Effects of Nanosilica on the Properties of Ultrafine Cement–Fly Ash Composite Cement Materials
<p>“7<sub>3</sub>53” project overview. (<b>a</b>) Roof seepage and (<b>b</b>) rock mass cracks.</p> "> Figure 2
<p>Particle size distributions of materials.</p> "> Figure 3
<p>NS dispersion production process.</p> "> Figure 4
<p>Physical performance tests of cement materials. (<b>a</b>) Viscosity, (<b>b</b>) water separation rate, (<b>c</b>) test piece maintenance, and (<b>d</b>) compressive strength tests.</p> "> Figure 5
<p>Cement material microperformance testing devices: (<b>a</b>) scanning electron microscopy and (<b>b</b>) X-ray diffraction analysis.</p> "> Figure 6
<p>Outline of the entire experimental procedure.</p> "> Figure 7
<p>Effects of UFA and NS dosing on slurry performances: (<b>a</b>) UFA; (<b>b</b>) NS mixed with 25% UFA.</p> "> Figure 8
<p>The mechanism of action of UFA and NS: (<b>a</b>) cement–fly ash, and (<b>b</b>) cement–fly ash–silica fume.</p> "> Figure 9
<p>Effects of UFA and NS dosing on the compressive strength: (<b>a</b>) UFA and (<b>b</b>) NS mixed with 25% UFA.</p> "> Figure 10
<p>Cement at different UFA dosages at a curing age of 28 d. (<b>a</b>) Pure cement (1000×), (<b>b</b>) pure cement (5000×), (<b>c</b>) cement with 25% UFA (1000×), (<b>d</b>) cement with 25% UFA (5000×), (<b>e</b>) cement with 50% UFA (1000×), and (<b>f</b>) cement with 50% UFA (5000×).</p> "> Figure 11
<p>Cement with different NS dosages at 28 d maintenance age. (<b>a</b>) Cement with 0.5% NS (1000×), (<b>b</b>) cement with 0.5% NS (5000×), (<b>c</b>) cement with 1% NS (1000×), (<b>d</b>) cement with 1% NS (5000×), (<b>e</b>) cement with 1.5% NS (1000×), and (<b>f</b>) cement with 1.5% NS (5000×).</p> "> Figure 12
<p>X-ray diffraction (XRD) patterns of hydrated cement at (<b>a</b>) 7 d and (<b>b</b>) 28 d.</p> "> Figure 12 Cont.
<p>X-ray diffraction (XRD) patterns of hydrated cement at (<b>a</b>) 7 d and (<b>b</b>) 28 d.</p> "> Figure 13
<p>Orthogonal test results: (<b>a</b>) viscosity, (<b>b</b>) water separation rate, (<b>c</b>) setting time, and (<b>d</b>) compressive strength.</p> "> Figure 14
<p>Effects of UFA, NS, and W/C on the slurry performances: (<b>a</b>) viscosity, (<b>b</b>) water precipitation rate, (<b>c</b>) setting time, and (<b>d</b>) compressive strength.</p> "> Figure 15
<p>Project overview: (<b>a</b>) “7<sub>3</sub>53” working face plan and (<b>b</b>) rock comprehensive column chart.</p> "> Figure 16
<p>Deformations of the two sidewalls and deformations of the top and bottom plates: (<b>a</b>) before grouting and (<b>b</b>) after grouting.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method
3. Results and Discussion
3.1. Viscosity
3.2. Water Precipitation Rate
3.3. Compressive Strength
3.4. Scanning Electron Microscopy Test
3.5. X-Ray Diffraction Test
3.6. Orthogonal Test Analysis
3.7. Engineering Applications
3.7.1. Project Overview
3.7.2. Grouting Scheme
- (1)
- Shallow hole grouting adopts hollow grouting pipes with the specifications of Φ20 mm × 2000 mm. The depth of each hole is 2000 mm, with an allowable leakage length of 200 mm. The grouting pipes are spaced 2000 mm apart, arranged in rows with a grouting pressure ranging from 1 to 3 MPa. The grouting hole at the top of the tunnel is centrally located in the curved roof with additional holes symmetrically placed on both sides.
