Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review
<p>(<b>a</b>) Schematic diagram of SWCNT and MWCNT (reproduced from [<a href="#B35-nanomaterials-11-02186" class="html-bibr">35</a>]) and (<b>b</b>) the MWCNT wrapped with poly(3-hexylthiophene). Reproduced from [<a href="#B37-nanomaterials-11-02186" class="html-bibr">37</a>].</p> "> Figure 2
<p>Micro and nano scale distribution of; (<b>a</b>) Al<sub>2</sub>O<sub>3</sub> particles, (<b>b</b>) carbon fibers, (<b>c</b>) graphene nanoplatelets (GNPs), and (<b>d</b>) CNTs. Reproduced with permission from [<a href="#B38-nanomaterials-11-02186" class="html-bibr">38</a>]. Copyright Elsevier, 2010.</p> "> Figure 3
<p>Entangled nature of MWCNT (<b>a</b>) under FESEM and (<b>b</b>) under HRTEM. Reproduced from [<a href="#B37-nanomaterials-11-02186" class="html-bibr">37</a>].</p> "> Figure 4
<p>The molecular dynamics model of a CNT subjected to ballistic impact. (<b>a</b>) Initial model, (<b>b</b>) a deformed (18, 0) nanotube at its maximum energy absorption. Reproduced with permission from [<a href="#B113-nanomaterials-11-02186" class="html-bibr">113</a>]. Copyright IOP Publishing, 2007.</p> "> Figure 5
<p>Fluorescence photomicrographs of cell cultures on (<b>a</b>,<b>b</b>) PET reinforced collagen sheets and (<b>c</b>,<b>d</b>) MWCNTs blocks. Reproduced from [<a href="#B122-nanomaterials-11-02186" class="html-bibr">122</a>].</p> "> Figure 6
<p>Adsorption of CO gas molecule on the hydroxyl modified CNTs. Reproduced from [<a href="#B158-nanomaterials-11-02186" class="html-bibr">158</a>].</p> ">
Abstract
:1. Introduction
2. Mechanical Characteristics of CNTs
3. Factors Influencing the Mechanical Performance of CNTs Reinforced Polymer Composites
4. Mechanical Performance of CNTs Reinforced Polymer Composites
5. Potential Applications of CNTs
6. Environmental, Health, and Safety Concerns in Utilisation of CNTs
6.1. Aspect Ratio
6.2. Length
6.3. Surface Area
6.4. Concentration
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norizan, M.N.; Moklis, M.H.; Demon, S.Z.N.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Lee, J. Carbon Nanotube-Based Membranes for Water Purification. In Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2019; pp. 309–331. [Google Scholar]
- Zhang, J.; Jiang, D. Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites. Compos. Sci. Technol. 2011, 71, 466–470. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Norizan, M.N.; Zulaikha, N.D.S.; Norhana, A.B.; Syakir, M.I.; Norli, A. Carbon nanotubes-based sensor for ammonia gas detection–an overview. Polimery 2021, 66, 175–186. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Harussani, M.M.; Siti Zulaikha, N.D.; Norhana, A.H.; Imran Syakir, M.; Norli, A. Composites based on conductive polymer with carbon nanotubes in DMMP gas sensors—An overview. Polimery 2021, 66, 85–97. [Google Scholar] [CrossRef]
- Schadler, L.S.; Giannaris, S.C.; Ajayan, P.M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 1998, 73, 3842–3844. [Google Scholar] [CrossRef]
- Shaffer, M.S.P.; Windle, A.H. Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites. Adv. Mater. 1999, 11, 937–941. [Google Scholar] [CrossRef]
- Allaoui, A.; Bai, S.; Cheng, H.-M.; Bai, J.B. Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 2002, 62, 1993–1998. [Google Scholar] [CrossRef]
- Safadi, B.; Andrews, R.; Grulke, E.A. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 2002, 84, 2660–2669. [Google Scholar] [CrossRef]
- Zhan, G.-D.; Kuntz, J.D.; Wan, J.; Mukherjee, A.K. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat. Mater. 2003, 2, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, K.-T.; Alms, J.; Advani, S.G. Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 2003, 14, 791. [Google Scholar] [CrossRef]
- Yang, J.; Hu, J.; Wang, C.; Qin, Y.; Guo, Z. Fabrication and characterization of soluble multi-walled carbon nanotubes reinforced P (MMA-co-EMA) composites. Macromol. Mater. Eng. 2004, 289, 828–832. [Google Scholar] [CrossRef]
- De Zhang, W.; Shen, L.; Phang, I.Y.; Liu, T. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 2004, 37, 256–259. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, G.; Justice, R.; Schaefer, D.W.; Zhang, S.; Yang, M.; Han, C.C. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 2005, 46, 5125–5132. [Google Scholar] [CrossRef]
- Chen, G.-X.; Kim, H.-S.; Park, B.H.; Yoon, J.-S. Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer 2006, 47, 4760–4767. [Google Scholar] [CrossRef]
- Deng, C.F.; Wang, D.Z.; Zhang, X.X.; Li, A.B. Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 2007, 444, 138–145. [Google Scholar] [CrossRef]
- Broza, G.; Piszczek, K.; Schulte, K.; Sterzynski, T. Nanocomposites of poly (vinyl chloride) with carbon nanotubes (CNT). Compos. Sci. Technol. 2007, 67, 890–894. [Google Scholar] [CrossRef]
- Mathur, R.B.; Pande, S.; Singh, B.P.; Dhami, T.L. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym. Compos. 2008, 29, 717–727. [Google Scholar] [CrossRef]
- Ramana, G.V.; Padya, B.; Kumar, R.N.; Prabhakar, K.V.P.; Jain, P.K. Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites. Indian J. Eng. Mater. Sci. 2010, 17, 331–337. [Google Scholar]
- Peigney, A.; Garcia, F.L.; Estournes, C.; Weibel, A.; Laurent, C. Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites. Carbon N. Y. 2010, 48, 1952–1960. [Google Scholar] [CrossRef] [Green Version]
- Bikiaris, D. Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 2010, 3, 2884–2946. [Google Scholar] [CrossRef]
- Rahmanian, S.; Thean, K.S.; Suraya, A.R.; Shazed, M.A.; Salleh, M.A.M.; Yusoff, H.M. Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Mater. Des. 2013, 43, 10–16. [Google Scholar] [CrossRef]
- Hasan, M.; Lee, M. Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC. Prog. Nat. Sci. Mater. Int. 2014, 24, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Garg, M.; Sharma, S.; Mehta, R. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites. Compos. Part A Appl. Sci. Manuf. 2015, 76, 92–101. [Google Scholar] [CrossRef]
