Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells
<p>Quantification of hydrogen sulfide production. Pixel quantification associated with hydrogen sulfide production by reaction with lead acetate. Two-way ANOVA, <span class="html-italic">p</span>-value < 0.0001, significant difference is indicated by ****.</p> "> Figure 2
<p>CIS nanoparticles kinetics production by <span class="html-italic">F. stepposum</span>. Photographs of tubes containing yeast cells of <span class="html-italic">F. stepposum</span> under indicated biosynthesis conditions at different incubation times at 20 °C. Biosynthesis was conducted using 2 mM CuSO<sub>4</sub> and 8 mM InCl<sub>3</sub>. Variations under different conditions were carried out using different concentrations of GSH and Cys. Negative control corresponds to yeast in water. Condition 1: 40 mM GSH; Condition 2: 40 mM GSH and 50 mM Cys; Condition 3: 40 mM GSH and 100 mM Cys.</p> "> Figure 3
<p>Optical properties of biosynthesized CIS nanoparticles. Absorbance and fluorescence emission spectrum for CIS nanoparticles biosynthesized at different conditions. (<b>A</b>,<b>B</b>) A total of 14 days biosynthesis, and (<b>C</b>,<b>D</b>) a total of 30 days of biosynthesis. (<b>A</b>,<b>C</b>) include band-gap calculation (inset).</p> "> Figure 4
<p>Size characterization of biosynthesized CIS nanoparticles. TEM micrographs of nanoparticles synthesized with 50 mM cysteine. (<b>A</b>) Nanoparticles of 14 days of biosynthesis, marked by red arrows. (<b>B</b>) Digital zoom of (<b>A</b>), highlighting pyramidal nanoparticles by green arrows. (<b>C</b>) Size histogram of nanoparticles from (<b>A</b>). (<b>D</b>) Nanoparticles of 30 days of biosynthesis, marked by red arrows. (<b>E</b>) Digital zoom of (<b>D</b>), highlighting pyramidal nanoparticles by green arrows. (<b>F</b>) Size histogram of nanoparticles from (<b>D</b>).</p> "> Figure 5
<p>Evaluation of the composition of the biosynthesized nanoparticles. Energy-dispersive X-ray spectroscopy (EDX) analysis: (<b>A</b>,<b>B</b>) correspond to the syntheses performed with 50 mM cysteine at 14 and 30 days, respectively.</p> "> Figure 6
<p>CIS nanoparticles photostability evaluation. Nanoparticles were exposed to continuous light for 5 days and fluorescence emission was measured on different days (0, 1, 3, and 5 days). Two-way ANOVA, <span class="html-italic">p</span>-value < 0.0001, significant difference is indicated by ****.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Isolation and Characterization of Yeasts from Soil Samples
2.2.1. Yeast Isolation
2.2.2. Morphology Analysis of Yeast Isolates
2.2.3. Genotypic Identification of Yeast Isolates
2.2.4. Growth Curves
2.2.5. Copper Minimal Inhibitory Concentration (MIC) Determination
2.2.6. Hydrogen Sulfide (H2S) Production
2.3. Biosynthesis and Characterization of CIS Nanoparticles by Yeasts Isolated from Union Glacier, Antarctica
2.3.1. Biosynthesis of CIS Nanoparticles
2.3.2. Absorption and Fluorescence Spectroscopy
2.3.3. Dynamic Light Scattering (DLS)
2.3.4. Transmission Electron Microscopy (TEM)
2.3.5. X-ray Diffraction Analysis (XRD)
2.3.6. Energy-Dispersive X-ray Spectroscopy (EDX)
2.3.7. Photostability Assay
2.4. Application of Biosynthesized CIS Nanoparticles as Photosensitizers in Quantum Dot-Sensitized Solar Cells (QDSSCs)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Characterization of Yeasts from Soil Samples from Union Glacier, Antarctica
3.2. Biosynthesis and Characterization of CIS Nanoparticles by Yeasts Isolates
3.3. Application of Biosynthesized CIS Nanoparticles as Photosensitizers in QDSSCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chellamuthu, P.; Naughton, K.; Pirbadian, S.; Silva, K.P.T.; Chavez, M.S.; El-Naggar, M.Y.; Boedicker, J. Biogenic Control of Manganese Doping in Zinc Sulfide Nanomaterial Using Shewanella oneidensisMR-1. Front. Microbiol. 2019, 10, 436994. [Google Scholar] [CrossRef]
