Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles
"> Figure 1
<p>LA-ICP-MS imaging for the distribution of MNPs in tomato stems. (<b>a</b>) LA-ICP-MS image of Zn near the phloem and xylem tissues of the petiole connected to a leaf dosed with ZnO@MSN. (<b>b</b>) The area of the LA-ICP-MS scan with the phloem (blue) and xylem (yellow) regions. (<b>c</b>) Overlay of the LA-ICP-MS Zn signal (in red) with the microscopy image (<b>b</b>), the area of the sample that LA-ICP-MS analyzed in (<b>a</b>) is marked in the red square frame of (<b>c</b>). Reprinted with permission from [<a href="#B51-nanomaterials-14-01939" class="html-bibr">51</a>]. Copyright 2023 American Chemical Society.</p> "> Figure 2
<p>NanoSIMS imaging of the distribution of MNPs in chili plants. NanoSIMS elemental maps (10 µm × 10 µm) of chili (<b>a</b>,<b>b</b>) leaf, (<b>e</b>,<b>f</b>) stem, and (<b>i</b>,<b>j</b>) root tissues after foliar CdS NP exposure obtained using O<sup>−</sup> beam polarities to map <sup>40</sup>Ca<sup>+</sup> and <sup>114</sup>Cd<sup>+</sup>. (<b>c</b>,<b>d</b>,<b>g</b>,<b>h</b>,<b>k</b>,<b>l</b>) show the composite (multi) elemental maps of the chili leaf, stem, and root, respectively, showing the relative locations of Cd (red), Ca (blue), and Zn (green). Reprinted with permission from [<a href="#B59-nanomaterials-14-01939" class="html-bibr">59</a>]. Copyright 2023 Elsevier.</p> "> Figure 3
<p>TEM analysis of the subcellular distribution of MNPs in tobacco leaves. Representative TEM images of <span class="html-italic">N. benthamiana</span> plants 24 h post-infiltration with DNA-functionalized AuNSs with diameters of 5 nm (<b>a</b>), 10 nm (<b>b</b>), 15 nm (<b>c</b>) and 20 nm (<b>d</b>). The images show progressive magnifications from left to right, with the red boxes indicating the magnification areas. Annotations represent the cell wall (cw) and chloroplast (ch). The filled and open arrows indicate NPs associated with a single cell wall or found between cell walls. Scale bars from left to right, 5 µm, 1 µm, 0.2 µm, and 50 nm. Reprinted with permission from [<a href="#B62-nanomaterials-14-01939" class="html-bibr">62</a>]. Copyright 2021 Springer Nature.</p> "> Figure 4
<p>Combining μ-XRF and XANES techniques for analyzing the distribution and chemical speciation of MNPs in cucumber plants. (<b>a</b>) μ-XRF images of Ce in cucumber roots and leaves after exposure to 1000 mg/L Cs-nCeO<sub>2</sub> and PAA-nCeO<sub>2</sub>. The red area of each map corresponds to the maximum concentration of the Ce element. The lateral roots are denoted by the white boxes in the light microscope images. The scale bars for the roots and leaves represent 100 and 500 μm, respectively. Analyses of Ce XANES spectra (<b>b</b>) and the total contents of Ce(III) and Ce(IV) in the roots (g/kg) and shoots (mg/kg) (<b>c</b>) of cucumber exposed to 1000 mg/L Cs-nCeO<sub>2</sub> and PAA-nCeO<sub>2</sub>. Reprinted with permission from [<a href="#B78-nanomaterials-14-01939" class="html-bibr">78</a>]. Copyright 2019 American Chemical Society.</p> ">
Abstract
:1. Introduction
2. Extraction of MNPs from Plant Tissues
2.1. Acid Digestion
2.2. Enzymatic Extraction
2.3. Organic Solvent-Based Extraction
2.4. Challenges, Method Comparison, and Future Directions
3. Mass Spectrometry-Based Analysis
3.1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
3.1.1. Single Particle ICP-MS (spICP-MS)
3.1.2. Laser Ablation ICP-MS (LA-ICP-MS)
3.1.3. Other ICP-MS-Based Techniques
3.2. Secondary Ion Mass Spectrometry (SIMS)
3.3. Challenges, Method Comparison, and Future Directions
4. Microscopy-Based Imaging Techniques
4.1. Electron Microscopy (EM)
4.2. Optical Microscopy
4.3. Two-Photon Fluorescence Microscopy (TPM)
4.4. Dark-Field Microscopy (DFM) and Hyperspectral Imaging (HSI)
4.5. Challenges, Method Comparison, and Future Directions
5. Spectroscopy-Based Analysis
5.1. X-ray-Based Techniques
5.1.1. Synchrotron Radiation (SR) Techniques
5.1.2. Proton-Induced X-ray Emission (PIXE)
5.2. Infrared and Raman Spectroscopy
5.2.1. FTIR Spectroscopy
5.2.2. Surface-Enhanced Raman Spectroscopy (SERS)
5.3. Laser-Induced Breakdown Spectroscopy (LIBS)
5.4. Challenges, Method Comparison, and Future Directions
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural inorganic nanoparticles—Formation, fate, and toxicity in the environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef]
- Nanotechnology Products Database. Available online: https://product.statnano.com/ (accessed on 4 November 2024).