- (2)
- The grouting depth for the top deep hole is 6000 mm. Two connected hollow grouting pipes are used with dimensions of Φ20 mm × 3000 mm each. Similarly to shallow grouting, the allowable leakage length is 200 mm, with the same spacing of 2000 mm × 2000 mm between the successive rows. The grouting pressure for these deep holes is set between 4 and 6 MPa. The principal deep hole is centrally positioned in the tunnel’s curved roof, with others symmetrically arranged at 2000 mm intervals. The bottom plate grouting also employs hollow pipes with an overall drilling depth of 5000 mm, combining pipes of Φ20 mm × 3000 mm and Φ20 mm × 2000 mm dimensions, maintaining the same leakage and spacing standards.
- (3)
- The grouting uses ultrafine cement graded P · O42.5, mixed at a slurry ratio of UFA 20%, NS 1.5%, and a W/C of 0.6.
3.7.3. Grouting Effect
4. Conclusions
- The inclusion of 25% UFA in the cement slurry progressively reduced viscosity and enhanced fluidity. At a UFA content of 50%, the viscosity decreased by 91%, the water precipitation rate increased by 3.77%, and the compressive strength decreased by 51% and 29.2% at 7 and 28 d, respectively, indicating detrimental effects on the performance of grout injections.
- The addition of NS to the UC and UFA composites compensated for the lower strength in the early stage, thus ensuring the enhancement of the slurry performance. The optimal results were observed when the NS content was at 1.5%, leading to a decrease in the water precipitation rate by 0.9%, an increase in the viscosity by 135.2%, and an enhancement in the compressive strength by 51.2% and 37% at 7 and 28 d, respectively.
- The microscopic experiments revealed that the addition of UFA and NS reduced the porosity of the slurry surface. As the NS content increased, the intensity of the diffraction peak of the C-S-H gel also increased and peaked at an NS content of 1.5%. However, the presence of a large number of fly ash particles on the surface of the slurry with 50% UFA negatively impacted the slurry’s performance.
- Orthogonal testing determined that the order of influence on slurry performance in the UFA and NS composite was W/C > UFA > NS. Utilizing a comprehensive scoring method, the optimal slurry composition was established as UFA 20% and NS 1.5%, with a W/C of 0.6. This composition ensures that the slurry possesses robust overall performance, effective penetration into microcracks, and the ability to handle diverse engineering environments.
- Industrial tests conducted at the “7353” working face of Renlou Coal Mine demonstrated that the on-site grouting effectively reinforced the tunnel structures. After grouting, the maximum deformation of the top and bottom plates and the sides was reduced to 375 mm and 326 mm, respectively. After the grouting, no occurrence of secondary deformation was observed at the “7353” working face, indicating that the slurry was highly effective in managing tunnel deformation and reinforcing the structures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Q.; Jing, H.W.; Ma, G.W. Experimental study on mechanical properties of sandstone specimens containing a single hole after high-temperature exposure. J. Géotech. Lett. 2015, 5, 43–48. [Google Scholar] [CrossRef]