- Xu, S.; Luo, X.; Xing, Y.; Liu, S.; Huang, Q.; Chen, W. Complete Genome Sequence of Raoultella Sp. Strain X13, a Promising Cell Factory for the Synthesis of CdS Quantum Dots. 3 Biotech 2019, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Lu, Z.; Cui, X.; Qiao, Y.; Guo, J.; Anderson, J.M.; Li, C.M. Extracellular Microbial Synthesis of Biocompatible CdTe Quantum Dots. Acta Biomater. 2010, 6, 3534–3541. [Google Scholar] [CrossRef] [PubMed]
- Li, T.L.; Cai, C.D.; Yeh, T.F.; Teng, H. Capped CuInS2 Quantum Dots for H2 Evolution from Water under Visible Light Illumination. J. Alloys Compd. 2013, 550, 326–330. [Google Scholar] [CrossRef]
- Jeong, H.; Song, J.H.; Jeong, S.; Chang, W.S. Graphene/PbS Quantum Dot Hybrid Structure for Application in near-Infrared Photodetectors. Sci. Rep. 2020, 10, 12475. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.H.; Ramasamy, P.; Lee, Y.S.; Jeong, M.H.; Lee, J.S. High-Performance Hybrid InP QDs/Black Phosphorus Photodetector. ACS Appl. Mater. Interfaces 2019, 11, 29041–29046. [Google Scholar] [CrossRef] [PubMed]
- Sumanth Kumar, D.; Jai Kumar, B.; Mahesh, H.M. Quantum Nanostructures (QDs): An Overview. In Synthesis of Inorganic Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 59–88. ISBN 978-0-08-101975-7. [Google Scholar]
- Crisp, R.W.; Pach, G.F.; Kurley, J.M.; France, R.M.; Reese, M.O.; Nanayakkara, S.U.; Macleod, B.A.; Talapin, D.V.; Beard, M.C.; Luther, J.M. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction. Nano Lett. 2017, 17, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Molaei, M.; Karimipour, M. CdSe and CdSe/CdS Core–Shell QDs: New Approach for Synthesis, Investigating Optical Properties and Application in Pollutant Degradation. Luminescence 2017, 32, 1137–1144. [Google Scholar] [CrossRef]
- Yin, J.; Cogan, N.M.B.; Burke, R.; Hou, Z.; Sowers, K.L.; Krauss, T.D. Size Dependence of Photocatalytic Hydrogen Generation for CdTe Quantum Dots. J. Chem. Phys. 2019, 151, 174707. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, Y.; Xu, K.; Fu, T.; Qin, H.; Zheng, X. An in Vitro Study of Vascular Endothelial Toxicity of CdTe Quantum Dots. Toxicology 2011, 282, 94–103. [Google Scholar] [CrossRef]
- Oetiker, N.; Muñoz-Villagrán, C.; Vásquez, C.C.; Bravo, D.; Pérez-Donoso, J.M. Bacterial Phototoxicity of Biomimetic CdTe-GSH Quantum Dots. J. Appl. Microbiol. 2021, 131, 155–168. [Google Scholar] [CrossRef]
- Nikazar, S.; Sivasankarapillai, V.S.; Rahdar, A.; Gasmi, S.; Anumol, P.S.; Shanavas, M.S. Revisiting the Cytotoxicity of Quantum Dots: An in-Depth Overview. Biophys. Rev. 2020, 12, 703–718. [Google Scholar] [CrossRef]
- Jain, S.; Bharti, S.; Bhullar, G.K.; Tripathi, S.K. I-III-VI Core/Shell QDs: Synthesis, Characterizations and Applications. J. Lumin. 2020, 219, 116912. [Google Scholar] [CrossRef]
- Fakhri, H.; Mahjoub, A.R.; Khavar, A.H.C. Synthesis and Characterization of ZnO/CuInS2 Nanocomposite and Investigation of Their Photocatalytic Properties under Visible Light Irradiation. Appl. Surf. Sci. 2014, 318, 65–73. [Google Scholar] [CrossRef]
- Zhao, C.; Bai, Z.; Liu, X.; Zhang, Y.; Zou, B.; Zhong, H. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. ACS Appl. Mater. Interfaces 2015, 7, 17623–17629. [Google Scholar] [CrossRef]
- Giri, R.K.; Chaki, S.; Khimani, A.J.; Vaidya, Y.H.; Thakor, P.; Thakkar, A.B.; Pandya, S.J.; Deshpande, M.P. Biocompatible CuInS2 Nanoparticles as Potential Antimicrobial, Antioxidant, and Cytotoxic Agents. ACS Omega 2021, 6, 26533–26544. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, X.; Li, Z.; Shi, J.; Zhai, X.; Hu, X.; Zou, X. Employing CuInS2 quantum Dots Modified with Vancomycin for Detecting: Staphylococcus Aureus and Iron(iii). Anal. Methods 2021, 13, 1517–1526. [Google Scholar] [CrossRef]