- Wang, Q.; Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2019, 120, 1438–1511. [Google Scholar] [CrossRef]
- Borkowska, M.; Siek, M.; Kolygina, D.V.; Sobolev, Y.I.; Lach, S.; Kumar, S.; Cho, Y.K.; Kandere-Grzybowska, K.; Grzybowski, B.A. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat. Nanotechnol. 2020, 15, 331–341. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, Y.; Schwab, F.; Monikh, F.A.; Grillo, R.; White, J.C.; Guo, Z.; Lynch, I. Strategies for enhancing plant immunity and eesilience Using nanomaterials for sustainable agriculture. Environ. Sci. Technol. 2024, 58, 9051–9060. [Google Scholar] [CrossRef]
- Li, R.; Chen, T.; Pan, X. Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 2021, 15, 3808–3848. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P.H.C.; Krishnan, V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 2021, 18, 2101638. [Google Scholar] [CrossRef]
- Pradas del Real, A.E.; Castillo-Michel, H.; Kaegi, R.; Sinnet, B.; Magnin, V.; Findling, N.; Villanova, J.; Carrière, M.; Santaella, C.; Fernández-Martínez, A.; et al. Fate of Ag-NPs in Sewage Sludge after Application on Agricultural Soils. Environ. Sci. Technol. 2016, 50, 1759–1768. [Google Scholar] [CrossRef]
- Gottschalk, F.; Nowack, B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011, 13, 1145–1155. [Google Scholar] [CrossRef]
- Hochella, M.F.; Spencer, M.G.; Jones, K.L. Nanotechnology: Nature’s gift or scientists’ brainchild? Environ. Sci.-Nano 2015, 2, 114–119. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef]
- Ma, X.M.; Geisler-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010, 408, 3053–3061. [Google Scholar] [CrossRef]
- Avellan, A.; Yun, J.; Morais, B.P.; Clement, E.T.; Rodrigues, S.M.; Lowry, G.V. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in Planta Translocation. Environ. Sci. Technol. 2021, 55, 13417–13431. [Google Scholar] [CrossRef]
- Liu, L.; Tsyusko, O.V.; Unrine, J.M.; Liu, S.; Liu, Y.; Guo, L.; Wei, G.; Chen, C. Pristine and sulfidized zinc oxide nanoparticles promote the release and decomposition of organic carbon in the legume rhizosphere. Environ. Sci. Technol. 2023, 57, 8943–8953. [Google Scholar] [CrossRef]
- Hu, J.; Xianyu, Y. When nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today 2021, 38, 101143. [Google Scholar] [CrossRef]
- Murali, M.; Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Alomary, M.N.; Alshamrani, M.; Salawi, A.; Almoshari, Y.; Ansari, M.A.; et al. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. Sci. Total Environ. 2022, 811, 152249. [Google Scholar] [CrossRef]
- Spielman-Sun, E.; Avellan, A.; Bland, G.D.; Clement, E.T.; Tappero, R.V.; Acerbo, A.S.; Lowry, G.V. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 2020, 12, 3630–3636. [Google Scholar] [CrossRef]
- Javed, R.; Khan, B.; Sharafat, U.; Bilal, M.; Galagedara, L.; Abbey, L.; Cheema, M. Dynamic interplay of metal and metal oxide nanoparticles with plants: Influencing factors, action mechanisms, and assessment of stimulatory and inhibitory effects. Ecotox. Environ. Safe 2024, 271, 115992. [Google Scholar] [CrossRef]
- Francis, D.V.; Abdalla, A.K.; Mahakham, W.; Sarmah, A.K.; Ahmed, Z.F.R. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ. Int. 2024, 190, 108859. [Google Scholar] [CrossRef]
- Liu, Y.L.; Yue, L.; Wang, C.X.; Zhu, X.S.; Wang, Z.Y.; Xing, B.S. Photosynthetic response mechanisms in typical C3 and C4 plants upon La2O3 nanoparticle exposure. Environ. Sci.-Nano 2020, 7, 81–92. [Google Scholar] [CrossRef]
- Hong, J.; Wang, L.N.; Sun, Y.P.; Zhao, L.J.; Niu, G.H.; Tan, W.J.; Rico, C.M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci. Total Environ. 2016, 563, 904–911. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Y.H.; Zhang, Z.Y.; He, X.; Guo, Z.; Tai, R.Z.; Ding, Y.Y.; Zhao, Y.L.; Chai, Z.F. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ. Sci. Technol. 2012, 46, 1834–1841. [Google Scholar] [CrossRef]