- Rajeshwari, P. Microstructure and mechanical properties of multiwall carbon nanotubes reinforced polymer composites. Mater. Today Proc. 2015, 2, 3598–3604. [Google Scholar] [CrossRef]
- Venugopal, G.; Veetil, J.C.; Raghavan, N.; Singh, V.; Kumar, A.; Mukkannan, A. Nano-dynamic mechanical and thermal responses of single-walled carbon nanotubes reinforced polymer nanocomposite thinfilms. J. Alloys Compd. 2016, 688, 454–459. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Lafdi, K.; El Moumen, A. Mechanical properties of carbon nanotubes based polymer composites. Compos. Part B Eng. 2016, 103, 113–121. [Google Scholar] [CrossRef]
- Zhao, Z.; Teng, K.; Li, N.; Li, X.; Xu, Z.; Chen, L.; Niu, J.; Fu, H.; Zhao, L.; Liu, Y. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos. Struct. 2017, 159, 761–772. [Google Scholar] [CrossRef]
- Deep, N.; Mishra, P. Evaluation of mechanical properties of functionalized carbon nanotube reinforced PMMA polymer nanocomposite. Karbala Int. J. Mod. Sci. 2018, 4, 207–215. [Google Scholar] [CrossRef]
- Boroujeni, A.Y.; Al-Haik, M. Carbon nanotube–Carbon fiber reinforced polymer composites with extended fatigue life. Compos. Part B Eng. 2019, 164, 537–545. [Google Scholar] [CrossRef]
- Han, K.; Zhou, W.; Qin, R.; Wang, G.; Ma, L.-H. Effects of carbon nanotubes on open-hole carbon fiber reinforced polymer composites. Mater. Today Commun. 2020, 24, 101106. [Google Scholar] [CrossRef]
- Vanyorek, L.; Sikora, E.; Balogh, T.; Román, K.; Marossy, K.; Pekker, P.; Szabó, T.J.; Viskolcz, B.; Fiser, B. Nanotubes as polymer composite reinforcing additive materials–A comparative study. Arab. J. Chem. 2020, 13, 3775–3782. [Google Scholar] [CrossRef]
- Su, C.; Wang, X.; Ding, L.; Yu, P. Enhancement of mechanical behavior of resin matrices and fiber reinforced polymer composites by incorporation of multi-wall carbon nanotubes. Polym. Test. 2021, 96, 107077. [Google Scholar] [CrossRef]
- Vidu, R.; Rahman, M.; Mahmoudi, M.; Enachescu, M.; Poteca, T.D.; Opris, I. Nanostructures: A platform for brain repair and augmentation. Front. Syst. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Norizan, M.N.; Abdullah, N.; Demon, S.Z.N.; Halim, N.A.; Azmi, A.F.M.; Knight, V.F.; Mohamad, I.S. The frontiers of functionalized graphene—Based nanocomposites as chemical sensors. Nanotechnol. Rev. 2021, 10, 330–369. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Abdullah, N.; Demon, S.Z.N.; Halim, N.A.; Mohamad, I.S. The Influence of Reaction Time on Non-Covalent Functionalisation of P3HT/MWCNT Nanocomposites. Polymers 2021, 13, 1916. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Overney, G.; Zhong, W.; Tomanek, D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z. Für Phys. D Atoms, Mol. Clust. 1993, 27, 93–96. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, L.C. A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology 2008, 19. [Google Scholar] [CrossRef] [Green Version]
- Poncharal, P.; Wang, Z.L.; Ugarte, D.; De Heer, W.A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Daniel, I.M.; Ishai, O.; Daniel, I.M.; Daniel, I. Engineering Mechanics of Composite Materials; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Fredriksson, T. Carbon Nanotubes: A Theoretical Study of Young’s Modulus. Ph.D. Thesis, Karlstad University, Karlstad, Sweden, 2014. [Google Scholar]
- Nurazzi, N.M.; Khalina, A.; Sapuan, S.M.; Rahmah, M. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites. Mater. Res. Express 2018, 5, 045308. [Google Scholar] [CrossRef]
- Nurazzi, N.; Khalina, A.; Sapuan, S.; Laila, A.H.D.; Mohamed, R. Curing behaviour of unsaturated polyester resin and interfacial shear stress of sugar palm fibre. J. Mech. Eng. Sci. 2017, 11, 2650–2664. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 2021, 31, 149–165. [Google Scholar] [CrossRef]
- Hassan, M.A. Physicaland Thermal Properties of Fiber (S-Type)-Reinforced Compositearaldite Resin (GY 260). Al-Qadisiyah J. Eng. Sci. 2012, 5, 341–346. [Google Scholar]
- Marulanda, J.M. Carbon Nanotubes Applications on Electron Devices; InTech Open: London, UK, 2012. [Google Scholar]
- Mazumdar, S. Composites Manufacturing: Materials, Product, and Process Engineering; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.N.; Khan, U.; Gun’ko, Y.K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 2006, 18, 689–706. [Google Scholar] [CrossRef]
- Jian, W.; Lau, D. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level. Compos. Sci. Technol. 2020, 191, 108076. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Martín, J.; Jiménez-Suárez, A.; Prolongo, S.G.; Ureña, A. Mechanical and strain sensing properties of carbon nanotube reinforced epoxy/poly (caprolactone) blends. Polymer 2020, 190, 122236. [Google Scholar] [CrossRef]
- Sheth, D.; Maiti, S.; Patel, S.; Kandasamy, J.; Chandan, M.R.; Rahaman, A. Enhancement of mechanical properties of carbon fiber reinforced epoxy matrix laminated composites with multiwalled carbon nanotubes. Fuller. Nanotub. Carbon Nanostruc. 2020, 29, 1–7. [Google Scholar]
- Kim, J.K.; Mai, Y.W. Engineered Interfaces in Fiber Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Thostenson, T.E.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef] [Green Version]
- Paramsothy, M. Dispersion, interface, and alignment of carbon nanotubes in thermomechanically stretched polystyrene matrix. JOM 2014, 66. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Tersoff, J.; Lorents, D.C.; Subramoney, S.; Chan, B. Radial deformation of carbon nanotubes by Van Der Waals forces. Nature 1993, 364. [Google Scholar] [CrossRef]
- Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220. [Google Scholar] [CrossRef]
- Zhu, H.W.; Xu, C.L.; Wu, D.H.; Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296. [Google Scholar] [CrossRef]