- Lugo, S.; López, I.; Peña, Y.; Calixto, M.; Hernández, T.; Messina, S.; Avellaneda, D. Characterization of CuInS2 Thin Films Prepared by Chemical Bath Deposition and Their Implementation in a Solar Cell. Thin Solid Films 2014, 569, 76–80. [Google Scholar] [CrossRef]
- Cheng, K.W.; Wu, Y.C.; Hu, Y.T. Ternary CuInS2 Photoelectrodes Created Using the Sulfurization of Cu-In Metal Precursors for Photoelectrochemical Applications. Mater. Res. Bull. 2013, 48, 2457–2468. [Google Scholar] [CrossRef]
- Voigt, D.; Bredol, M.; Gonabadi, A. A General Strategy for CuInS2 Based Quantum Dots with Adjustable Surface Chemistry. Opt. Mater. 2021, 115, 110994. [Google Scholar] [CrossRef]
- Zhong, H.; Lo, S.S.; Mirkovic, T.; Li, Y.; Ding, Y.; Li, Y.; Scholes, G.D. Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CuInS2 Nanocrystals and Their Size-Dependent Properties. ACS Nano 2010, 4, 5253–5262. [Google Scholar] [CrossRef]
- Arshad, A.; Akram, R.; Iqbal, S.; Batool, F.; Iqbal, B.; Khalid, B.; Khan, A.U. Aqueous Synthesis of Tunable Fluorescent, Semiconductor CuInS2 Quantum Dots for Bioimaging. Arab. J. Chem. 2019, 12, 4840–4847. [Google Scholar] [CrossRef]
- Frank, A.; Grunwald, J.; Breitbach, B.; Scheu, C. Facile and Robust Solvothermal Synthesis of Nanocrystalline CuinS2 Thin Films. Nanomaterials 2018, 8, 405. [Google Scholar] [CrossRef]
- Arriaza-Echanes, C.; Campo-Giraldo, J.L.; Quezada, C.P.; Espinoza-González, R.; Rivas-Álvarez, P.; Pacheco, M.; Bravo, D.; Pérez-Donoso, J.M. Biomimetic Synthesis of CuInS2 Nanoparticles: Characterization, Cytotoxicity, and Application in Quantum Dots Sensitized Solar Cells. Arab. J. Chem. 2021, 14, 103176. [Google Scholar] [CrossRef]
- Ulloa, G.; Collao, B.; Araneda, M.; Escobar, B.; Álvarez, S.; Bravo, D.; Pérez-Donoso, J.M. Use of Acidophilic Bacteria of the Genus Acidithiobacillus to Biosynthesize CdS Fluorescent Nanoparticles (Quantum Dots) with High Tolerance to Acidic pH. Enzym. Microb. Technol. 2016, 95, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Bruna, N.; Collao, B.; Tello, A.; Caravantes, P.; Díaz-Silva, N.; Monrás, J.P.; Órdenes-Aenishanslins, N.; Flores, M.; Espinoza-Gonzalez, R.; Bravo, D.; et al. Synthesis of Salt-Stable Fluorescent Nanoparticles (Quantum Dots) by Polyextremophile Halophilic Bacteria. Sci. Rep. 2019, 9, 1953. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Monrás, J.P.; Plaza, D.O.; Collao, B.; Saona, L.A.; Durán-Toro, V.; Venegas, F.A.; Soto, C.; Ulloa, G.; Vásquez, C.C.; et al. Low-Temperature Biosynthesis of Fluorescent Semiconductor Nanoparticles (CdS) by Oxidative Stress Resistant Antarctic Bacteria. J. Biotechnol. 2014, 187, 108–115. [Google Scholar] [CrossRef]
- Plaza, D.O.; Gallardo, C.; Straub, Y.D.; Bravo, D.; Pérez-Donoso, J.M. Biological Synthesis of Fluorescent Nanoparticles by Cadmium and Tellurite Resistant Antarctic Bacteria: Exploring Novel Natural Nanofactories. Microb. Cell Factories 2016, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Cordero, R.R.; Damiani, A.; Ferrer, J.; Jorquera, J.; Tobar, M.; Labbe, F.; Carrasco, J.; Laroze, D. UV Irradiance and Albedo at Union Glacier Camp (Antarctica): A Case Study. PLoS ONE 2014, 9, e90705. [Google Scholar] [CrossRef]
- Rivera, A.; Zamora, R.; Rada, C.; Walton, J.; Proctor, S. Glaciological Investigations on Union Glacier, Ellsworth Mountains, West Antarctica. Ann. Glaciol. 2010, 51, 91–96. [Google Scholar] [CrossRef]