- Zhu, H.; Han, J.; Xiao, J.Q.; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008, 10, 713–717. [Google Scholar] [CrossRef]
- Ahmed, B.; Rizvi, A.; Ali, K.; Lee, J.; Zaidi, A.; Khan, M.S.; Musarrat, J. Nanoparticles in the soil-plant system: A review. Environ. Chem. Lett. 2021, 19, 1545–1609. [Google Scholar] [CrossRef]
- Lv, J.T.; Christie, P.; Zhang, S.Z. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci.-Nano 2019, 6, 41–59. [Google Scholar] [CrossRef]
- Servin, A.D.; Pagano, L.; Castillo-Michel, H.; De la Torre-Roche, R.; Hawthorne, J.; Hernandez-Viezcas, J.A.; Loredo-Portales, R.; Majumdar, S.; Gardea-Torresday, J.; Dhankher, O.P.; et al. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology 2017, 11, 98–111. [Google Scholar] [CrossRef]
- Dang, F.; Huang, Y.N.; Wang, Y.J.; Zhou, D.M.; Xing, B.S. Transfer and toxicity of silver nanoparticles in the food chain. Environ. Sci.-Nano 2021, 8, 1519–1535. [Google Scholar] [CrossRef]
- Babaei, M.; Tayemeh, M.B.; Jo, M.S.; Yu, I.; Johari, S.A. Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. Sci. Total Environ. 2022, 842, 156807. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wang, Z.Y.; Liu, F.D.; Kane, A.B.; Hurt, R.H. Chemical transformations of nanosilver in biological environments. ACS Nano 2012, 6, 9887–9899. [Google Scholar] [CrossRef]
- Nowack, B.; Ranville, J.F.; Diamond, S.; Gallego-Urrea, J.A.; Metcalfe, C.; Rose, J.; Horne, N.; Koelmans, A.A.; Klaine, S.J. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50–59. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Sun, H.D.; Du, W.; Li, R.Y.; Mao, H.; Kopittke, P.M. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity. Sci. Total Environ. 2021, 796, 148927. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Xia, M.; Ma, C.X.; Guo, H.Y.; Wu, W.H.; White, J.C.; Xing, B.S.; He, L.L. Rapid organic solvent extraction coupled with surface enhanced Raman spectroscopic mapping for ultrasensitive quantification of foliarly applied silver nanoparticles in plant leaves. Environ. Sci.-Nano 2020, 7, 1061–1067. [Google Scholar] [CrossRef]
- Guo, H.Y.; Xing, B.S.; White, J.C.; Mukherjee, A.; He, L.L. Ultra-sensitive determination of silver nanoparticles by surface-enhanced Raman spectroscopy (SERS) after hydrophobization-mediated extraction. Analyst 2016, 141, 5261–5264. [Google Scholar] [CrossRef]
- Sun, X.-D.; Ma, J.-Y.; Feng, L.-J.; Duan, J.-L.; Yuan, X.-Z. Precise tracking of nanoparticles in plant roots. Nat. Protoc. 2024. early access. [Google Scholar] [CrossRef]
- Zhang, P.; Misra, S.; Guo, Z.L.; Rehkämper, M.; Valsami-Jones, E. Stable isotope labeling of metal/metal oxide nanomaterials for environmental and biological tracing. Nat. Protoc. 2019, 14, 2878–2899. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.L.; Monikh, F.A.; Lynch, I.; Valsami-Jones, E.; Zhang, Z.Y. Growing Rice (Oryza sativa) Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO2 Nanoparticles. Environ. Sci. Technol. 2021, 55, 8654–8664. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Guo, Z.; Zhao, W.; Li, Y.; Yi, T.; Cao, W.; Gao, L.; Tian, C.F.; Chen, Q.; et al. Dynamic transformation of nano-MoS2 in a soil–plant system empowers its multifunctionality on soybean growth. Environ. Sci. Technol. 2024, 58, 1211–1222. [Google Scholar] [CrossRef]
- Dan, Y.B.; Zhang, W.L.; Xue, R.M.; Ma, X.M.; Stephan, C.; Shi, H.L. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ. Sci. Technol. 2015, 49, 3007–3014. [Google Scholar] [CrossRef]
- Wei, W.J.; Li, L.; Gao, Y.P.; Wang, Q.; Zhou, Y.Y.; Liu, X.; Yang, Y. Enzyme digestion combined with SP-ICP-MS analysis to characterize the bioaccumulation of gold nanoparticles by mustard and lettuce plants. Sci. Total Environ. 2021, 777, 146038. [Google Scholar] [CrossRef]