- Kang, H.P.; Li, W.Z.; Gao, F.Q.; Yang, J.W. Grouting theories and technologies for the reinforcement of fractured rocks surrounding deep roadways. Deep Undergr. Sci Eng. 2022, 2, 2–19. [Google Scholar] [CrossRef]
- Yang, S.Q.; Li, Y.; Ma, G.W.; Sun, B.W.; Yang, J.; Xu, J.; Dai, Y.H. Experiment and numerical simulation study of dynamic mechanical behavior of granite specimen after high temperature treatment. Comput. Geotech. 2023, 154, 105111. [Google Scholar] [CrossRef]
- Li, Z.-F.; Li, S.-C.; Liu, R.-T.; Jiang, Y.-J.; Zhang, Q.-S.; Yang, L.; Sha, F.; Chen, B.-H.; Wang, H.-L. Development of the grouting material for reinforcing water-rich broken rock masses its application. J. Rock Soil Mech. 2016, 37, 1937–1946. [Google Scholar] [CrossRef]
- Zhang, J.P.; Li, K.S.; Li, Y.; Liu, C.X.; Xu, J.H.; He, J.P. Applying novel micro–nano-siliceous grouting material improves mechanical behaviors of fractured rock masses and microscopic characteristics of slurry–rock interface: Experimental and numerical simulation investigations. Rock Mech. Rock Eng. 2024, 57, 8297–8321. [Google Scholar] [CrossRef]
- Güllü, H.; Ali Agha, A. The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting. Constr. Build. Mater. 2021, 274, 122091. [Google Scholar] [CrossRef]
- Ghadir, P.; Ranjbar, N. Clayey soil stabilization using geopolymer and Portland cement. Constr. Build. Mater. 2018, 188, 361–371. [Google Scholar] [CrossRef]
- Kang, H.P. Development and prospects of support and reinforcement materials for coal mine roadways. J. Coal Sci. Technol. 2021, 49, 1–11. [Google Scholar]
- Shi, Y.; Wang, T.; Li, H.; Wu, S. Exploring the influence factors of early hydration of ultrafine cement. J. Mater. 2021, 14, 5677. [Google Scholar] [CrossRef]
- Zelić, J.; Krstulović, R.; Tkalčec, E.; Krolo, P. The properties of Portland cement-limestone-silica fume mortars. J. Cem. Concr. Res. 2000, 30, 145–152. [Google Scholar] [CrossRef]
- Esteves, L.P.; Cachim, P.B.; Ferreira, V.M. Effect of fine aggregate on the rheology properties of high performance cement-silica systems. J. Constr. 2010, 24, 640–649. [Google Scholar] [CrossRef]
- Choolaei, M.; Rashidi, A.M.; Ardjmand, M.; Yadegari, A.; Soltanian, H. The effect of nanosilica on the physical properties of oil well cement. J. Mater. A 2012, 538, 288–294. [Google Scholar] [CrossRef]
- Liu, M.; Tan, H.; He, X. Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Constr. Build. Mater. 2019, 194, 350–359. [Google Scholar] [CrossRef]
- Snehal, K.; Das, B.B.; Akanksha, M. Early age, hydration, mechanical and microstructure properties of nano-silica blended cementitious composites. Constr. Build. Mater. 2020, 233, 117212. [Google Scholar] [CrossRef]
- Wu, Q.; Miao, W.; Zhang, Y.; Gao, H.; Hui, D. Mechanical properties of nanomaterials: A review. J. Nanotechnol. Rev. 2020, 9, 259–273. [Google Scholar] [CrossRef]
- Rong, Z.; Sun, W.; Xiao, H.; Jiang, G. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 2015, 56, 25–31. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A.; Samuel, R.G. Smart bentonite drilling muds modified with iron oxide nanoparticles and characterized based on the electrical resistivity and rheological properties with varying magnetic field strengths and temperatures. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2017; p. 041. [Google Scholar] [CrossRef]