- Lau, K.T.; Gu, C.; Hui, D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 2006, 37, 425–436. [Google Scholar] [CrossRef]
- Wernik, J.M.; Meguid, S.A. On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater. Des. 2014, 59. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon N. Y. 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Sattar, R.; Kausar, A.; Siddiq, M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. J. Plast. Film Sheeting 2015, 31, 186–224. [Google Scholar] [CrossRef]
- Imtiaz, S.; Siddiq, M.; Kausar, A.; Muntha, S.T.; Ambreen, J.; Bibi, I. A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites. Chin. J. Polym. Sci. 2018, 36, 445–461. [Google Scholar] [CrossRef]
- Bahun, G.J.; Wang, C.; Adronov, A. Solubilizing single-walled carbon nanotubes with pyrene-functionalized block copolymers. J. Polym. Sci. Part A Polym. Chem. 2006, 44. [Google Scholar] [CrossRef]
- Singh, B.; Lohan, S.; Sandhu, P.S.; Jain, A.; Mehta, S.K. Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics. In Nanobiomaterials in Medical Imaging: Applications of Nanobiomaterials; William Andrew Publishing: Norwich, NY, USA, 2016. [Google Scholar]
- Ajori, S.; Ansari, R.; Darvizeh, M. Vibration characteristics of single- and double-walled carbon nanotubes functionalized with amide and amine groups. Phys. B Condens. Matter 2015, 462. [Google Scholar] [CrossRef]
- Afrin, R.; Shah, N.A. Room temperature gas sensors based on carboxyl and thiol functionalized carbon nanotubes buckypapers. Diam. Relat. Mater. 2015, 60. [Google Scholar] [CrossRef]
- Janudin, N.; Abdullah, L.C.; Abdullah, N.; Yasin, F.M.; Saidi, N.M.; Kasim, N.A.M. Characterization of amide and ester functionalized multiwalled Carbon Nanotubes. Asian J. Chem. 2018, 30. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Song, W.; Xu, D. Interfacial characteristics of carbon nanotube-polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 149–169. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Zhang, S.; Yang, F.; Wang, R. Mechanical properties of carbon nanotube/carbon fiber reinforced thermoplastic polymer composite. Polym. Compos. 2017, 38, 2001–2008. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A. Development and Characterization of Polypropylene Waste from Personal Protective Equipment (PPE)-Derived Char-Filled Sugar Palm Starch Biocomposite Briquettes. Polymers 2021, 13, 1707. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.L.; Yang, L. Temperature dependence of the interfacial shear strength in glass-fibre polypropylene composites. Compos. Sci. Technol. 2011, 71, 1600–1605. [Google Scholar] [CrossRef]
- Sen, R.; Zhao, B.; Perea, D.; Itkis, M.E.; Hu, H.; Love, J.; Bekyarova, E.; Haddon, R.C. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 2004, 4. [Google Scholar] [CrossRef]
- Chen, W.; Tao, X. Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane. Macromol. Rapid Commun. 2005, 26. [Google Scholar] [CrossRef]
- Lu, X.D.; Huang, Y.D.; Zhang, C.H. Curing behaviour of epoxy resin with a diamine containing heterocyclic rings. Polym. Polym. Compos. 2007, 15. [Google Scholar] [CrossRef]
- Uthaman, A.; Xian, G.; Thomas, S.; Wang, Y.; Zheng, Q.; Liu, X. Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions. Polymers 2020, 12, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uthaman, A.; Lal, H.M.; Li, C.; Xian, G.; Thomas, S. Mechanical and water uptake properties of epoxy nanocomposites with surfactant-modified functionalized multiwalled carbon nanotubes. Nanomaterials 2021, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Herceg, T.M.; Yoon, S.H.; Abidin, M.S.Z.; Greenhalgh, E.S.; Bismarck, A.; Shaffer, M.S.P. Thermosetting nanocomposites with high carbon nanotube loadings processed by a scalable powder based method. Compos. Sci. Technol. 2016, 127, 62–70. [Google Scholar] [CrossRef]
- Lopes, M.C.; de Castro, V.G.; Seara, L.M.; Diniz, V.P.A.; Lavall, R.L.; Silva, G.G. Thermosetting polyurethane-multiwalled carbon nanotube composites: Thermomechanical properties and nanoindentation. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Zahid, S.; Nasir, M.A.; Nauman, S.; Karahan, M.; Nawab, Y.; Ali, H.M.; Khalid, Y.; Nabeel, M.; Ullah, M. Experimental analysis of ILSS of glass fibre reinforced thermoplastic and thermoset textile composites enhanced with multiwalled carbon nanotubes. J. Mech. Sci. Technol. 2019, 33, 197–204. [Google Scholar] [CrossRef]
- Yazik, M.H.M.; Sultan, M.T.H.; Mazlan, N.; Talib, A.R.A.; Naveen, J.; Shah, A.U.M.; Safri, S.N.A. Effect of hybrid multi-walled carbon nanotube and montmorillonite nanoclay content on mechanical properties of shape memory epoxy nanocomposite. J. Mater. Res. Technol. 2020, 9, 6085–6100. [Google Scholar] [CrossRef]
- Islam, I.; Sultana, S.; Kumer Ray, S.; Parvin Nur, H.; Hossain, M. Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C J. Carbon Res. 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Peng, S.-P.; Bao, R.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure. Compos. Part B Eng. 2016, 99, 348–357. [Google Scholar] [CrossRef]
- Naik, P.; Pradhan, S.; Sahoo, P.; Acharya, S.K. Effect of filler loading on mechanical properties of natural carbon black reinforced polymer composites. Mater. Today Proc. 2020, 26, 1892–1896. [Google Scholar] [CrossRef]
- Ojha, S.; Acharya, S.K.; Raghavendra, G. Mechanical properties of natural carbon black reinforced polymer composites. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Alam, M.K.; Islam, M.T.; Mina, M.F.; Gafur, M.A. Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. J. Appl. Polym. Sci. 2014, 131, 13. [Google Scholar] [CrossRef]
- Jovanović, V.; Samaržija-Jovanović, S.; Budinski-Simendić, J.; Marković, G.; Marinović-Cincović, M. Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos. Part B Eng. 2013, 45, 333–340. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Lu, L.; Huang, X. Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Compos. Part A Appl. Sci. Manuf. 2015, 79, 164–175. [Google Scholar] [CrossRef]