- Keller, A.A.; Huang, Y.X.; Nelson, J. Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J. Nanopart. Res. 2018, 20, 13. [Google Scholar] [CrossRef]
- Laughton, S.; Laycock, A.; Bland, G.; von der Kammer, F.; Hofmann, T.; Casman, E.A.; Lowry, G.V. Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Anal. Bioanal. Chem. 2021, 413, 299–314. [Google Scholar] [CrossRef]
- Laughton, S.; Laycock, A.; von der Kammer, F.; Hofmann, T.; Casman, E.A.; Rodrigues, S.M.; Lowry, G.V. Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. J. Nanopart. Res. 2019, 21, 174. [Google Scholar] [CrossRef]
- Deng, Y.Q.; Petersen, E.J.; Challis, K.E.; Rabb, S.A.; Holbrook, R.D.; Ranville, J.F.; Nelson, B.C.; Xing, B.S. Multiple method analysis of TiO2 nanoparticle uptake in rice (Oryza sativa L.) plants. Environ. Sci. Technol. 2017, 51, 10615–10623. [Google Scholar] [CrossRef]
- Malejko, J.; Godlewska-Zylkiewicz, B.; Vanek, T.; Landa, P.; Nath, J.; Dror, I.; Berkowitz, B. Uptake, translocation, weathering and speciation of gold nanoparticles in potato, radish, carrot and lettuce crops. J. Hazard. Mater. 2021, 418, 126219. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.H.; Lu, D.W.; Lin, Y.; Liu, J.F.; Liu, Q.; Nie, Z.X.; Jiang, G.B. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem. Soc. Rev. 2021, 50, 5243–5280. [Google Scholar] [CrossRef]
- Modlitbová, P.; Porízka, P.; Kaiser, J. Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. Trends Anal. Chem. 2020, 122, 115729. [Google Scholar] [CrossRef]
- Laborda, F.; Gimenez-Ingalaturre, A.C.; Bolea, E.; Castillo, J.R. Single particle inductively coupled plasma mass spectrometry as screening tool for detection of particles. Spectroc. Acta Pt. B-Atom. Spectr. 2019, 159, 105654. [Google Scholar] [CrossRef]
- Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends Environ. Anal. Chem. 2016, 9, 15–23. [Google Scholar] [CrossRef]
- Wu, J.; Sun, J.; Bosker, T.; Vijver, M.G.; Peijnenburg, W. Toxicokinetics and particle number-based trophic transfer of a metallic nanoparticle mixture in a terrestrial food chain. Environ. Sci. Technol. 2023, 57, 2792–2803. [Google Scholar] [CrossRef]
- Wojcieszek, J.; Jiménez-Lamana, J.; Bierla, K.; Ruzik, L.; Asztemborska, M.; Jarosz, M.; Szpunar, J. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.). Sci. Total Environ. 2019, 683, 284–292. [Google Scholar] [CrossRef]
- Gao, X.; Kundu, A.; Persson, D.P.; Szameitat, A.; Minutello, F.; Husted, S.; Ghoshal, S. Application of ZnO nanoparticles encapsulated in mesoporous silica on the abaxial side of a Solanum lycopersicum leaf enhances Zn uptake and translocation via the phloem. Environ. Sci. Technol. 2023, 57, 21704–21714. [Google Scholar] [CrossRef]
- Yamashita, S.; Yoshikuni, Y.; Obayashi, H.; Suzuki, T.; Green, D.; Hirata, T. Simultaneous determination of size and position of silver and gold nanoparticles in onion cells using laser ablation-ICP-MS. Anal. Chem. 2019, 91, 4544–4551. [Google Scholar] [CrossRef]
- Neves, V.M.; Heidrich, G.M.; Rodrigues, E.S.; Enders, M.S.P.; Muller, E.I.; Nicoloso, F.T.; de Carvalho, H.W.P.; Dressler, V.L. La2O3 nanoparticles: Study of uptake and distribution in Pfaffia glomerata (Spreng.) pedersen by LA-ICP-MS and μ-XRF. Environ. Sci. Technol. 2019, 53, 10827–10834. [Google Scholar] [CrossRef]
- Li, Z.; Yan, W.; Li, Y.; Xiao, Y.; Shi, Y.; Zhang, X.; Lei, J.; Min, K.; Pan, Y.; Chen, X.; et al. Particle size determines the phytotoxicity of ZnO nanoparticles in rice (Oryza sativa L.) revealed by spatial imaging techniques. Environ. Sci. Technol. 2023, 57, 13356–13365. [Google Scholar] [CrossRef]