- Kooshafar, M.; Madani, H. An investigation on the influence of nano silica morphology on the characteristics of cement composites. J. Build. Eng. 2020, 30, 101293. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Smart cement compressive piezoresistive, stress-strain, and strength behavior with nanosilica modification. J. Test. Eval. 2019, 47, 1479–1501. [Google Scholar] [CrossRef]
- Feng, P.; Chang, H.; Liu, X.; Ye, S.; Shu, X.; Ran, Q. The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. J. Mater. Des. 2020, 186, 108320. [Google Scholar] [CrossRef]
- Mohammed, A.; Rafiq, S.; Mahmood, W.; Noaman, R.; Hind, A.D.; Ghafor, K.; Qadir, W. Microstructure characterizations thermal properties yield stress plastic viscosity compression strength of cement paste modified with nanosilica. J. Mater. Res. Technol. 2020, 9, 10941–10956. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Grasley, Z. The theoretical maximum achievable dispersion of nanoinclusions in cement paste. J. Cem. Concr. Res. 2012, 42, 798–804. [Google Scholar] [CrossRef]
- Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y. Properties of concrete incorporating nano-silica. J. Constr. Build. Mater. 2012, 36, 838–844. [Google Scholar] [CrossRef]
- Hanif, A.; Parthasarathy, P.; Ma, H.; Fan, T.; Li, Z. Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cem. Concr. Compos. 2017, 81, 35–48. [Google Scholar] [CrossRef]
- Khan, M.D.I.; Sayyed, M.A.A.; Yadav, G.S.; Varma, S.H. The impact of fly ash structural fiber on the mechanical properties of concrete. J. Mater. Today Proc. 2021, 39, 508–512. [Google Scholar] [CrossRef]
- Korniejenko, K.; Nykiel, M.; Choinska, M.; Jexembayeva, A.; Konkanov, M.; Aruova, L. An overview of micro-and nano-dispersion additives for asphalt and bitumen for road construction. Buildings 2023, 13, 2948. [Google Scholar] [CrossRef]
- Du, H. Properties of ultra-lightweight cement composites with nano-silica. Constr. Build. Mater. 2019, 199, 696–704. [Google Scholar] [CrossRef]
- Zhang, S.; Qiao, W.G.; Chen, P.C.; Xi, K. Rheological and mechanical properties of microfine-cement-based grouts mixed with microfine fly ash, colloidal nanosilica and superplasticizer. Constr. Build. Mater. 2019, 212, 10–18. [Google Scholar] [CrossRef]
- Yang, T.; Liu, B.; Li, L.; Gan, X.; Lu, L.; Li, Y. Agglomeration behavior of colloidal nano-silica and its effect on pore structure, mechanical properties and shrinkage of cement mortar. Constr. Build. Mater. 2023, 409, 133865. [Google Scholar] [CrossRef]
- Ye, Q. Effect of silica sol dosage on mechanical properties and microstructure of cement-based material. J. Chin. Ceram. Soc. 2008, 36, 425. [Google Scholar]
- Kim, B.J.; Lee, G.W.; Choi, Y.C. Hydration and mechanical properties of high-volume fly ash concrete with nano-silica and silica fume. Materials 2022, 15, 6599. [Google Scholar] [CrossRef]
- Smirnova, O.; Menendez-Pidal, I.; Alekseev, A.; Petrov, D.; Popov, M. Strain hardening of polypropylene microfiber reinforced composite based on alkali-activated slag matrix. Materials 2022, 15, 1607. [Google Scholar] [CrossRef] [PubMed]
