Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice
<p>(<b>A</b>) Schematic diagram of toxicity experiment in mice. (<b>B</b>,<b>C</b>) Weight changes of offspring mice of PDD18 and PDD46 after exposure to different doses of PS-NPs. Note: Compared with the control group, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01. Data were analyzed using one-way ANOVA and are expressed as mean ± SD (n = 10 for (<b>B</b>), and n = 5 for (<b>C</b>)).</p> "> Figure 2
<p>The effects of PS-NP exposure on the organs of the PDD18 (lactation period) offspring mice. (<b>A</b>–<b>D</b>) Changes in the main organ weights of the offspring mice at PDD18 after exposure to different doses of PS-NPs. Note: Compared with the control group, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01. (<b>E</b>–<b>H</b>) Changes in the main organ visceral body ratio in the offspring mice of PDD18 after exposure to different doses of PS-NPs. Note: Compared with the control group, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01. Data were analyzed using one-way ANOVA and expressed as mean ± SD (n = 10).</p> "> Figure 3
<p>(<b>A</b>–<b>C</b>) Effects of different doses of PS-NP exposure on bone development of right hind limbs in offspring mice at PDD18 and PDD46. Asterisks indicate statistically significant differences. (<b>D</b>–<b>F</b>) Effects of different doses of PS-NP exposure on bone development of right hind limbs in offspring mice at PDD46. Data were analyzed using one-way ANOVA and are expressed as mean ± SD (n = 6).</p> "> Figure 4
<p>(<b>A</b>–<b>D</b>) Changes in liver and brain weights and visceral body ratio of PDD46 offspring mice after exposure to PS-NPs at different doses. Note: Compared with the control group, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01. Data were analyzed using one-way ANOVA and are expressed as mean ± SD (n = 5).</p> "> Figure 5
<p>The intestinal damage observed in the offspring mice at different stages due to PS-NP exposure. (<b>A</b>,<b>B</b>) Histological examination of offspring mice intestinal tissues with H&E staining after exposure to different doses of PS-NPs. (<b>A</b>,<b>B</b>) PDD18 and PDD46, respectively. (<b>C</b>,<b>D</b>) The villus and crypt depths of the intestines in the PDD46 offspring mice. (<b>E</b>,<b>F</b>) Effects of different doses of PS-NPs on intestinal SOD and total GSH in offspring mice at PDD46 (n = 5). Note: Compared with the control group, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 6
<p>The intestinal damage observed in the offspring mice at different stages due to PS-NP exposure. (<b>A</b>–<b>C</b>) Effects of different doses of PS-NP exposure on intestinal tight junction protein ZO-1 and nuclear proliferation antigen PCNA in offspring mice of PDD46. (<b>D</b>–<b>F</b>) Immunohistochemistry of intestinal ZO-1 and PCNA in offspring mice at PDD46 after exposure to different doses of PS-NPs. Note: Compared with the control group, ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Characterization of PS-NPs
2.2. Animals and Treatment
2.3. Histological Analysis
2.4. X-Ray Analysis of the Tibias and Femurs in the Offspring Mice
2.5. Preparation of Frozen Sections
2.6. Immunohistochemistry
2.7. Western Blotting
2.8. Measurement of Oxidative Stress Markers in Intestinal Tissue
2.9. Serum Biochemical Parameter Analysis
2.10. Statistical Analysis
3. Results
3.1. Characterization of PS-NPs
3.2. Impact of PS-NPs on Body Weight Gain in Offspring Mice
3.3. Impact of PS-NPs on Organ and Skeletal Development in PDD18 Offspring Mice
3.4. Impact of PS-NPs on Organ Development in PDD46 Offspring Mice
3.5. Impact of PS-NPs on Intestinal Damage in Offspring Mice at Various Developmental Stages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PS-NPs | Polystyrene nanoplastics |
MPs | Microplastics |
NPs | Nanoplastics |
GABA | Gamma-aminobutyric acid |
DLS | Dynamic light scattering |
FTIR | Fourier transform infrared spectroscopy |
OCT | Optimal cutting temperature compound |
DAPI | 4′,6-diamidino-2′-phenylindole |
DAB | Diaminobenzidine |
RIPA | Radio-immunoprecipitation assay |
PMSF | Protein protector phenylmethanesulfonyl fluoride |
BCA | Bicinchoninic acid assay |
GSH | Glutathione |
PDD | Post delivery day |
PCNA | Proliferating cell nuclear antigen |
ALB | Albumin |
CHOL | Cholesterol |
ALP | Alkaline phosphatase |
ALT | Alanine aminotransferase |
SOD | Superoxide dismutase |