- Malejko, J.; Swierzewska, N.; Bajguz, A.; Godlewska-Zylkiewicz, B. Method development for speciation analysis of nanoparticle and ionic forms of gold in biological samples by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2018, 142, 1–7. [Google Scholar] [CrossRef]
- Zhao, B.; Luo, Z.X.; Zhang, H.L.; Zhang, H. Imaging tools for plant nanobiotechnology. Front. Genome Ed. 2022, 4, 1029944. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.X.; Ma, J.; Zhang, R.; Li, P.; Gao, M.; Sun, C.Q.; Weng, L.P.; Chen, Y.L.; Yan, S.; Li, Y.T. Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. J. Hazard. Mater. 2022, 431, 11. [Google Scholar] [CrossRef]
- Wagener, S.; Jungnickel, H.; Dommershausen, N.; Fischer, T.; Laux, P.; Luch, A. Determination of nanoparticle uptake, distribution, and characterization in plant root tissue after realistic long-term exposure to sewage sludge using information from mass spectrometry. Environ. Sci. Technol. 2019, 53, 5416–5426. [Google Scholar] [CrossRef]
- Ouyang, X.X.; Ma, J.; Liu, Y.; Li, P.; Wei, R.F.; Chen, Q.S.; Weng, L.P.; Chen, Y.L.; Li, Y.T. Foliar cadmium uptake, transfer, and redistribution in Chili: A comparison of foliar and root uptake, metabolomic, and contribution. J. Hazard. Mater. 2023, 453, 131421. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Y.H.; Xie, C.J.; Guo, Z.L.; He, X.; Valsami-Jones, E.; Lynch, I.; Luo, W.H.; Zheng, L.R.; Zhang, Z.Y. Plant species-dependent transformation and translocation of ceria nanoparticles. Environ. Sci.-Nano 2019, 6, 60–67. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Yin, S.; Dai, Y.; Zhao, J.; Wang, Z.; Xing, B. Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae. J. Hazard. Mater. 2023, 448, 130857. [Google Scholar] [CrossRef]
- Zhang, H.; Goh, N.S.; Wang, J.W.; Pinals, R.L.; González-Grandío, E.; Demirer, G.S.; Butrus, S.; Fakra, S.C.; Flores, A.D.; Zhai, R.; et al. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat. Nanotechnol. 2022, 17, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Sekine, R.; Moore, K.L.; Matzke, M.; Vallotton, P.; Jiang, H.B.; Hughes, G.M.; Kirby, J.K.; Donner, E.; Grovenor, C.R.M.; Svendsen, C.; et al. Complementary imaging of silver nanoparticle interactions with green algae: Dark-field microscopy, electron microscopy, and nanoscale secondary ion mass spectrometry. ACS Nano 2017, 11, 10894–10902. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.G.; An, J.; Faulkner, M.M.; Wu, H.H.; Li, Z.H.; Tian, X.L.; Giraldo, J.P. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 2020, 14, 7970–7986. [Google Scholar] [CrossRef]
- Sharma, S.; Muddassir, M.; Muthusamy, S.; Vaishnav, P.K.; Singh, M.; Sharma, D.; Kanagarajan, S.; Shanmugam, V. A non-classical route of efficient plant uptake verified with fluorescent nanoparticles and root adhesion forces investigated using AFM. Sci. Rep. 2020, 10, 19233. [Google Scholar] [CrossRef]
- Bonilla-Bird, N.J.; Paez, A.; Reyes, A.; Hernandez-Viezcas, J.A.; Li, C.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Two-photon microscopy and spectroscopy studies to determine the mechanism of copper oxide nanoparticle uptake by sweetpotato roots during postharvest treatment. Environ. Sci. Technol. 2018, 52, 9954–9963. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, C.; Cota-Ruiz, K.; Peralta-Videa, J.R.; Sun, Y.; Rawat, S.; Tan, W.; Reyes, A.; Hernandez-Viezcas, J.A.; Niu, G.; et al. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Sci. Total Environ. 2020, 725, 138387. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Y.; Cota-Ruiz, K.; Reyes, A.; Sun, Y.; Peralta-Videa, J.; Hernandez-Viezcas, J.A.; Turley, R.S.; Niu, G.; Li, C.; et al. Bok choy (Brassica rapa) grown in copper oxide nanoparticles-amended soils exhibits toxicity in a phenotype-dependent manner: Translocation, biodistribution and nutritional disturbance. J. Hazard. Mater. 2020, 398, 122978. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Y.; Navarro, G.; Sun, Y.; Cota-Ruiz, K.; Hernandez-Viezcas, J.A.; Niu, G.; Li, C.; White, J.C.; Gardea-Torresdey, J. Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Sci. Total Environ. 2022, 810, 152260. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.D.; Hu, X.J.; Li, Q.; Yin, M.; Song, H.Y.; Hu, J.; Wang, L.H.; Fan, C.H.; Chen, N. Unraveling cell-type-specific targeted delivery of membrane-camouflaged nanoparticles with plasmonic imaging. Nano Lett. 2020, 20, 5228–5235. [Google Scholar] [CrossRef]