- Wang, H.; Xie, G.; Fang, M.; Ying, Z.; Tong, Y.; Zeng, Y. Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Compos. Part B Eng. 2015, 79, 444–450. [Google Scholar] [CrossRef]
- Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S. Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon N. Y. 2011, 49, 198–205. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Weng, W.; Yan, W. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J. Appl. Polym. Sci. 2001, 82, 2506–2513. [Google Scholar] [CrossRef]
- Du, X.S.; Xiao, M.; Meng, Y.Z.; Hay, A.S. Synthesis and properties of poly (4,4′-oxybis (benzene) disulfide)/graphite nanocomposites via in situ ring-opening polymerization of macrocyclic oligomers. Polymer 2004, 45, 6713–6718. [Google Scholar] [CrossRef]
- Wen-Ping, W.; Cai-Yuan, P. Preparation and characterization of poly (methyl methacrylate)-intercalated graphite oxide/poly (methyl methacrylate) nanocomposite. Polym. Eng. Sci. 2004, 44, 2335–2339. [Google Scholar] [CrossRef]
- Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 2009, 19, 7098–7105. [Google Scholar] [CrossRef]
- Yasmin, A.; Daniel, I.M. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 2004, 45, 8211–8219. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Abdullah, L.C.; Aung, M.M.; Ratnam, C.T. Mechanical and physical properties of Kenaf-reinforced Poly(lactic acid) plasticized with epoxidized Jatropha Oil. BioResources 2019, 14, 9001–9020. [Google Scholar]
- Chandrasekar, M.; Kumar, T.S.M.; Senthilkumar, K.; Nurazzi, N.M.; Sanjay, M.R.; Rajini, N.; Siengchin, S. Inorganic Nanofillers-Based Thermoplastic and Thermosetting Composites. In Lightweight Polymer Composite Structures; Taylor & Francis: Oxfordshire, UK, 2020. [Google Scholar]
- Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng. A 2007, 452–453. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Abdul Kudus, M.H.; Md Akil, H.; Thirmizir, M.Z.M.; Abdul Malik, M.F.I.; Othman, M.B.H.; Ullah, F.; Javed, F. Comparative study of single-layer graphene and single-walled carbon nanotube-filled epoxy nanocomposites based on mechanical and thermal properties. Polym. Compos. 2019, 40. [Google Scholar] [CrossRef]
- Caseri, W.R. Nanocomposites of polymers and inorganic particles: Preparation, structure and properties. Mater. Sci. Technol. 2006, 22, 807–817. [Google Scholar] [CrossRef]
- Sapiai, N.; Jumahat, A.; Mahmud, J. Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites. Mater. Res. Express 2018, 5, 045034. [Google Scholar] [CrossRef]
- Kushwaha, P.K.; Pandey, C.N.; Kumar, R. Study on the effect of carbon nanotubes on plastic composite reinforced with natural fiber. J. Indian Acad. Wood Sci. 2014, 11, 82–86. [Google Scholar] [CrossRef]
- Aryasomayajula, L.; Wolter, K.J. Carbon nanotube composites for electronic packaging applications: A review. J. Nanotechnol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Randjbaran, E.; Majid, D.L.; Zahari, R.; Sultan, M.T.H.; Mazlan, N. Effects of volume of carbon nanotubes on the angled ballistic impact for carbon kevlar hybrid fabrics. Facta Univ. Ser. Mech. Eng. 2020, 18, 229–244. [Google Scholar] [CrossRef]
- Randjbaran, E.; Majid, D.L.; Zahari, R.; Sultan, M.T.H.; Mazlan, N. Impacts of Volume of Carbon Nanotubes on Bending for Carbon-Kevlar Hybrid Fabrics. J. Appl. Comput. Mech. 2021, 7, 839–848. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Fatimah Athiyah, S.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, M.S.; Norizan, M.N.; Norrrahim, M.N.F.; Ibrahim, R.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi, A.M.; Izwan, S.; Azammi, A.M.N.; et al. Macro to nanoscale natural fiber composites for automotive components: Research, development, and application. In Biocomposite and Synthetic Composites for Automotive Applications; Sapuan, M.S., Ilyas, R.A., Eds.; Woodhead Publishing Series: Amsterdam, Netherland, 2020. [Google Scholar]
- Benzait, Z.; Trabzon, L. A review of recent research on materials used in polymer–matrix composites for body armor application. J. Compos. Mater. 2018, 52, 3241–3263. [Google Scholar] [CrossRef]
- Hanif, W.Y.W.; Risby, M.S.; Noor, M.M. Influence of Carbon Nanotube Inclusion on the Fracture Toughness and Ballistic Resistance of Twaron/Epoxy Composite Panels. Procedia Eng. 2015, 114, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Mylvaganam, K.; Zhang, L.C. Ballistic resistance capacity of carbon nanotubes. Nanotechnology 2007, 18, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Elliott, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 2007, 39, 315–323. [Google Scholar] [CrossRef]
- Zhang, C.L.; Shen, H.S. Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Appl. Phys. Lett. 2006, 89. [Google Scholar] [CrossRef]
- Chang, T. A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Solids 2010, 58, 1422–1433. [Google Scholar] [CrossRef]
- Ni, Z.; Bu, H.; Zou, M.; Yi, H.; Bi, K.; Chen, Y. Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter 2010, 405, 1301–1306. [Google Scholar] [CrossRef]
- Shen, L.; Shen, H.S.; Zhang, C.L. Temperature-dependent elastic properties of single layer graphene sheets. Mater. Des. 2010, 31, 4445–4449. [Google Scholar] [CrossRef]
- Fan, Y.; Xiang, Y.; Shen, H.S. Temperature-dependent negative Poisson’s ratio of monolayer graphene: Prediction from molecular dynamics simulations. Nanotechnol. Rev. 2019, 8, 415–421. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y.; Shen, H.S. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—A molecular dynamics simulation. Compos. Part B Eng. 2017, 111, 261–269. [Google Scholar] [CrossRef]
- Huang, B. Carbon nanotubes and their polymeric composites: The applications in tissue engineering. Biomanufacturing Rev. 2020, 5. [Google Scholar] [CrossRef]
