Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation
<p>Schematic of the VACNT UV laser patterning process: (<b>a</b>) SEM images of a typical as-synthesized PECVD VACNT thin film (scale bar: 1 mm, Tilt: 45°). (<b>b</b>) High-resolution SEM image of the VACNT thin film upper surface highlighting the surface disorder and residual catalyst particles (scale bar: 500 nm, Tilt: 45°). Inset: High-resolution TEM of an individual as-grown PECVD CNT showing a wall thickness of approximately 0.12 nm, consisting of three graphitic side walls (scale bar: 10 nm). (<b>c</b>) Energy distribution diagram of the laser beam. (<b>d</b>) Gaussian distribution of laser beam energy. (<b>e</b>) The process of laser beam energy acting on VACNT to form its shape. (<b>f</b>) Nanocone and (<b>g</b>) Nanocone array formation process.</p> "> Figure 2
<p>(<b>a</b>) A typical SEM image of a patterned VACNT sample where the right side has been processed. Position 1 is the top of the laser processed array, position 2 is the junction of the processed position and the unprocessed position, and position 3 is the unprocessed position. (<b>b</b>) Corresponding Raman spectra at the positions 1, 2, and 3. (<b>c</b>) New large exotic nanoparticles of Al and Fe on the processed VACNT. (<b>d</b>) The C 1s XPS peaks for processed VACNT.</p> "> Figure 3
<p>(<b>a</b>) A typical UV laser-processed cuboid array with a side length of about 20 μm and (<b>b</b>) 500 nm consisting of 1089 elements. (<b>c</b>) An enlarged view of the processed array showing the formed tips of about 20 μm and (<b>d</b>) about 500 nm. (<b>e</b>) A single tip in the array with a radius of curvature of 20.9 μm and (<b>f</b>) 347 nm.</p> "> Figure 4
<p>(<b>a</b>) Current density–applied field curves of the raw VACNT film; the cone arrays of the tip size are about 500 nm, 5 μm, and 15 μm, and the illustration is Forwer–Nordheim plots. (<b>b</b>) The statistical diagram of the relationship between the open field strength and the current density of the unprocessed samples and the cone array samples with different tip sizes. (<b>c</b>) Current–time stability curves of the raw VACNT film; the cone arrays of the tip size are 500 nm, 5 μm, and 15 μm. (<b>d</b>) The relationship between the current decay rate (12 h) and the initial current of raw samples and cone array samples with different tip sizes was studied. (The calculated emission is 4 mm<sup>2</sup> from (<b>a</b>–<b>d</b>)).</p> "> Figure 5
<p>(<b>a</b>) The electric field strength distribution of the model of raw VACNT film. (<b>b</b>) The electric field strength distribution of the model of the arrays with a tip size of 20 μm. (<b>c</b>) The electric field strength distribution of the model of the nanocone arrays with a tip size of 500 nm. (<b>d</b>) The electric field strength calculation results of the middle point (Position 1, the center point of the upper surface of the center array corresponds to the center point of the upper surface of VACNT), edge-point (Position 2, the center point of the upper surface of the third array of edges corresponds to the position of the same coordinates of VACNT), and the center point (Position 3, the center point of the upper surface of the corner array corresponds to the same coordinate position of VACNT) of the top surface of the cone arrays of tip size from 0.5–20 μm and the raw VACNT.</p> ">
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Laser Processing
3.2. Impacts on the Structure and Surface Pre- and Post-Processing
3.3. Field Emission Properties as a Function of Conical Tip Radius of Curvature
3.4. Simulation of Electric Field Intensity with a Different Tip Radius of Curvature
4. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, B.; Zhang, Z.; Chen, W.; Lu, D.; Yang, L.; Yang, R.; Zhu, H.; Tang, Z.; Gui, X. Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices. Nanomicro Lett. 2019, 11, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.W.; Lai, W.C.; Kao, Y.Y.; Hsieh, T.L.; Huang, K.J. Angle-Resolved Field Emission of Individual Carbon Nanotubes. Jpn. J. Appl. Phys. 2009, 48, 072402. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Ke, C.; Bing, B.; Qing, D. Edge effect enhanced photo-thermionic emission from a carbon nanotubes array. Appl. Phys. Lett. 2017, 110, 093105. [Google Scholar] [CrossRef]