- Ye, Y.; Reyes, A.M.; Li, C.; White, J.C.; Gardea-Torresdey, J.L. Mechanistic insight into the internalization, distribution, and autophagy process of manganese nanoparticles in Capsicum annuum L.: Evidence from orthogonal microscopic analysis. Environ. Sci. Technol. 2023, 57, 9773–9781. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y.L.; Chen, C.Y. In situ analysis of the fate and behavior of inorganic nanomaterials in biological systems by synchrotron radiation X-ray probe techniques. Curr. Anal. Chem. 2022, 18, 723–738. [Google Scholar] [CrossRef]
- Vijayan, P.; Willick, I.R.; Lahlali, R.; Karunakaran, C.; Tanino, K.K. Synchrotron radiation sheds fresh light on plant research: The use of powerful techniques to probe structure and composition of plants. Plant Cell Physiol. 2015, 56, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Michel, H.A.; Larue, C.; Pradas del Real, A.E.; Cotte, M.; Sarret, G. Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol. Biochem. 2017, 110, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, M.; Lepore, G.O.; Pagano, L.; d’Acapito, F.; Gianoncelli, A.; Villani, M.; Lazzarini, L.; White, J.C.; Marmiroli, N. The fate of CdS quantum dots in plants as revealed by extended X-ray absorption fine structure (EXAFS) analysis. Environ. Sci.-Nano 2020, 7, 1150–1162. [Google Scholar] [CrossRef]
- Rodrigues, S.; Avellan, A.; Bland, G.D.; Miranda, M.C.R.; Larue, C.; Wagner, M.; Moreno-Bayona, D.A.; Castillo-Michel, H.; Lowry, G.V.; Rodrigues, S.M. Effect of a zinc phosphate shell on the uptake and translocation of foliarly applied ZnO nanoparticles in pepper plants (Capsicum annuum). Environ. Sci. Technol. 2024, 58, 3213–3223. [Google Scholar] [CrossRef]
- Freitas, M.N.; Guerra, M.B.B.; Adame, A.; Moraes, T.F.; Junior, J.L.; Pérez, C.A.; Abdala, D.B.; Cicero, S.M. A first glance at the micro-ZnO coating of maize (Zea mays L.) seeds: A study of the elemental spatial distribution and Zn speciation analysis. J. Anal. At. Spectrom. 2020, 35, 3021–3031. [Google Scholar] [CrossRef]
- Liu, M.Y.; Feng, S.; Ma, Y.H.; Xie, C.J.; He, X.; Ding, Y.Y.; Zhang, J.Z.; Luo, W.H.; Zheng, L.R.; Chen, D.L.; et al. Influence of surface charge on the phytotoxicity, transformation, and translocation of CeO2 nanoparticles in cucumber plants. ACS Appl. Mater. Interfaces 2019, 11, 16905–16913. [Google Scholar] [CrossRef]
- Larue, C.; Castillo-Michel, H.; Stein, R.J.; Fayard, B.; Pouyet, E.; Villanova, J.; Magnin, V.; Pradas del Real, A.E.; Trcera, N.; Legros, S.; et al. Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectroc. Acta Pt. B-Atom. Spectr. 2016, 119, 17–24. [Google Scholar] [CrossRef]
- Dumont, E.R.; Elger, A.; Azéma, C.; Michel, H.C.; Surble, S.; Larue, C. Cutting-edge spectroscopy techniques highlight toxicity mechanisms of copper oxide nanoparticles in the aquatic plant Myriophyllum spicatum. Sci. Total Environ. 2022, 803, 150001. [Google Scholar] [CrossRef]
- Borgatta, J.R.; Lochbaum, C.A.; Elmer, W.H.; White, J.C.; Pedersen, J.A.; Hamers, R.J. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci.-Nano 2021, 8, 1067–1080. [Google Scholar] [CrossRef]