- Tanaka, M.; Sato, Y.; Haniu, H.; Nomura, H.; Kobayashi, S.; Takanashi, S.; Okamoto, M.; Takizawa, T.; Aoki, K.; Usui, Y.; et al. A three-dimensional block structure consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon nanotubes: Smart drug/gene delivery carriers. Int. J. Nanomed. 2021, 16, 1681–1706. [Google Scholar] [CrossRef]
- Mittal, M.; Kumar, A. Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sens. Actuators B Chem. 2014, 203, 349–362. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G.; Rossi, R.; Alvisi, M.; Rizzo, A.; Signore, M.A.; Dikonimos, T.; Serra, E.; Giorgi, R. Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters. Appl. Phys. Lett. 2007, 90, 173123. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Chen, Y.; Yang, M. A multi-walled carbon nanotube/palladium nanocomposite prepared by a facile method for the detection of methane at room temperature. Sens. Actuators B Chem. 2008, 132, 155–158. [Google Scholar] [CrossRef]
- Penza, M.; Rossi, R.; Alvisi, M.; Cassano, G.; Signore, M.A.; Serra, E.; Giorgi, R. Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sens. Actuators B Chem. 2008, 135, 289–297. [Google Scholar] [CrossRef]
- Zanolli, Z.; Leghrib, R.; Felten, A.; Pireaux, J.-J.; Llobet, E.; Charlier, J.-C. Gas Sensing with Au-Decorated Carbon Nanotubes. ACS Nano 2011, 5, 4592–4599. [Google Scholar] [CrossRef]
- Sinha, M.; Neogi, S.; Mahapatra, R.; Krishnamurthy, S.; Ghosh, R. Material dependent and temperature driven adsorption switching (p- to n- type) using CNT/ZnO composite-based chemiresistive methanol gas sensor. Sens. Actuators B Chem. 2021, 336, 129729. [Google Scholar] [CrossRef]
- Lim, H.-R.; Lee, Y.; Jones, K.A.; Kwon, Y.-T.; Kwon, S.; Mahmood, M.; Lee, S.M.; Yeo, W.-H. All-in-one, wireless, fully flexible sodium sensor system with integrated Au/CNT/Au nanocomposites. Sens. Actuators B Chem. 2021, 331, 129416. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Lett. 2003, 3, 929–933. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Gu, M.; Wang, M.; Zhang, Z.; Pan, W.; Jiang, Z.; Zheng, H.; Lucero, M.; Wang, H.; et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692. [Google Scholar] [CrossRef]
- Ahmad, Z.; Manzoor, S.; Talib, M.; Islam, S.S.; Mishra, P. Self-standing MWCNTs based gas sensor for detection of environmental limit of CO2. Mater. Sci. Eng. B 2020, 255, 114528. [Google Scholar] [CrossRef]
- Peng, S.; Cho, K. Ab Initio Study of Doped Carbon Nanotube Sensors. Nano Lett. 2003, 3, 513–517. [Google Scholar] [CrossRef]
- Peng, S.; Cho, K. Chemical control of nanotube electronics. Nanotechnology 2000, 11, 57–60. [Google Scholar] [CrossRef]
- Santucci, S.; Picozzi, S.; Di Gregorio, F.; Lozzi, L.; Cantalini, C.; Valentini, L.; Kenny, J.M.; Delley, B. NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory. J. Chem. Phys. 2003, 119, 10904–10910. [Google Scholar] [CrossRef]
- Matranga, C.; Bockrath, B. Hydrogen-Bonded and Physisorbed CO in Single-Walled Carbon Nanotube Bundles. J. Phys. Chem. B 2005, 109, 4853–4864. [Google Scholar] [CrossRef]
- Yao, F.; Duong, D.L.; Lim, S.C.; Yang, S.B.; Hwang, H.R.; Yu, W.J.; Lee, I.H.; Güneş, F.; Lee, Y.H. Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes. J. Mater. Chem. 2011, 21, 4502. [Google Scholar] [CrossRef]
- Ingle, N.; Mane, S.; Sayyad, P.; Bodkhe, G.; AL-Gahouari, T.; Mahadik, M.; Shirsat, S.; Shirsat, M.D. Sulfur Dioxide (SO2) Detection Using Composite of Nickel Benzene Carboxylic (Ni3BTC2) and OH-Functionalized Single Walled Carbon Nanotubes (OH-SWNTs). Front. Mater. 2020, 7. [Google Scholar] [CrossRef]
- Ingle, N.; Sayyad, P.; Deshmukh, M.; Bodkhe, G.; Mahadik, M.; Al-Gahouari, T.; Shirsat, S.; Shirsat, M.D. A chemiresistive gas sensor for sensitive detection of SO2 employing Ni-MOF modified –OH-SWNTs and –OH-MWNTs. Appl. Phys. A 2021, 127, 157. [Google Scholar] [CrossRef]
- Kuganathan, N.; Chroneos, A. Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. Chemosensors 2021, 9, 120. [Google Scholar] [CrossRef]
- Song, H.; Li, Q.; Zhang, Y. CNT-based sensor array for selective and steady detection of SO2 and NO. Mater. Res. Bull. 2020, 124, 110772. [Google Scholar] [CrossRef]
- Su, P.-G.; Zheng, Y.-L. Room-temperature ppb-level SO2 gas sensors based on RGO/WO 3 and MWCNTs/WO 3 nanocomposites. Anal. Methods 2021, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Li, F.; Chen, G.; Xiao, S.; Wang, L.; Wang, Q. A study on the adsorptions of SO2 on pristine and phosphorus-doped silicon carbide nanotubes as potential gas sensors. Ceram. Int. 2020, 46, 25171–25188. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Saputro, A.G.; Kaneti, Y.V.; Maulana, A.L.; Fathurrahman, F.; Lim, H.; Yuliarto, B.; Nugraha; Dipojono, H.K.; Golberg, D.; et al. Hollow Zinc Oxide Microsphere–Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide. ACS Appl. Nano Mater. 2020, 3, 8982–8996. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Md Akil, H.; Abdul Kudus, M.H.; Ullah, F.; Javed, F.; Nosbi, N. Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review. Compos. Part B Eng. 2019, 176, 107313. [Google Scholar] [CrossRef]
- Jin, F.-L.; Park, S.-J. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess. Carbon Lett. 2011, 12, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Goldoni, A.; Larciprete, R.; Petaccia, L.; Lizzit, S. Single-Wall Carbon Nanotube Interaction with Gases: Sample Contaminants and Environmental Monitoring. J. Am. Chem. Soc. 2003, 125, 11329–11333. [Google Scholar] [CrossRef]
- Chang, H.; Do Lee, J.; Lee, S.M.; Lee, Y.H. Adsorption of NH3 and NO2 molecules on carbon nanotubes. Appl. Phys. Lett. 2001, 79, 3863–3865. [Google Scholar] [CrossRef]
- Yim, W.-L.; Gong, X.G.; Liu, Z.-F. Chemisorption of NO2 on Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 9363–9369. [Google Scholar] [CrossRef]
- Zhang, Y.; Suc, C.; Liu, Z.; Li, J. Carbon Nanotubes Functionalized by NO2: Coexistence of Charge Transfer and Radical Transfer. J. Phys. Chem. B 2006, 110, 22462–22470. [Google Scholar] [CrossRef]
