/L, qe,exp.: 237.95 mg/g | ||
Pseudo-first-order | qe1, cal. (mg/g) | 98.01 |
k1 (L/min) | 0.360 | |
R2 | 0.7967 | |
Pseudo-second-order | qe2, cal. (mg/g) | 238.09 |
k2 (g/mg-min) | 0.0098 | |
R2 | 0.9999 |
Model | CR | ||
---|---|---|---|
298 K | 308 K | 318 K | |
Langmuir | |||
qm, mg/g | 270.27 | 238.09 | 185.18 |
KL (L/mg) | 1.000 | 0.591 | 0.397 |
R2 | 0.9989 | 0.9987 | 0.9958 |
Freundlich | |||
Kf,(mg/g) (L/mg)1/n | 158.19 | 131.67 | 84.58 |
N | 7.85 | 7.23 | 5.40 |
R2 | 0.5963 | 0.6027 | 0.6422 |
Dubinin-R | |||
qs, mg/g | 282.56 | 245.45 | 196.56 |
KD-R (mol2 KJ−2) | 4.00 × 10−7 | 1.00 × 10−6 | 7.00 × 10−6 |
E (kJ mol−1) | 1.118 | 0.7071 | 0.2672 |
R2 | 0.9332 | 0.9805 | 0.929 |
Temkin | |||
bT = RT/B | 119.99 | 130.15 | 141.519 |
AT (L/g) | 4029.70 | 2084.66 | 340.63 |
B | 20.647 | 19.036 | 17.507 |
R2 | 0.6384 | 0.5725 | 0.4481 |
Adsorbent | qm (mg/g) | Isotherm/Kinetic Models | Ref. |
---|---|---|---|
CeO2 nanocrystals | 237 | Langmuir/PSO | [56] |
AgNPs-functionalized HAP | 159.11 | Freundlich/PSO | [57] |
CS@GO-Hap composite | 43.06 | Freundlich/PSO | [58] |
Hydroxyapatite (HAp) | 139 mg/g | Freundlich/PSO | [59] |
ZnO/chitosan | 227.3 | Langmuir | [60] |
Ground nut shells charcoal (GNC) | 117.6 | Freundlich/PSO | [34] |
Eichhornia charcoal (EC) | 56.8 | Freundlich/PSO | [34] |
Polygorskite -700T | 136.1 | Freundlich/Elovich | [61] |
CS-HAP-CeO2 | 270.27 | Langmuir/PSO | This study |
Co (mg/L) | (−) ΔH° (kJ/mol) | (−) ΔS° (J/mol.K) | (−) ΔG° (kJ/mol) | ||
---|---|---|---|---|---|
298 K | 308 K | 318 K | |||
100 | 19.43 | 8.29 | 11.63 | 9.02 | 5.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahrani, A.A.; Alorabi, A.Q.; Hassan, M.S.; Amna, T.; Azizi, M. Chitosan-Functionalized Hydroxyapatite-Cerium Oxide Heterostructure: An Efficient Adsorbent for Dyes Removal and Antimicrobial Agent. Nanomaterials 2022, 12, 2713. https://doi.org/10.3390/nano12152713
Alshahrani AA, Alorabi AQ, Hassan MS, Amna T, Azizi M. Chitosan-Functionalized Hydroxyapatite-Cerium Oxide Heterostructure: An Efficient Adsorbent for Dyes Removal and Antimicrobial Agent. Nanomaterials. 2022; 12(15):2713. https://doi.org/10.3390/nano12152713
Chicago/Turabian StyleAlshahrani, Aisha A., Ali Q. Alorabi, M. Shamshi Hassan, Touseef Amna, and Mohamed Azizi. 2022. "Chitosan-Functionalized Hydroxyapatite-Cerium Oxide Heterostructure: An Efficient Adsorbent for Dyes Removal and Antimicrobial Agent" Nanomaterials 12, no. 15: 2713. https://doi.org/10.3390/nano12152713
APA StyleAlshahrani, A. A., Alorabi, A. Q., Hassan, M. S., Amna, T., & Azizi, M. (2022). Chitosan-Functionalized Hydroxyapatite-Cerium Oxide Heterostructure: An Efficient Adsorbent for Dyes Removal and Antimicrobial Agent. Nanomaterials, 12(15), 2713. https://doi.org/10.3390/nano12152713