- Maglad, A.M.; Zaid, O.; Arbili, M.M.; Ascensão, G.; Șerbănoiu, A.M.; Grădinaru, C.M.; García, R.M.; Qaidi, S.A.; Althoey, F.; Prado-Gil, J. A study on the properties of geopolymer concrete modified with nano graphene oxide. Buildings 2022, 12, 1066. [Google Scholar] [CrossRef]
- Mohammedameen, A.; Younis, K.; Alzeebaree, R.; Arbili, M.M.; Ibrahim, T.K. Performance of self-compacting geopolymer concrete with and without Portland cement at ambient temperature. In Geotechnical Engineering and Sustainable Construction, Sustainable Geotechnical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; pp. 657–668. [Google Scholar]
- Fu, Q.; Zhao, X.; Zhang, Z.; Xu, W.; Niu, D. Effects of nanosilica on microstructure and durability of cement-based materials. Powder Technol. 2022, 404, 117447. [Google Scholar] [CrossRef]
- Rostami, M.R.; Abbassi-Sourki, F.; Bouhendi, H. Synergistic effect of branched polymer/nano silica on the microstructures of cement paste and their rheological behaviors. Constr. Build. Mater. 2019, 201, 159–170. [Google Scholar] [CrossRef]
- Althoey, F.; Zaid, O.; Alsharari, F.; Yosri, A.M.; Isleem, H.F. Evaluating the impact of nano-silica on characteristics of self-compacting geopolymer concrete with waste tire steel fiber. Arch. Civ. Mech. Eng. 2022, 23, 48. [Google Scholar] [CrossRef]
- Abhilash, P.P.; Nayak, D.K.; Sangoju, B.; Kumaar, R.; Kumar, V. Effect of nano-silica in concrete: A review. Constr. Build. Mater. 2021, 278, 122347. [Google Scholar]
- Du, H.; Du, S.; Liu, X. Effect of nano-silica on the mechanical and transport properties of lightweight concrete. Constr. Build. Mater. 2015, 82, 114–122. [Google Scholar] [CrossRef]
- Zhang, G.; Xia, H.; Niu, Y.; Song, L.; Zhao, Y.; Lv, X.; Chen, H.; Cao, D. Microstructure refinement and affected zone reinforcement for internal curing cement paste by composite microgel with nano silica. Cem. Concr. Compos. 2023, 138, 105013. [Google Scholar] [CrossRef]
- Crucho, J.M.L.; das Neves, J.M.C.; Capitão, S.D.; de Picado-Santos, L.G. Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay. Constr. Build. Mater. 2018, 181, 309–318. [Google Scholar] [CrossRef]
- Sadeghnejad, M.; Shafabakhsh, G. Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures. Constr. Build. Mater. 2017, 157, 965–974. [Google Scholar] [CrossRef]
- ASTM D6910/D6910M-19; Standard Test Method for Marsh Funnel Viscosity of Clay Construction Slurries. ASTM International: West Conshohocken, PA, USA, 2019.
- GBT1346-2019; Test Method for Standard Consistency, Setting Time and Soundness of Cement. AQSIQ, SAC: Beijing, China, 2019.
- GBT17671-2021; Test Method for Strength of Cement Mortar. SAMR, SAC: Beijing, China, 2021.
- Subramaniam, D.N.; Sathiparan, N. Comparative study of fly ash and rice husk ash as cement replacement in pervious concrete: Mechanical characteristics and sustainability analysis. Int. J. Pavement Eng. 2023, 24, 2075867. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Lyu, K.; Li, T.; Zhao, P.; Liu, R.; Zuo, J.; Fu, F.; Shah, S. Enhanced early hydration and mechanical properties of cement-based materials with recycled concrete powder modified by nano-silica. J. Build. Eng. 2022, 50, 104175. [Google Scholar] [CrossRef]