- Ricca, A.; Bauschlicher, C.W. The adsorption of NO2 on (9,0) and (10,0) carbon nanotubes. Chem. Phys. 2006, 323, 511–518. [Google Scholar] [CrossRef]
- Peng, S.; Cho, K.; Qi, P.; Dai, H. Ab initio study of CNT NO2 gas sensor. Chem. Phys. Lett. 2004, 387, 271–276. [Google Scholar] [CrossRef]
- Mercuri, F.; Sgamellotti, A.; Valentini, L.; Armentano, I.; Kenny, J.M. Vacancy-Induced Chemisorption of NO2 on Carbon Nanotubes: A Combined Theoretical and Experimental Study. J. Phys. Chem. B 2005, 109, 13175–13179. [Google Scholar] [CrossRef] [PubMed]
- Goldoni, A.; Petaccia, L.; Gregoratti, L.; Kaulich, B.; Barinov, A.; Lizzit, S.; Laurita, A.; Sangaletti, L.; Larciprete, R. Spectroscopic characterization of contaminants and interaction with gases in single-walled carbon nanotubes. Carbon N. Y. 2004, 42, 2099–2112. [Google Scholar] [CrossRef]
- Mäklin, J.; Mustonen, T.; Kordás, K.; Saukko, S.; Tóth, G.; Vähäkangas, J. Nitric oxide gas sensors with functionalized carbon nanotubes. Phys. Status Solidi 2007, 244, 4298–4302. [Google Scholar] [CrossRef]
- Ueda, T.; Norimatsu, H.; Bhuiyan, M.M.H.; Ikegami, T.; Ebihara, K. NO Sensing Property of Carbon Nanotube Based Thin Film Gas Sensors Prepared by Chemical Vapor Deposition Techniques. Jpn. J. Appl. Phys. 2006, 45, 8393–8397. [Google Scholar] [CrossRef]
- Kazemi, N.; Hashemi, B.; Mirzaei, A. Promotional effect of nitric acid treatment on CO sensing properties of SnO2/MWCNT nanocomposites. Processing and Application of. Ceramics 2016, 10, 97–105. [Google Scholar]
- Mohd Nurazzi, N.; Khalina, A.; Sapuan, S.M.; Dayang Laila, A.H.A.M.; Rahmah, M.; Hanafee, Z. A review: Fibres, polymer matrices and composites. Pertanika J. Sci. Technol. 2017, 25, 1085–1102. [Google Scholar]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Ilyas, R.A.; Khalina, A.; Nurazzi, N.M.; Lee, S.H.; Lee, C.H. A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers 2021, 13, 471. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Yasim-Anuar, T.A.T.; Jenol, M.A.; Mohd Nurazzi, N.; Ilyas, R.A.; Sapuan, S. Performance Evaluation of Cellulose Nanofiber Reinforced Polypropylene Biocomposites for Automotive Applications. In Biocomposite and Synthetic Composites for Automotive Applications; Woodhead Publishing Series: Amsterdam, The Netherlands, 2020; pp. 119–215. [Google Scholar]
- Lee, C.H.; Khalina, A.; Nurazzi, N.M.; Norli, A.; Harussani, M.M.; Rafiqah, S.; Aisyah, H.A.; Ramli, N. The Challenges and Future Perspective of Woven Kenaf Reinforcement in Thermoset Polymer Composites in Malaysia: A Review. Polymers 2021, 13, 1390. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Boom, R.; Irion, B.; van Heerden, D.J.; Kuiper, P.; de Wit, H. Recycling of composite materials. Chem. Eng. Process. Process Intensif. 2012, 51. [Google Scholar] [CrossRef]
- Subadra, S.P.; Yousef, S.; Griskevicius, P.; Makarevicius, V. High-performance fiberglass/epoxy reinforced by functionalized CNTs for vehicle applications with less fuel consumption and greenhouse gas emissions. Polym. Test. 2020, 86, 106480. [Google Scholar] [CrossRef]
- Zhu, S.; Sheng, J.; Chen, Y.; Ni, J.; Li, Y. Carbon nanotubes for flexible batteries: Recent progress and future perspective. Natl. Sci. Rev. 2021, 8. [Google Scholar] [CrossRef]
- Andrews, J.B.; Cardenas, J.A.; Lim, C.J.; Noyce, S.G.; Mullett, J.; Franklin, A.D. Fully printed and flexible carbon nanotube transistors for pressure sensing in automobile tires. IEEE Sens. J. 2018, 18, 7875–7880. [Google Scholar] [CrossRef]
- Shao, H.Q.; Wei, H.; He, J.H. Dynamic properties and tire performances of composites filled with carbon nanotubes. Rubber Chem. Technol. 2018, 91, 609–620. [Google Scholar] [CrossRef]
- Bhat, A.; Budholiya, S.; Raj, S.A.; Sultan, M.T.H.; Hui, D.; Shah, A.U.M.; Safri, S.N.A. Review on nanocomposites based on aerospace applications. Nanotechnol. Rev. 2021, 10, 237–253. [Google Scholar] [CrossRef]
- Liang, F.; Tang, Y.; Gou, J.; Gu, H.C.; Song, G. Multifunctional nanocomposites with high damping performance for aerospace structures. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, USA, 13–19 November 2009; Volume 43840, pp. 267–273. [Google Scholar]
- Venkatesan, M.; Palanikumar, K.; Boopathy, S.R. Experimental investigation and analysis on the wear properties of glass fiber and CNT reinforced hybrid polymer composites. Sci. Eng. Compos. Mater. 2018, 25, 963–974. [Google Scholar] [CrossRef]
- Kwon, H.; Bradbury, C.R.; Leparoux, M. Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv. Eng. Mater. 2011, 13, 325–329. [Google Scholar] [CrossRef]
- Laurenzi, S.; de Zanet, G.; Santonicola, M.G. Numerical investigation of radiation shielding properties of polyethylene-based nanocomposite materials in different space environments. Acta Astronaut. 2020, 170, 530–538. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Nambiar, S.; Sun, Y.; Zhang, M.; Zheng, W.; Yeow, J.T. PMMA/MWCNT nanocomposite for proton radiation shielding applications. Nanotechnology 2016, 27, 234001. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon N. Y. 2009, 47, 1738–1746. [Google Scholar] [CrossRef]
- Francis, A.P.; Devasena, T. Toxicity of carbon nanotubes: A review. Toxicol. Ind. Health 2018, 34, 200–210. [Google Scholar] [CrossRef]
- Donaldson, K.; Poland, C.A.; Murphy, F.A.; MacFarlane, M.; Chernova, T.; Schinwald, A. Pulmonary toxicity of carbon nanotubes and asbestos—similarities and differences. Adv. Drug Deliv. Rev. 2013, 65, 2078–2086. [Google Scholar] [CrossRef] [PubMed]
- Mercer, R.R.; Hubbs, A.F.; Scabilloni, J.F.; Wang, L.; Battelli, L.A.; Friend, S.; Castranova, V.; Porter, D.W. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part. Fibre Toxicol. 2011, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Ma, Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology 2015, 9, 658–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, S.P.; Baptista, J.S.; Ribeiro, M. Polymer nano and submicro composites risk assessment. Int. J. Work. Cond. 2014, 7, 103–119. [Google Scholar]
