Photoluminescence Gas Sensing by Fluorescein-Dye Anions/1-Butanesulfonate/Layered Double Hydroxide Hybrid Materials under Humid Environment Conditions
<p>Schematic illustration of custom-made in-situ photoluminescence measurement system under gas flow conditions.</p> "> Figure 2
<p>Photoluminescence spectra of layered double hydroxide (LDH)/anionic fluorescein dye (AFD)/1-butanesulfonate (C4S) hybrid powder under humid NH<sub>3</sub> gas flow condition (relative humidity (RH) = 60%, [NH<sub>3</sub>] = 5.33 ppm) at room temperature. Black and red lines are before and after NH<sub>3</sub> exposure for 5 min. Inset is dependence of photoluminescence intensity, at 525 nm, on exposure time.</p> "> Figure 3
<p>(<b>a</b>) Dependence of PL enhancement factor (<span class="html-italic">E</span><sub>RH</sub>) on RH, at room temperature. Dependence of <span class="html-italic">E</span><sub>NH3</sub> on [NH<sub>3</sub>], at various RH values (RH = 17 (<b>b</b>), 37 (<b>c</b>), 59 (<b>d</b>), and (<b>e</b>) 78%).</p> "> Figure 4
<p>Dependence on RH of (<b>a</b>) the [NH<sub>3</sub>] at which PL enhancement began to be observed ([NH<sub>3</sub>]<sup>threshold</sup>) and (<b>b</b>) saturated <span class="html-italic">E</span><sub>NH3</sub> (<sup>s</sup><span class="html-italic">E</span><sub>NH3</sub>).</p> "> Figure 5
<p>(<b>a</b>) Dependence of <span class="html-italic">E</span><sub>RH</sub> on RH, at room temperature. Dependence of <span class="html-italic">E</span><sub>NO2</sub> on [NO<sub>2</sub>], at various RH values (RH = 0.1 (<b>b</b>), 37 (<b>c</b>), 59 (<b>d</b>), and 78 (<b>e</b>)%).</p> "> Scheme 1
<p>Various chemical structures of AFD dyes ((<b>a</b>) lactone, (<b>b</b>) monoanion, and (<b>c</b>)dianion forms).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photoluminescence Gas-Sensing Measurement under Various Relative Humidity Environments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mousty, C. Sensors and biosensors based on clay-modified electrodes—New trends. Appl. Clay. Sci. 2004, 27, 159–177. [Google Scholar] [CrossRef]
- Okada, T.; Ide, Y.; Ogawa, M. Organic–inorganic hybrids based on ultrathin oxide layers: Designed nanostructures for molecular recognition. Chem. Asian J. 2012, 389, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Seki, Y.; Ogawa, M. Designed nanostructures of clay for controlled adsorption of organic compounds. J. Nanosci. Nanotechnol. 2014, 14, 2121–2134. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Ogawa, M. Inorganic–organic interactions. In Inorganic Nanosheets and Nanosheet-Based Materials; Nakato, T., Kawamata, J., Takagi, S., Eds.; Springer: Tokyo, Japan, 2017; pp. 163–186. [Google Scholar]
- Okada, T.; Ogawa, M. Adsorbents derived from layered solids. In Inorganic Nanosheets and Nanosheet-Based Materials; Nakato, T., Kawamata, J., Takagi, S., Eds.; Springer: Tokyo, Japan, 2017; pp. 263–302. [Google Scholar]
- Fujimura, T.; Sasai, R. Sensors. In Inorganic Nanosheets and Nanosheet-Based Materials; Nakato, T., Kawamata, J., Takagi, S., Eds.; Springer: Tokyo, Japan, 2017; pp. 303–314. [Google Scholar]
- Bujdák, J. Hybrids with functional dyes. In Inorganic Nanosheets and Nanosheet-Based Materials; Nakato, T., Kawamata, J., Takagi, S., Eds.; Springer: Tokyo, Japan, 2017; pp. 419–482. [Google Scholar]
- Doustkhah, E.; Ide, Y. Microporous layered silicates: Old but new microporous materials. New J. Chem. 2020, 44, 9957–9968. [Google Scholar] [CrossRef]
- Yan, Y.; Bein, T. Molecular recognition through intercalation chemistry: Immobilization of organoclays on piezoelectric devices. Chem. Mater. 1993, 5, 905–907. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, K.; Hieda, M.; Kato, T. Development of a novel manganese oxide—Clay humidity sensor. Ind. Eng. Chem. Res. 1997, 36, 88–91. [Google Scholar] [CrossRef]