- Kong, D.; Su, Y.; Du, X.; Yang, Y.; Wei, S.; Shah, S.P. Influence of nano-silica agglomeration on fresh properties of cement pastes. J. Constr. Build. Mater. 2013, 43, 557–562. [Google Scholar] [CrossRef]
- Korpa, A.; Kowald, T.; Trettin, R. Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. J. Cem. Concr. Res. 2008, 38, 955–962. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, Z.; Zhao, X.; Xu, W.; Niu, D. Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: A review. J. Build. Eng. 2022, 50, 104220. [Google Scholar] [CrossRef]
- Wu, H.; Gao, J.; Liu, C.; Zhao, Y.; Li, S. Development of nano-silica modification to enhance the micro-macro properties of cement-based materials with recycled clay brick powder. J. Build. Eng. 2024, 86, 108854. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, C.; Wang, B.; Han, J.; Guo, L.; Tang, N. Study on the micro-rheological properties of fly ash-based cement mortar. Constr. Build. Mater. 2024, 442, 137664. [Google Scholar] [CrossRef]
- Güllü, H.; Yetim, M.E.; Güllü, E.B. Effect of using nano-silica on the rheological, fresh and strength characteristics of cement-based grout for grouting columns. J. Build. Eng. 2023, 76, 107100. [Google Scholar] [CrossRef]
- Quercia, G.; Spiesz, P.; Hüsken, G.; Brouwers, H.J.H. SCC modification by use of amorphous nano-silica. J. Cem. Concr. Compos. 2014, 45, 69–81. [Google Scholar] [CrossRef]
- Ltifi, M.; Guefrech, A.; Mounanga, P.; Khelidj, A. Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars. J. Procedia Eng. 2011, 10, 900–905. [Google Scholar] [CrossRef]
- Feng, J.; Sun, J.; Yan, P. The influence of ground fly ash on cement hydration and mechanical property of mortar. J. Adv. Civ. Eng. 2018, 2018, 4023178. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, T.; Hou, D.; Dong, B. Synergistic effects of fly ash and MgO expansive additive on cement paste: Microstructure and performance. Constr. Build. Mater. 2023, 371, 130740. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Z.; Shi, C.; Wu, Z.; Tong, B.; Ou, Z.; De Schutter, G. Drying shrinkage cracking resistance of concrete made with ternary cementitious components. J. Constr. Build. Mater. 2017, 149, 406–415. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mohammed, A.S.; Faraj, R.H.; Qaidi, S.M.; Mohammed, A.A. Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Stud. Constr. Mater. 2022, 16, e01036. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, T.; Qu, B.; Fang, C.; Li, L.; Feng, Y.; Jiang, G.; Yu, Y. Experimental investigation on the effect of nano silica fume on physical properties and microstructural characteristics of lightweight cement slurry. Constr. Build. Mater. 2022, 329, 127172. [Google Scholar] [CrossRef]
- Oey, T.; Kumar, A.; Bullard, J.W.; Neithalath, N.; Sant, G. The filler effect: The influence of filler content surface area on cementitious reaction rates. J. Am. Ceram. Soc. 2013, 96, 1978–1990. [Google Scholar] [CrossRef]
- Ma, W.; Brown, P.W. Hydrothermal reactions of fly ash with Ca(OH)2 and CaSO4·2H2O. J. Cem. Concr. Res. 1997, 27, 1237–1248. [Google Scholar] [CrossRef]