WB | Western blot |
References
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Weber, A.; Jeckel, N.; Wagner, M. Combined effects of polystyrene microplastics and thermal stress on the freshwater mussel Dreissena polymorpha. Sci. Total Environ. 2020, 718, 137253. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, D.; Han, S.; Jung, S.Y.; Choi, J.; Hong, J. Potential toxicity of polystyrene microplastic particles. Sci. Rep. 2020, 10, 7391. [Google Scholar] [CrossRef]
- Leslie, H.A.; Van Velzen, M.J.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ. 2023, 877, 162713. [Google Scholar] [CrossRef] [PubMed]
- Glazier, H.A. Microplastics and Nanoplastics in Atheromas. N. Engl. J. Med. 2024, 390, 1727–1728. [Google Scholar]
- Korez, Š.; Gutow, L.; Saborowski, R. Feeding and digestion of the marine isopod Idotea emarginata challenged by poor food quality and microplastics. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 226, 108586. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Singh, S.; Bahmid, N.A.; Shyu, D.J.; Domínguez, R.; Lorenzo, J.M.; Pereira, J.A.; Câmara, J.S. Polystyrene microplastic particles in the food chain: Characteristics and toxicity—A review. Sci. Total Environ. 2023, 892, 164531. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, G.; Peng, H.; Qi, L.; Zhang, D.; Nie, Q.; Zhang, X.; Luo, W. Microplastic exposure induces muscle growth but reduces meat quality and muscle physiological function in chickens. Sci. Total Environ. 2023, 882, 163305. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, Z.; Chen, Y.; Yang, F.; Yao, W.; Xie, Y. Microplastics contamination in eggs: Detection, occurrence and status. Food Chem. 2022, 397, 133771. [Google Scholar] [CrossRef]
- Bai, C.L.; Liu, L.Y.; Hu, Y.B.; Zeng, E.Y.; Guo, Y. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. Sci. Total Environ. 2022, 806, 150263. [Google Scholar] [CrossRef] [PubMed]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the mass of microplastics ingested—A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021, 404, 124004. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef]
- Larcombe, A.N.; Wang, K.C.W.; Phan, J.A.; Berry, L.J.; Noble, P.B. Confounding effects of gavage in mice: Impaired respiratory structure and function. Am. J. Respir. Cell Mol. Biol. 2019, 61, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ji, F.; Wang, H.; Zhu, T.; Rubinstein, J.; Worthington, R.; Abdullah, A.L.B.; Tay, Y.J.; Zhu, C.; George, A.; et al. Unraveling the threat: Microplastics and nano-plastics’ impact on reproductive viability across ecosystems. Sci. Total Environ. 2023, 913, 169525. [Google Scholar] [CrossRef]
- Hong, Y.; Wu, S.; Wei, G. Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions. Sci. Total Environ. 2023, 903, 166258. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhu, J.; Zhou, X.; Pan, D.; Nan, S.; Yin, R.; Lei, Q.; Ma, N.; Zhu, H.; Chen, J.; et al. Polystyrene micro-and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis. Environ. Int. 2022, 166, 107362. [Google Scholar] [CrossRef]
- Xiong, S.; He, J.; Qiu, H.; van Gestel, C.A.; He, E.; Qiao, Z.; Cao, L.; Li, J.; Chen, G. Maternal exposure to polystyrene nanoplastics causes defective retinal development and function in progeny mice by disturbing metabolic profiles. Chemosphere 2024, 352, 141513. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Shelver, W.L. Micro-and nanoplastic induced cellular toxicity in mammals: A review. Sci. Total Environ. 2021, 755, 142518. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, B.; Yao, Q.; Feng, X.; Shen, T.; Guo, P.; Wang, P.; Bai, Y.; Li, B.; Wang, P.; et al. Toxicological effects of micro/nano-plastics on mouse/rat models: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1103289. [Google Scholar] [CrossRef] [PubMed]
- da Silva Brito, W.A.; Mutter, F.; Wende, K.; Cecchini, A.L.; Schmidt, A.; Bekeschus, S. Consequences of nano and microplastic exposure in rodent models: The known and unknown. Part. Fibre Toxicol. 2022, 19, 28. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Visalli, G.; Pruiti Ciarello, M.; Di Pietro, A. Newly emerging airborne pollutants: Current knowledge of health impact of micro and nanoplastics. Int. J. Environ. Res. Public Health 2021, 18, 2997. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lv, X.; He, J.; Zhang, L.; Li, B.; Zhang, X.; Liu, S.; Zhang, Y. Chronic exposure to polystyrene nanoplastics induces intestinal mechanical and immune barrier dysfunction in mice. Ecotoxicol. Environ. Saf. 2024, 269, 115749. [Google Scholar] [CrossRef]