- Candan, F.; Markushin, Y.; Ozbay, G. Uptake and presence evaluation of nanoparticles in Cicer arietinum L. by infrared spectroscopy and machine learning techniques. Plants 2022, 11, 1569. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614. [Google Scholar] [CrossRef]
- Guo, H.Y.; He, L.L.; Xing, B.S. Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environ. Sci.-Nano 2017, 4, 2093–2107. [Google Scholar] [CrossRef]
- Savassa, S.M.; Castillo-Michel, H.; Pradas del Real, A.E.; Reyes-Herrera, J.; Marques, J.P.R.; de Carvalho, H.W.P. Ag nanoparticles enhancing Phaseolus vulgaris seedling development: Understanding nanoparticle migration and chemical transformation across the seed coat. Environ. Sci.-Nano 2021, 8, 493–501. [Google Scholar] [CrossRef]
- Cupil-Garcia, V.; Li, J.Q.; Norton, S.J.; Odion, R.A.; Strobbia, P.; Menozzi, L.; Ma, C.; Hu, J.; Zentella, R.; Boyanov, M.I.; et al. Plasmonic nanorod probes’ journey inside plant cells for in vivo SERS sensing and multimodal imaging. Nanoscale 2023, 15, 6369–6407. [Google Scholar] [CrossRef]
- Guo, H.Y.; Zhang, Z.Y.; Xing, B.S.; Mukherjee, A.; Musante, C.; White, J.C.; He, L.L. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced raman spectroscopy (SERS). Environ. Sci. Technol. 2015, 49, 4317–4324. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Shang, H.P.; Xing, B.S.; He, L.L. In situ and real time investigation of foliarly applied silver nanoparticles on and in spinach leaves by surface enhanced Raman spectroscopic mapping. Anal. Methods 2021, 13, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Galbács, G. A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 2015, 407, 7537–7562. [Google Scholar] [CrossRef]
- Modlitbová, P.; Novotny, K.; Porízka, P.; Klus, J.; Lubal, P.; Zlámalová-Gargosová, H.; Kaiser, J. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotox. Environ. Safe 2018, 147, 334–341. [Google Scholar] [CrossRef]
- Modlitbová, P.; Hlavácek, A.; Svestková, T.; Porízka, P.; Simoníkova, L.; Novotny, K.; Kaiser, J. The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies. Chemosphere 2019, 225, 723–734. [Google Scholar] [CrossRef]
Matrix | MNP | Extraction Agent | Recovery | Comments | Ref. |
---|---|---|---|---|---|
Soybean plants | MoS2 NPs | HNO3, H2O2 | 98.1% (Mo total mass) | - | [37] |
Rice plants | TiO2 NPs | HNO3, HCl | - | The size distribution of extracted NP was more similar to the NP control after enzymatic treatment than acid treatment. | [43] |
Macerozyme R-10 | |||||
Tomato plants | AuNPs | Macerozyme R-10 | 79–96% (particle concentration) | The size distribution of extracted particles matched well with the spiked NPs. | [38] |
Potato, radish, carrot, and lettuce crops | AuNPs | TMAH | 97.2–101.8% (Au mass) | - | [44] |
Macerozyme R-10 | <1% (Au mass) | ||||
Lettuce, corn, and kale leaves | AuNPs | Methanol | 100% (Au mass) | Based on spICP-MS or ICP-TOF-MS, size distribution, experimental detection limits, and other parameters were evaluated. | [41] |
CuO NPs | 80.8–98.6% (Cu mass) | ||||
ZnO NPs | 68.8–94.9% (Zn mass) | ||||
Spanish leaves | AgNPs | 4-MBA | - | Following 2 h extraction, the morphology and size of the extracted AgNPs were largely preserved. | [32] |
Technique | Plants | MNP [Original Particle Size] | Sample Preparation | Abundance [LOD/LOQ] | Location [Spatial Revolution] | Morphology, Composition, and Speciation | Ref. |
---|---|---|---|---|---|---|---|
spICP-MS | Radish plants | CeO2 NPs [56.9 ± 1.2 nm] | Enzymatic digestion | Particle number concentration | - | Size distribution of NPs | [50] |
LA-spICP-MS | Onion cells | AgNPs [60 nm], AuNPs [60 ± 12 nm] | Fresh tissues placed on a glass slide | Particle number concentration | Subcellular location of NPs and distribution of ionic forms [3 μm] | Size distribution of NPs and analysis of NPs and ionic forms | [52] |