- Xu, Z.; Long, H.; Liu, Q.; Yu, H.; Zhang, X.; Hui, D. Mechanical properties and durability of geopolymer concrete based on fly ash and coal gangue under different dosage and particle size of nano silica. Constr. Build. Mater. 2023, 387, 131622. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Cho, H.K.; Wang, X.Y. Effect of nano-silica on the autogenous shrinkage, strength, and hydration heat of ultra-high strength concrete. J. Appl. Sci. 2020, 10, 5202. [Google Scholar] [CrossRef]
- Zhao, J.; Song, K.; Wang, Z.; Wu, D. Effect of Nano-SiO2/Steel fiber on the mechanical properties and sulfate resistance of High-Volume fly ash cement materials. Constr. Build. Mater. 2023, 409, 133737. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Z.; Xu, Y.; Wang, S.; Chen, H.; Huang, J.; Xue, B.; Wang, J.; Chen, J.; Yang, C. High-fluidization, early strength cement grouting material enhanced by Nano-SiO2: Formula and mechanisms. Materials 2021, 14, 6144. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Ahmad, W.; Amin, M.N.; Nazar, S. Nano-silica-modified concrete: A bibliographic analysis and comprehensive review of material properties. Nanomaterials 2022, 12, 1989. [Google Scholar] [CrossRef] [PubMed]
- Tabish, M.; Zaheer, M.M.; Baqi, A. Effect of nano-silica on mechanical, microstructural and durability properties of cement-based materials: A review. J. Build. Eng. 2023, 65, 105676. [Google Scholar] [CrossRef]
Type | CaO | SiO2 | Al2O3 | Fe2O3 | Mg2O | Na2O | K2O | TiO2 | LOSS |
---|---|---|---|---|---|---|---|---|---|
UC | 7.6% | 48% | 27% | 3.5% | 4.2% | − | 5.6% | − | 4.1% |
UFA | 55.1% | 22.1% | 7.1% | 6.4% | − | 3.5% | 2.3% | − | 3.5% |
NS | − | 99.9% | 0.0031% | 0.002% | − | − | − | 0.002% | − |
No. | UC Content (%) | UFA Content (%) | NS Content (%) | W/C | Water-Reducing Agent Content (%) |
---|---|---|---|---|---|
1 | 99 | 0 | 0.0 | 0.6 | 1 |
2 | 74.5 | 24.5 | 0.0 | 0.6 | 1 |
3 | 49.5 | 49.5 | 0.0 | 0.6 | 1 |
4 | 74.25 | 24.25 | 0.5 | 0.6 | 1 |
5 | 74 | 24 | 1.0 | 0.6 | 1 |
6 | 73.75 | 23.75 | 1.5 | 0.6 | 1 |
No. | Water Separation Rate (%) | Viscosity (s) | Compressive Strength (MPa) | ||
---|---|---|---|---|---|
7 d | 14 d | 28 d | |||
1 | 1.23 | 303 | 11.82 | 16.82 | 18.23 |
2 | 2 | 54 | 6.94 | 11.24 | 14.37 |
3 | 5 | 27.19 | 5.79 | 10.55 | 12.91 |
4 | 1.8 | 72.57 | 7.68 | 12.12 | 15.47 |
5 | 1.5 | 98.46 | 8.03 | 13.98 | 16.89 |
6 | 1.1 | 170.65 | 10.49 | 15.51 | 19.68 |
No. | UFA Content (%) | NS Content (%) | W/C | Water-Reducing Agent Content (%) |
---|---|---|---|---|
1 | 20% | 0.5% | 0.6 | 1% |
2 | 20% | 1% | 0.8 | 1% |
3 | 20% | 1.5% | 0.7 | 1% |
4 | 30% | 0.5% | 0.8 | 1% |
5 | 30% | 1% | 0.7 | 1% |
6 | 30% | 1.5% | 0.6 | 1% |
7 | 40% | 0.5% | 0.7 | 1% |
8 | 40% | 1% | 0.6 | 1% |
9 | 40% | 1.5% | 0.8 | 1% |
No. | Incipient Condensation Time (h) | Time of Final Coagulation (h) | Water Separation Rate (%) | Viscosity (s) | Compressive Strength (MPa) | ||
---|---|---|---|---|---|---|---|
7 d | 14 d | 27 d | |||||
1 | 10.13 | 18.50 | 1 | 77.46 | 14.69 | 16.37 | 18.84 |
2 | 10.88 | 18.88 | 2 | 33.5 | 7.47 | 11.54 | 17.84 |
3 | 9.73 | 17.50 | 1.5 | 83.61 | 8.93 | 16.28 | 25.45 |
4 | 13.47 | 18.83 | 3 | 27.24 | 4.71 | 10.63 | 11.13 |