- Li, T.; Huang, J.; Jiang, Y.; Zeng, Y.; He, F.; Zhang, M.Q.; Han, Z.; Zhang, X. Multi-stage analysis of gene expression and transcription regulation in C57/B6 mouse liver development. Genomics 2009, 93, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.; Liu, X.; Li, K.; Liu, H.; Lai, W.; Shi, Y.; Xi, Z.; Yan, L.; Tian, L.; et al. Effects of exposure to nano-plastic drinking during pregnancy on cognitive related proteins in offspring of SD rats. Environ. Pollut. Bioavailab. 2024, 36, 2292104. [Google Scholar] [CrossRef]
- Garcia, M.M.; Romero, A.S.; Merkley, S.D.; Meyer-Hagen, J.L.; Forbes, C.; Hayek, E.E.; Sciezka, D.P.; Templeton, R.; Gonzalez-Estrella, J.; Jin, Y.; et al. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. Environ. Health Perspect. 2024, 132, 047005. [Google Scholar] [CrossRef]
- Wang, S.; Xie, S.; Zhang, C.; Pan, Z.; Sun, D.; Zhou, A.; Xu, G.; Zou, J. Interactions effects of nano-microplastics and heavy metals in hybrid snakehead (Channa maculata × Channa argus). Fish Shellfish Immunol. 2022, 124, 74–81. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Shi, Y.; Wei, L.; Gao, L.; Liu, M. Oxidized/unmodified-polyethylene microplastics neurotoxicity in mice: Perspective from microbiota-gut-brain axis. Environ. Int. 2024, 185, 108523. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, M.; Sharma, K.; kumar Bunkar, S.; John, P.; Bhatnagar, P. Nano polystyrene induced changes in anxiety and learning behaviour are mediated through oxidative stress and gene disturbance in mouse brain regions. Neurotoxicology 2023, 99, 139–151. [Google Scholar] [CrossRef]
- Wang, D. Toxicology at Environmentally Relevant Concentrations in Caenorhabditis Elegans; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Campbell, E.L.; Colgan, S.P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 106. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Li, J.; Wang, Y.; Su, J.; Lu, Z.; Zhang, F.; Ding, W. Polystyrene microplastic-induced oxidative stress triggers intestinal barrier dysfunction via the NF-κB/NLRP3/IL-1β/MCLK pathway. Environ. Pollut. 2024, 345, 123473. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Weng, Y.; Shen, Q.; Zhao, Y.; Jin, Y. Microplastic: A potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment. Sci. Total Environ. 2021, 785, 147365. [Google Scholar] [CrossRef] [PubMed]
- Ducatelle, R.; Goossens, E.; De Meyer, F.; Eeckhaut, V.; Antonissen, G.; Haesebrouck, F.; Van Immerseel, F. Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet. Res. 2018, 49, 43. [Google Scholar] [CrossRef]
- Ortega, A.D.S.V.; Szabó, C. Adverse effects of heat stress on the intestinal integrity and function of pigs and the mitigation capacity of dietary antioxidants: A review. Animals 2021, 11, 1135. [Google Scholar] [CrossRef]
- Wang, J.; Tian, H.; Shi, Y.; Yang, Y.; Yu, F.; Cao, H.; Gao, L.; Liu, M. The enhancement in toxic potency of oxidized functionalized polyethylene-microplastics in mice gut and Caco-2 cells. Sci. Total Environ. 2023, 903, 166057. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Shi, Y.; Yang, L.; Xiao, L.; Kehoe, D.K.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food 2020, 1, 746–754. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Wu, H.; Zhang, L.; Xiao, X.; Wang, X.; Li, M.; Cai, R.; You, J.; Chen, Q.; Yang, Y.; et al. Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice. Nanomaterials 2025, 15, 69. https://doi.org/10.3390/nano15010069
Zhou C, Wu H, Zhang L, Xiao X, Wang X, Li M, Cai R, You J, Chen Q, Yang Y, et al. Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice. Nanomaterials. 2025; 15(1):69. https://doi.org/10.3390/nano15010069
Chicago/Turabian StyleZhou, Chaoyu, Haiyan Wu, Lei Zhang, Xiao Xiao, Xiaodan Wang, Mingju Li, Runqiu Cai, Jia You, Qi Chen, Yifei Yang, and et al. 2025. "Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice" Nanomaterials 15, no. 1: 69. https://doi.org/10.3390/nano15010069
APA StyleZhou, C., Wu, H., Zhang, L., Xiao, X., Wang, X., Li, M., Cai, R., You, J., Chen, Q., Yang, Y., Tian, X., Bai, Q., Chen, Y., Bao, H., & Liu, T. (2025). Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice. Nanomaterials, 15(1), 69. https://doi.org/10.3390/nano15010069