- Li, Z.J.; Yang, X.X.; He, F.; Bai, B.; Zhou, H.; Li, C.; Dai, Q. High current field emission from individual non-linear resistor ballasted carbon nanotube cluster array. Carbon 2015, 89, 1–7. [Google Scholar] [CrossRef]
- Ohara, J.; Nagakubo, M.; Kawahara, N.; Hattori, T. High aspect ratio etching by infrared laser induced micro bubbles. Proc. IEEE Micr. Elect. 1997, 175–179. [Google Scholar] [CrossRef]
- Zweig, A.D.; Deutsch, T.F. Shock-Waves Generated by Confined Xecl Excimer Laser Ablation of Polyimide. Appl. Phys. B Photo 1992, 54, 76–82. [Google Scholar] [CrossRef]
- Choo, K.L.; Ogawa, Y.; Kanbargi, G.; Otra, V.; Raff, L.M.; Komanduri, R. Micromachining of silicon by short-pulse laser ablation in air and under water. Mater. Sci. Eng. A Struct. 2004, 372, 145–162. [Google Scholar] [CrossRef]
- Geiger, M.; Becker, W.; Rebhan, T.; Hutfless, J.; Lutz, N. Increase of efficiency for the XeCl excimer laser ablation of ceramics. Appl. Surf. Sci. 1996, 96–98, 309–315. [Google Scholar] [CrossRef]
- Geiger, M.; Roth, S.; Becker, W. Microstructuring and surface modification by excimer laser machining under thin liquid films. In Proceedings of the Alt ‘97 International Conference on Laser Surface Processing, Limoges, France, 8–12 September 1997; Volume 3404, pp. 200–208. [Google Scholar] [CrossRef]
- Meijer, J. Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 2004, 149, 2–17. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X.; Zhai, F.; Li, Z.J.; Yao, F.R.; Qiao, R.X.; Chen, K.; Cole, M.T.; Yu, D.P.; Sun, Z.P.; et al. Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency. Adv. Mater. 2017, 29, 1701580. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Chen, K.; Guan, M.; Wang, X.; Zhou, X.; Zhai, F.; Dai, J.; Li, Z.; Sun, Z.; Meng, S.; et al. Extreme nonlinear strong-field photoemission from carbon nanotubes. Nat. Commun. 2019, 10, 4891. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D.N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.P.; Ci, L.; Bur, J.A.; Lin, S.Y.; Ajayan, P.M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451. [Google Scholar] [CrossRef]
- Elmer, J.W.; Yaglioglu, O.; Schaeffer, R.D.; Kardos, G.; Derkach, O. Direct patterning of vertically aligned carbon nanotube arrays to 20 mu m pitch using focused laser beam micromachining. Carbon 2012, 50, 4114–4122. [Google Scholar] [CrossRef]
- Cole, M.T.; Milne, W.I. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes. Materials 2013, 6, 2262–2273. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Shivareddy, S.G.; Correa, M.; Resto, O.; Choi, Y.; Cole, M.T.; Katiyar, R.S.; Scott, J.F.; Amaratunga, G.A.; Lu, H.; et al. Ferroelectric-carbon nanotube memory devices. Nanotechnology 2012, 23, 165702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.J.; Bai, B.; Li, C.; Dai, Q. Efficient photo-thermionic emission from carbon nanotube arrays. Carbon 2016, 96, 641–646. [Google Scholar] [CrossRef]
- Dang, M.N.; Nguyen, M.D.; Hiep, N.K.; Hong, P.N.; Baek, I.H.; Hong, N.T. Improved Field Emission Properties of Carbon Nanostructures by Laser Surface Engineering. Nanomaterials 2020, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Y.; Yue, H.X.; Liu, L.; Luo, J.; Wu, X.L.; Zheng, R.T.; Cheng, G.A. Vertically Aligned Carbon Nanotube Microbundle Arrays for Field-Emission Applications. ACS Appl. Nano Mater. 2020, 3, 7659–7667. [Google Scholar] [CrossRef]
- Cheong, F.C.; Lim, K.Y.; Sow, C.H.; Lin, J.Y.; Ong, C.K. Large area patterned arrays of aligned carbon nanotubes via laser trimming. Nanotechnology 2003, 14, 433–437. [Google Scholar] [CrossRef]
- Takagi, Y.; Okada, S. Theoretical calculation for the ultraviolet optical properties of single-walled carbon nanotubes. Phys. Rev. B 2009, 79, 233406. [Google Scholar] [CrossRef] [Green Version]
- Duong, H.M.; Einarsson, E.; Okawa, J.; Xiang, R.; Maruyama, S. Thermal degradation of single-walled carbon nanotubes. Jpn. J. Appl. Phys. 2008, 47, 1994–1999. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Deng, S.; Hong, T.; Zhang, Y. Design and Characteristics of a Vertical Carbon Nanotube Sheet Field Emitter. In Proceedings of the 33rd International Vacuum Nanoelectronics Conference (IVNC), Lyon, France, 6–7 July 2020; pp. 113–114. [Google Scholar] [CrossRef]