5 | 11.92 | 16.42 | 2 | 47.6 | 7.48 | 11.75 | 14.22 |
6 | 7.83 | 14.38 | 1.5 | 113.4 | 8.83 | 14.58 | 22.49 |
7 | 11.33 | 16.33 | 3 | 23.96 | 4.62 | 10.46 | 12.29 |
8 | 11.5 | 15.00 | 3.5 | 64 | 8.59 | 14.88 | 16.18 |
9 | 12.58 | 16.75 | 2 | 22.68 | 4.44 | 11.06 | 17.66 |
Characteristic | Variable | k1 | k2 | k3 | R | Priority of Factors |
---|---|---|---|---|---|---|
Viscosity | UFA | 64.86 | 62.75 | 36.88 | 27.98 | W/C > NS > UFA |
NS | 42.89 | 48.37 | 73.23 | 30.34 | ||
W/C | 84.95 | 51.72 | 27.81 | 57.15 | ||
Separation rate test | UFA | 2.00 | 2.33 | 2.67 | 0.67 | W/C > NS > UFA |
NS | 2.67 | 2.50 | 1.83 | 0.83 | ||
W/C | 1.83 | 2.17 | 3.00 | 1.17 | ||
Incipient condensation time | UFA | 10.25 | 11.07 | 11.80 | 1.56 | W/C > NS > UFA |
NS | 11.64 | 11.43 | 10.05 | 1.60 | ||
W/C | 9.82 | 10.99 | 12.31 | 2.49 | ||
Time of final coagulation | UFA | 18.29 | 16.54 | 16.03 | 2.27 | UFA > W/C > NS |
NS | 17.89 | 16.77 | 16.21 | 1.68 | ||
W/C | 15.96 | 16.75 | 18.15 | 2.19 |
Characteristic | Variable | k1 | k2 | k3 | R | Priority of Factors |
---|---|---|---|---|---|---|
Compressive strength at 7 d | UFA | 10.36 | 7.01 | 5.88 | 4.48 | W/C > UFA > NS |
NS | 8.01 | 7.85 | 7.40 | 0.61 | ||
W/C | 10.70 | 7.01 | 5.54 | 5.16 | ||
Compressive strength at 14 d | UFA | 14.73 | 12.32 | 12.13 | 2.60 | W/C > UFA > NS |
NS | 12.49 | 12.72 | 13.97 | 1.49 | ||
W/C | 15.28 | 12.83 | 11.08 | 4.20 | ||
Compressive strength at 28 d | UFA | 20.71 | 15.95 | 15.38 | 5.33 | NS > UFA > W/S |
NS | 14.09 | 16.08 | 21.87 | 7.78 | ||
W/C | 19.17 | 17.32 | 15.54 | 3.63 |
Number | UFA | NS | W/C | D | Comprehensive Score |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 206.89 |
2 | 1 | 2 | 3 | 2 | 138.96 |
3 | 1 | 3 | 2 | 3 | 213.66 |
4 | 2 | 1 | 3 | 3 | 115.47 |
5 | 2 | 2 | 2 | 1 | 144.84 |
6 | 2 | 3 | 1 | 2 | 228.91 |
7 | 3 | 1 | 2 | 2 | 109.36 |
8 | 3 | 2 | 1 | 3 | 173.3 |
9 | 3 | 3 | 3 | 1 | 120.33 |
K1 | 559.51 | 431.72 | 609.1 | 472.06 | |
K2 | 489.22 | 457.1 | 467.86 | 477.23 | |
K3 | 402.99 | 562.9 | 374.76 | 502.43 | |
k1 | 186.50 | 143.91 | 203.03 | 157.35 | |
k2 | 163.07 | 152.37 | 155.95 | 159.08 | |
k3 | 134.33 | 187.63 | 124.92 | 167.48 | |
R | 52.17 | 43.73 | 78.11 | 10.12 | |
Priority of factors | W/C > UFA > NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Guo, S.; Ren, J.; Chen, P.; Zhang, Q. Effects of Nanosilica on the Properties of Ultrafine Cement–Fly Ash Composite Cement Materials. Nanomaterials 2024, 14, 1997. https://doi.org/10.3390/nano14241997
Wang K, Guo S, Ren J, Chen P, Zhang Q. Effects of Nanosilica on the Properties of Ultrafine Cement–Fly Ash Composite Cement Materials. Nanomaterials. 2024; 14(24):1997. https://doi.org/10.3390/nano14241997
Chicago/Turabian StyleWang, Kai, Siyang Guo, Jiahui Ren, Pengyu Chen, and Qihao Zhang. 2024. "Effects of Nanosilica on the Properties of Ultrafine Cement–Fly Ash Composite Cement Materials" Nanomaterials 14, no. 24: 1997. https://doi.org/10.3390/nano14241997
APA StyleWang, K., Guo, S., Ren, J., Chen, P., & Zhang, Q. (2024). Effects of Nanosilica on the Properties of Ultrafine Cement–Fly Ash Composite Cement Materials. Nanomaterials, 14(24), 1997. https://doi.org/10.3390/nano14241997