- Khan, S.B.; Rahman, M.M.; Jang, E.S.; Akhtar, K.; Han, H. Special susceptive aqueous ammonia chemical sensor: Extended application of novel UV-curable Polyurethane-clay nanohybrid. Talanta 2011, 84, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, A.; Sato, H. Stereochemistry and molecular recognition on the surface of a smectite clay mineral. Clays Clay Miner. 2012, 60, 411–419. [Google Scholar] [CrossRef]
- Fujimura, T.; Shimada, T.; Sasai, R.; Takagi, S. Optical humidity sensing using transparent hybrid film composed of cationic magnesium porphyrin and clay mineral. Langmuir 2018, 34, 3572–3577. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; He, S.; We, M.; Evans, D.G.; Duan, X. Optical pH sensor with rapid response based on a fluorescein-intercalated layered double hydroxide. Adv. Funct. Mater. 2010, 20, 3856–3863. [Google Scholar] [CrossRef]
- Sasai, R.; Itoh, T.; Ohmori, W.; Itoh, H.; Kusunoki, M. Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield. J. Phys. Chem. C 2009, 113, 415–421. [Google Scholar] [CrossRef]
- Sasai, R. Molecular sensing ability of layered inorganic/luminous organic nano hybrid solid materials. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 082003. [Google Scholar] [CrossRef]
- Fujimura, T.; Aoyama, Y.; Sasai, R. Unique protonation behavior of cationic free-base porphyrins in the interlayer space of transparent solid films comprising layered-zirconium phosphate. Tetrahedron Lett. 2019, 160, 150912. [Google Scholar] [CrossRef]
- Sasai, R.; Miyanaga, H.; Morita, M. Preparation and characterization of highly photoluminescent hybrid solids from anionic fluorescein dye, surfactant, and layered double hydroxide. Clay Sci. 2013, 17, 35–40. [Google Scholar]
- Date, Y.; Kagawa, Y.; Sasai, R.; Kohno, K.; Hino, E.; Fujii, T.; Aoki, K.; Oda, K. Preparation and characterization of layered double hydroxide/anionic fluorescein dye hybrid thin solid films with luminous properties. Clay Sci. 2015, 19, 85–90. [Google Scholar]
- Sasai, R.; Morita, M. Luminous relative humidity sensing by anionic fluorescein dyes incorporated into layered double hydroxide/1-butanesulfonate hybrid materials. Sens. Actuators B Chem. 2015, 238, 702–705. [Google Scholar] [CrossRef] [Green Version]
- Date, Y.; Matsui, Y.; Kagawa, Y.; Hino, E.; Fujii, T.; Suzaki, M.; Aoki, K.; Sasai, R. Influence of gas adsorption on the luminous properties of layered double hydroxide/anionic fluorescein dye hybrid thin solid films. Bull. Chem. Soc. Jpn. 2017, 90, 148–153. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasai, R.; Yamamoto, S.; Naito, A. Photoluminescence Gas Sensing by Fluorescein-Dye Anions/1-Butanesulfonate/Layered Double Hydroxide Hybrid Materials under Humid Environment Conditions. Nanomaterials 2021, 11, 914. https://doi.org/10.3390/nano11040914
Sasai R, Yamamoto S, Naito A. Photoluminescence Gas Sensing by Fluorescein-Dye Anions/1-Butanesulfonate/Layered Double Hydroxide Hybrid Materials under Humid Environment Conditions. Nanomaterials. 2021; 11(4):914. https://doi.org/10.3390/nano11040914
Chicago/Turabian StyleSasai, Ryo, Satoshi Yamamoto, and Akane Naito. 2021. "Photoluminescence Gas Sensing by Fluorescein-Dye Anions/1-Butanesulfonate/Layered Double Hydroxide Hybrid Materials under Humid Environment Conditions" Nanomaterials 11, no. 4: 914. https://doi.org/10.3390/nano11040914
APA StyleSasai, R., Yamamoto, S., & Naito, A. (2021). Photoluminescence Gas Sensing by Fluorescein-Dye Anions/1-Butanesulfonate/Layered Double Hydroxide Hybrid Materials under Humid Environment Conditions. Nanomaterials, 11(4), 914. https://doi.org/10.3390/nano11040914