- National Institute for Occupational Safety and Health DHHS (NIOSH). Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers; National Institute for Occupational Safety and Health DHHS: Cincinnati, OH, USA, 2013. [Google Scholar]
- Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Lim, H.T.; Minai-Tehrani, A.; Kwon, J.T.; Shin, J.Y.; Woo, C.G.; Choi, M.; Baek, J.; Jeong, D.H.; Ha, Y.C.; et al. Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J. Toxicol. Environ. Heal. Part A 2010, 73, 1530–1543. [Google Scholar] [CrossRef]
- Heister, E.; Brunner, E.W.; Dieckmann, G.R.; Jurewicz, I.; Dalton, A.B. Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 2013, 5, 1870–1891. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Poland, C.; Bonner, J.; Duffin, R. The Toxicology of Carbon Nanotubes; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Dazon, C.; Witschger, O.; Bau, S.; Fierro, V.; Llewellyn, P.L. Toward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterion. Nanoscale Adv. 2019, 1, 3232–3242. [Google Scholar] [CrossRef] [Green Version]
- Carrero-Sanchez, J.C.; Elias, A.L.; Mancilla, R.; Arrellin, G.; Terrones, H.; Laclette, J.P.; Terrones, M.J.N.L. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 2006, 6, 1609–1616. [Google Scholar] [CrossRef]
- Taylor, A.J.; McClure, C.D.; Shipkowski, K.A.; Thompson, E.A.; Hussain, S.; Garantziotis, S.; Parsons, G.N.; Bonner, J.C. Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS ONE 2014, 9, e106870. [Google Scholar] [CrossRef] [Green Version]
- Bottini, M.; Bruckner, S.; Nika, K.; Bottini, N.; Bellucci, S.; Magrini, A.; Bergamaschi, A.; Mustelin, T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 2006, 160, 121–126. [Google Scholar] [CrossRef]
- Bianco, A.; Kostarelos, K.; Partidos, C.D.; Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 2005, 5, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.T.; Wang, X.; Jia, G.; Gu, Y.; Wang, T.; Nie, H.; Ge, C.; Wang, H.; Liu, Y. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 2008, 181, 182–189. [Google Scholar] [CrossRef]
- Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 2004, 116, 5354–5358. [Google Scholar] [CrossRef]
- Wick, P.; Manser, P.; Limbach, L.K.; Dettlaff-Weglikowska, U.; Krumeich, F.; Roth, S.; Stark, W.J.; Bruinink, A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 2007, 168, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Moore, J.M.; Huang, G.; Mount, A.S.; Rao, A.M.; Larcom, L.L.; Ke, P.C. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 2004, 4, 2473–2477. [Google Scholar] [CrossRef]
- Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J.P.; Prato, M.; Muller, S.; Bianco, A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006, 6, 1522–1528. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Deng, X.; Sun, H.; Shi, Z.; Gu, Z.; Liu, Y.; Zhaoc, Y. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 2004, 4, 1019–1024. [Google Scholar] [CrossRef]
- Kam, N.W.S.; Liu, Z.; Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 2006, 45, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Yehia, H.N.; Draper, R.K.; Mikoryak, C.; Walker, E.K.; Bajaj, P.; Musselman, I.H.; Daigrepont, M.C.; Dieckmann, G.R.; Pantano, P. Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 2007, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Tian, F.; Ozkan, C.S.; Wang, M.; Gao, H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 2005, 155, 73–85. [Google Scholar] [CrossRef]
- Patlolla, A.K.; Berry, A.; Tchounwou, P.B. Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol. Cell. Biochem. 2011, 358. [Google Scholar] [CrossRef] [Green Version]
Year | CNTs | Matrix | Fabrication Method | Ref. |
---|---|---|---|---|
1998 | MWCNTs | Epoxy | Solution casting–curing | [7] |
1999 | CNTs | PVA | Solution casting | [8] |
2002 | MWCNTs | Epoxy | CVD–injection molding | [9] |
2002 | MWCNTs | PS | Spin-casting | [10] |
2003 | SWCNTs | Alumina | Spark-plasma sintering | [11] |
2003 | MWCNTs | Epoxy | Solution-casting | [12] |
2004 | MWCNTs | P(MMA-co-EMA) | Solution-mixing | [13] |
2004 | MWCNTs | Nylon 6 | Melt compounding | [14] |
2005 | MWCNTs | PA | In situ polymerization | [15] |
2006 | MWCNT–NH2 | Nylon 6 | Solution-casting–melt compounding | [16] |
2007 | MWCNTs | Aluminium | Isostatic pressing–hot extrusion techniques | [17] |
2007 | SWCNTs | PVC | Film casting | [18] |
2007 | MWCNTs | PVC | Film casting | [18] |
2008 | MWCNTs | PMMA | CVD–solvent casting | [19] |
2008 | MWCNTs | PS | CVD– solvent casting | [19] |
2010 | MWCNTs | Epoxy | Ultrasonication technique–sputtering | [20] |
2010 | DWCNTs | Magnesia | In situ polymerization–spark-plasma-sintering | [21] |
2010 | MWCNTs | PP | Melt mixing–in situ polymerization | [22] |
2011 | MWCNTs | Epoxy | Chemical functionalization–cast molding | [3] |
2013 | Dense-CNTs | PP | CVD | [23] |
2014 | MWCNTs | PVC | Film casting | [24] |
2015 | Amino-MWCNTs | Epoxy | Direct stirring–resin infusion molding | [25] |
2015 | MWCNTs | HDPE | Melt-mixing–compression molding | [26] |
2016 | SWCNTs | Chitosan | Solution-casting | [27] |
2016 | CNTs | Epoxy | Press cured method | [28] |
2017 | MWCNTs | Epoxy | EPD | [29] |
2018 | MWCNTs | PMMA | Chemical functionalization–micro compounding–injection molding | [30] |
2019 | MWCNTs | Epoxy | Non-destructive synthesis technique | [31] |
2020 | MWCNTs | Epoxy | Solution-casting–hand lay-up–resin infusion | [32] |
2020 | MWCNTs | PVC | CVD–ultrasonic dispersion–extrusion | [33] |
2020 | MWCNTs | PVC | CVD–ultrasonic dispersion–extrusion | [33] |
2021 | MWCNTs | Epoxy | Resin castings (injection-molding) | [34] |
Reinforcement Materials | Young’s Modulus (TPa) | Tensile Strength (GPa) |
---|---|---|
SWCNTs | 0.65 to 5.5 | 126 |
MWCNTs | 0.2 to 1.0 | >63 |
Monolayer Graphene | 1.0 | 130 |