- Lednev, V.N.; Pershin, S.M.; Obraztsova, E.D.; Kudryashov, S.I.; Bunkin, A.F. Single-shot and single-spot measurement of laser ablation threshold for carbon nanotubes. J. Phys. D Appl. Phys. 2013, 46, 052002. [Google Scholar] [CrossRef]
- Rao, A.M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.C.; Williams, K.A.; Fang, S.; Subbaswamy, K.R.; Menon, M.; Thess, A.; et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science 1997, 275, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Gorodetskiy, D.V.; Kurenya, A.G.; Gusel’nikov, A.V.; Baskakova, K.I.; Smirnov, D.A.; Arkhipov, V.E.; Bulusheva, L.G.; Okotrub, A.V. Laser beam patterning of carbon nanotube arrays for the work of electron field emitters in technical vacuum (vol B262, 114691, 2020). Mater. Sci. Eng. B Adv. 2021, 271, 115294. [Google Scholar] [CrossRef]
- Labunov, V.; Prudnikava, A.; Bushuk, S.; Filatov, S.; Shulitski, B.; Tay, B.K.; Shaman, Y.; Basaev, A. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles. Nanoscale Res. Lett. 2013, 8, 375. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Ruan, X.F.; Pan, C.X. Graphitization of solid carbon nanofibers at an unexpectedly low temperature. Mater. Lett. 2007, 61, 4272–4275. [Google Scholar] [CrossRef]
- Lim, Z.H.; Lee, A.; Lim, K.Y.Y.; Zhu, Y.W.; Sow, C.H. Systematic investigation of sustained laser-induced incandescence in carbon nanotubes. J. Appl. Phys. 2010, 107, 064319. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Vankar, V.D.; Rao, D.V.S.; Kumar, V. Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films 2006, 515, 1851–1856. [Google Scholar] [CrossRef]
- Jang, J.W.; Lee, C.E.; Lyu, S.C.; Lee, T.J.; Lee, C.J. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 2004, 84, 2877–2879. [Google Scholar] [CrossRef]
- Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W.R.; Shaffer, M.S.P.; Windle, A.H.; Friend, R.H. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 1999, 103, 8116–8121. [Google Scholar] [CrossRef]
- Hammer, P.; Victoria, N.M.; Alvarez, F. Effects of increasing nitrogen concentration on the structure of carbon nitride films deposited by ion beam assisted deposition. J. Vac. Sci. Technol. A 2000, 18, 2277–2287. [Google Scholar] [CrossRef]
- Chan, L.H.; Hong, K.H.; Xiao, D.Q.; Hsieh, W.J.; Lai, S.H.; Shih, H.C.; Lin, T.C.; Shieu, F.S.; Chen, K.J.; Cheng, H.C. Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes. Appl. Phys. Lett. 2003, 82, 4334–4336. [Google Scholar] [CrossRef]
- Wei, G. Emission property of carbon nanotube with defects. Appl. Phys. Lett. 2006, 89, 143111. [Google Scholar] [CrossRef]
- Kumar, A.; Parveen, S.; Husain, S.; Zulfequar, M.; Harsh; Husain, M. Oxygen and nitrogen doping in single wall carbon nanotubes: An efficient stable field emitter. J. Alloy Compd. 2017, 711, 85–93. [Google Scholar] [CrossRef]
- Cai, D.; Liu, L. The screening effects of carbon nanotube arrays and its field emission optimum density. AIP Adv. 2013, 3, 122103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, Z.; Cole, M.T.; Wang, A.; Guo, X.; Liu, X.; Lyu, W.; Teng, H.; Qv, Y.; Liu, G.; et al. Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation. Nanomaterials 2021, 11, 3244. https://doi.org/10.3390/nano11123244
Zhao J, Li Z, Cole MT, Wang A, Guo X, Liu X, Lyu W, Teng H, Qv Y, Liu G, et al. Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation. Nanomaterials. 2021; 11(12):3244. https://doi.org/10.3390/nano11123244
Chicago/Turabian StyleZhao, Jiuzhou, Zhenjun Li, Matthew Thomas Cole, Aiwei Wang, Xiangdong Guo, Xinchuan Liu, Wei Lyu, Hanchao Teng, Yunpeng Qv, Guanjiang Liu, and et al. 2021. "Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation" Nanomaterials 11, no. 12: 3244. https://doi.org/10.3390/nano11123244
APA StyleZhao, J., Li, Z., Cole, M. T., Wang, A., Guo, X., Liu, X., Lyu, W., Teng, H., Qv, Y., Liu, G., Chen, K., Zhou, S., Xiao, J., Li, Y., Li, C., & Dai, Q. (2021). Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation. Nanomaterials, 11(12), 3244. https://doi.org/10.3390/nano11123244