LA-ICP-MS | P. glomerata plants | La2O3 NPs [15–30 nm] | Dried leaf fixed on a quartz slide | La mass concentration [LOQ: 0.28 μg/g] | La distribution in leaves | Identification of La2O3 NPs | [53] |
HPLC-ICP-MS | Green algae | AuNPs [10, 40 nm] | Ultrasonic disruption | - | - | Speciation and size alteration between Au(III) and AuNPs | [55] |
NanoSIMS | Water spinach and pak choi plants | CdS NPs [130 ± 25 × 15 ± 8 nm] | Tissue section | Mass concentration (sq.) | Subcellular distribution of +12C14N, −32S, 40Ca, and +114Cd [200 nm] | - | [57] |
ToF-SIMS | T. aestivum, B. napus, and H. vulgare plants | AgNPs [17 ± 3 nm], CeO2 NPs [29 nm] | Frozen tissue section | Isotope concentration (sq.) | 3D distribution of Ag and Ce in tissues [LR: 80 nm; DR: 10 nm] | Aggregate size distribution | [58] |
TEM | N. benthamiana plants | DNA/RNA-AuNRs [13 × 68 nm], AuNSs [5, 10, 15, 20 nm] | Tissue section on copper grids | - | Intracellular location of AuNPs | Shape and size of AuNPs | [62] |
AFM | Tomato plants | CS@CH [15–30 nm], CS@OA [15 ± 8 nm] | Fresh tissue fixed on a glass plate | - | - | Adhesion force between NPs and root | [65] |
CLSM | Cotton and maize plants | Dil- CeO2 NPs [7.5 ± 2.9, 11.7 ± 6.1, 1.8 ± 0.7, 10.8 ± 8.9, 15.6 ± 9.0 nm] | Fixed tissue mounted on slides | - | Colocalization of CeO2 NPs and chloroplasts | - | [64] |
TPM | Sweet potato roots | CuO NPs [10–100 nm] | Fresh transversal thin sections | - | Tissue location of CuO NPs [600 nm] | - | [66] |
DFM-HSI | Green algae | AgNPs [10.0 ± 1.8, 60.8 ± 6.6, 8.8 ± 2.2, 60.8 ± 6.6 nm] | Fresh cell suspension on a slide | - | Subcellular location of NPs | NPs’ identification | [63] |
SEM | Tissue section | - | NP location on cell surfaces | Shape and size of NPs | |||
XANES | Cucumber plants | CeO2 NPs [7 nm] | Dried powder | Content of Ce(III) and Ce(IV) (sq.) | - | Transformation between Ce(III) and Ce(IV) | [78] |
μ-XRF | Fresh plants | - | Ce distribution on tissue surface [50/100 μm] | - | |||
EXAFS +XANES | A. thaliana (wt. and mut.) | CdS QDs [5 nm] | Dried powder | - | - | Bond of CdS NPs with biomolecules | [75] |
PIXE/RBS | M. spicatum plants | CuO NPs [64.9 ± 8.5 nm] | Freeze-dried tissue sections | Cu content (sq.) | Tissue distribution of Cu, KCa [2.5 μm] | - | [80] |
XPS | Pumpkin xylem fluid | CuO NPs [120 ± 40 × 900 ± 300 nm] | Centrifugation and supernatant deposited on gold-coated silicon | Relative atomic abundances of C1s, N1s, and O1s [sq.] | - | Elemental composition, corona thickness, and functional groups of CuO NPs | [81] |
ATR-FTIR | Suspension | - | - | Dynamic evolution of chemical bonds of corona | |||
SERS | Spinach leaves | AgNPs [39 ± 4, 50 ± 4, 97 ± 11 nm] | Organic solvent extraction | Mass concentration of AgNPs (sq.) | - | Aggregate of AgNPs | [88] |
Air-dried leaves | - | Penetration depth of AgNPs [10 μm] | Bonds of AgNPs with sulfur-containing biomolecules | ||||
LIBS | Duckweed fronds | Cd-based QDs [4.05.4, 4.0–4.4 nm] | Molded dried leaves glued with epoxide | - | Cd spatial distribution in fronds [200 μm] | - | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Liu, Q.; Wang, Y.; Liu, X.; Zhou, X.; Yan, B. Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles. Nanomaterials 2024, 14, 1939. https://doi.org/10.3390/nano14231939
Zhang K, Liu Q, Wang Y, Liu X, Zhou X, Yan B. Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles. Nanomaterials. 2024; 14(23):1939. https://doi.org/10.3390/nano14231939
Chicago/Turabian StyleZhang, Kena, Qingmeng Liu, Yukun Wang, Xigui Liu, Xiaoxia Zhou, and Bing Yan. 2024. "Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles" Nanomaterials 14, no. 23: 1939. https://doi.org/10.3390/nano14231939
APA StyleZhang, K., Liu, Q., Wang, Y., Liu, X., Zhou, X., & Yan, B. (2024). Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles. Nanomaterials, 14(23), 1939. https://doi.org/10.3390/nano14231939