Stainless steel | 0.186 to 0.214 | 0.38 to 1.55 |
Kevlar | 0.06 to 0.18 | 3.6 to 3.8 |
Diamond | 1.22 | >60 |
Aluminium | 71 | 0.65 |
Glass fibres | 72 | 3 |
Carbon fibres | 300 | 3 |
Silicon carbide fibres | 450 | 10 |
Sugar palm fibre | 0.0049 | 0.00016 |
Kenaf fibre | 0.053 | 0.00025 |
Bamboo fibre | 0.0011 to 0.0017 | 0.00014 to 0.00023 |
Reinforcement Materials | Matrix | Mechanical Strength | Ref. | ||||
---|---|---|---|---|---|---|---|
Tensile Strength (MPa) | Flexural Strength (MPa) | Impact Strength (J/m) | Elastic Modulus (GPa) | Hardness (GPa) | |||
CB | PVC | 35 (−34%) | - | - | - | - | [85] |
CB | PP | 25 (−47%) | - | - | 0.25 (−23%) | - | [86] |
CB | PP | 60 (100%) | 68 (70%) | 56 (65%) | 4.2 (68%) | - | [87] |
CB | Epoxy | 58 (190%) | 90 (125%) | - | 2.6 (200%) | - | [88] |
CB | Unsaturated polyester | 40 (−14%) | 72 (−25%) | - | 1.3 (80%) | 0.17 (17%) | [89] |
CB | NBR/EPDM | 16.7 | - | - | - | - | [90] |
Carbon fabric | Epoxy | 580 | - | - | 67.5 | - | [91] |
MLG | PVC | 19 (17%) | - | - | 6 (1%) | - | [92] |
Graphene | PVC | 55 (130%) | - | - | 2 (58%) | - | [93] |
Graphite | PS | 29 (16%) | 21 (−28%) | [94] | |||
Graphite | POBDS | NA | 42.5 (0%) | - | - | - | [95] |
Graphene oxide | PMMA | 180 (−18%) | - | - | 8 (−33%) | - | [96] |
Graphene sheets | PS | 40 (60%) | - | - | 2.25 (50%) | - | [97] |
Graphite | Epoxy | 41 (21%) | - | - | 3.3 (10%) | - | [98] |
Graphene | PVC | 140 (8%) | - | - | 5.3 (10%) | - | [24] |
MWCNTs | PVC | NA | - | - | NA | - | [24] |
MWCNTs | Epoxy | - | 105 (110%) | - | - | - | [20] |
MWCNTs | Epoxy | 52.4 | - | - | 3.23 | - | [3] |
MWCNTs | Epoxy | 85.6 (13%) | 121.6 (0.7%) | 23.4 (60%) | 2.9 (10%) | - | [34] |
MWCNTs | Epoxy | 720 (16%)) | - | - | 54 (4%) | - | [31] |
CNTs | Epoxy | - | - | - | 9 (−18%) | - | [28] |
NBCNTs | PVC | 29.5 (−5%) | - | - | 0.35 (0%) | - | [33] |
MWCNTs | PVC | 28 (−9%) | - | - | 0.3 (−14%) | - | [33] |
MWCNTs | P(MMA-co-EMA) | 74 (57%) | - | - | 2.3 (130%) | - | [13] |
MWCNTs | PMMA | 25 (0%) | - | - | 2 (33%) | - | [19] |
MWCNTs | PS | 16 (0%) | - | - | 1.5 (36%) | - | [19] |
MWCNTs | PS | 30.6 (36%) | 3.4 (122%) | [10] | |||
CNTs | PP | 24 (71%) | 34 (35%) | 155 (34%) | - | - | [23] |
CNTs | Epoxy | 1300 (24%) | 1078 (10%) | - | - | - | [29] |
Amino-CNTs | Epoxy | 370 (37%) | 225 (80%) | - | 8 (33.3%) | - | [25] |
MWCNTs | Epoxy | 535.4 (4%) | - | - | - | - | [32] |
MWCNTs | HDPE | - | - | - | 4.7 (47%) | 0.1 (15%) | [26] |
MWCNTs | PP | 35 (25%) | - | 4 (54%) | 0.8 (23%) | - | [22] |
MWCNTs | PA | 65.9 (8.2%) | - | - | - | - | [15] |
MWCNTs | PMMA | 60 (20%) | 1.3 (−36%) | - | - | [30] | |
DWCNTs | Magnesia | - | - | - | - | 12.2 | [21] |
CNTs | Epoxy | - | - | - | 3.7 (19%) | - | [7] |
MWCNTs | Epoxy | 6 (500%) | - | - | 0.5 (290%) | - | [9] |
MWCNTs | Nylon 6 | 40.3 (124%) | - | - | 0.9 (115%) | - | [14] |
MWCNTs | Nylon 6 | 59.3 (70%) | - | - | 3.6 (90%) | 100 (67%) | [16] |
SWCNTs | Alumina | - | - | - | - | 16.1 (−21%) | [11] |
SWCNTs | Chitosan | - | - | - | 8 (25%) | - | [27] |
CNTs | Aluminium | 520 (33%) | 103 (41%) | 1.3 (30%) | [17] |
Category | Benchmark Exposure Level |
---|---|
Fibrous, a high aspect ratio insoluble nanomaterial | 0.01 fibres/mL |
Any nanomaterial that is already classified in its molecular or in its larger particle form a as carcinogenic, mutagenic, reproductive, and sensitizing (CMRS) toxin | 0.1 × OEL |
Insoluble or poorly soluble nanomaterials not in the fibrous or CMRS categories | 0.066 × OEL |
Soluble nanomaterials not in the fibrous or CMRS categories | 0.5 × OEL |
Types of CNTs | Concentration | Biological System | Toxicity | Ref. |
---|---|---|---|---|
Plasmid DNA-SWCNTs and Plasmid DNA-MWCNTs | 10 mg/mL | f-CNTs: HeLa cell lines in vitro | 50% survival of HeLa cells | [193] |
Pristine SWCNTs | 7.5 μg/mL water | SWCNT: Mesothelioma cell line MSTO-211H in vitro | 10% decrease in cell proliferation and activity | [194] |
RNA-polymer SWCNTs conjugate | 1 mg/mL | MCF-7 breast cancer cells in vitro | No significant cell damage | [195] |
Pristine MWCNTs | 40 μg/mL | Human T lymphocytes in vitro | No toxicity on human T lymphocytes | [189] |
Ammonium chloride-SWCNTs, and poly(ethylene glycol)-SWCNTs | 10 μg/mL water | Macrophages, B and T lymphocytes from BALB/c mice spleen and lymph nodes in vitro | 5% decrease in viability of B lymphocytes, but no adverse effects on T lymphocytes and macrophages | [196] |
125I-SWCNT-OH | 1.5 μg/mouse | Intraperitoneal, intravenous, subcutaneous, in male KM mice in vivo | Accumulate in bone, but good biocompatibility | [197] |
Streptavidin-SWCNT | 0.025 mg/mL | HL60 and Jurkat cells in vitro | No adverse effects | [198] |
SWCNTs dispersed in DMEM with 5% (vol/vol) fetal bovine serum | 100 μg/mL | Human epithelial-like HeLa cells in vitro | No effect on growth rate | [199] |
0.5 DMSO pristine SWCNTs | 25 μg/mL | Human embryo kidney (HEK 293) cells in vitro | G1 cell arrest and apoptosis | [200] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021, 11, 2186. https://doi.org/10.3390/nano11092186
Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, Aisyah HA, Norrrahim MNF, Ilyas RA, Abdullah N, et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials. 2021; 11(9):2186. https://doi.org/10.3390/nano11092186
Chicago/Turabian StyleNurazzi, N. M., F. A. Sabaruddin, M. M. Harussani, S. H. Kamarudin, M. Rayung, M. R. M. Asyraf, H. A. Aisyah, M. N. F. Norrrahim, R. A. Ilyas, N. Abdullah, and et al. 2021. "Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review" Nanomaterials 11, no. 9: 2186. https://doi.org/10.3390/nano11092186
APA StyleNurazzi, N. M., Sabaruddin, F. A., Harussani, M. M., Kamarudin, S. H., Rayung, M., Asyraf, M. R. M., Aisyah, H. A., Norrrahim, M. N. F., Ilyas, R. A., Abdullah, N., Zainudin, E. S., Sapuan, S. M., & Khalina, A. (2021). Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials, 11(9), 2186. https://doi.org/10.3390/nano11092186