- Rivera, A.; Zamora, R.; Uribe, J.A.; Jaña, R.; Oberreuter, J. Recent Ice Dynamic and Surface Mass Balance of Union Glacier in the West Antarctic Ice Sheet. Cryosphere 2014, 8, 1445–1456. [Google Scholar] [CrossRef]
- Gomez, R.; Arigony-Neto, J.; De Santis, A.; Vijay, S.; Jaña, R.; Rivera, A. Ice Dynamics of Union Glacier from SAR Offset Tracking. Glob. Planet. Chang. 2019, 174, 1–15. [Google Scholar] [CrossRef]
- Barahona, S.; Yuivar, Y.; Socias, G.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Identification and Characterization of Yeasts Isolated from Sedimentary Rocks of Union Glacier at the Antarctica. Extremophiles 2016, 20, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Baeza, M.; Barahona, S.; Alcaíno, J.; Cifuentes, V. Amplicon-Metagenomic Analysis of Fungi from Antarctic Terrestrial Habitats. Front. Microbiol. 2017, 8, 313462. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.C.Q.; Godinho, V.M.; Silva, D.A.S.; de Paula, M.T.R.; Vitoreli, G.A.; Zani, C.L.; Alves, T.M.A.; Junior, P.A.S.; Murta, S.M.F.; Barbosa, E.C.; et al. Cultivable Fungi Present in Antarctic Soils: Taxonomy, Phylogeny, Diversity, and Bioprospecting of Antiparasitic and Herbicidal Metabolites. Extrem. Life Extreme Cond. 2018, 22, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Vincent, W.F.; Mueller, D.R.; Bonilla, S. Ecosystems on Ice: The Microbial Ecology of Markham Ice Shelf in the High Arctic. Cryobiology 2004, 48, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cha, Q.-Q.; Dang, Y.-R.; Chen, X.-L.; Wang, M.; McMinn, A.; Espina, G.; Zhang, Y.-Z.; Blamey, J.M.; Qin, Q.-L. Reconstruction of the Functional Ecosystem in the High Light, Low Temperature Union Glacier Region, Antarctica. Front. Microbiol. 2019, 10, 458923. [Google Scholar] [CrossRef] [PubMed]
- Connell, L.; Redman, R.; Craig, S.; Scorzetti, G.; Iszard, M.; Rodriguez, R. Diversity of Soil Yeasts Isolated from South Victoria Land, Antarctica. Microb. Ecol. 2008, 56, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Segal-Kischinevzky, C.; Romero-Aguilar, L.; Alcaraz, L.D.; López-Ortiz, G.; Martínez-Castillo, B.; Torres-Ramírez, N.; Sandoval, G.; González, J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022, 10, 794. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Antarctic Yeasts: Analysis of Their Freeze-Thaw Tolerance and Production of Antifreeze Proteins, Fatty Acids and Ergosterol. BMC Microbiol. 2018, 18, 66. [Google Scholar] [CrossRef]
- Dameron, C.T.; Smith, B.R.; Winge, D.R. Glutathione-Coated Cadmium-Sulfide Crystallites in Candida Glabrata. J. Biol. Chem. 1989, 264, 17355–17360. [Google Scholar] [CrossRef]
- Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Microbial Synthesis of Semiconductor CdS Nanoparticles, Their Characterization, and Their Use in the Fabrication of an Ideal Diode. Biotechnol. Bioeng. 2002, 78, 583–588. [Google Scholar] [CrossRef]
- Williams, P.; Keshavarz-Moore, E.; Dunnill, P. Production of Cadmium Sulphide Microcrystallites in Batch Cultivation by Schizosaccharomyces Pombe. J. Biotechnol. 1996, 48, 259–267. [Google Scholar] [CrossRef]
- Krumov, N.; Oder, S.; Perner-Nochta, I.; Angelov, A.; Posten, C. Accumulation of CdS Nanoparticles by Yeasts in a Fed-Batch Bioprocess. J. Biotechnol. 2007, 132, 481–486. [Google Scholar] [CrossRef]
- Al-Shalabi, Z.; Doran, P.M. Biosynthesis of Fluorescent CdS Nanocrystals with Semiconductor Properties: Comparison of Microbial and Plant Production Systems. J. Biotechnol. 2016, 223, 13–23. [Google Scholar] [CrossRef]
- Seshadri, S.; Saranya, K.; Kowshik, M. Green Synthesis of Lead Sulfide Nanoparticles by the Lead Resistant Marine Yeast, Rhodosporidium Diobovatum. Biotechnol. Prog. 2011, 27, 1464–1469. [Google Scholar] [CrossRef]
- Kowshik, M.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Microbial Synthesis of Semiconductor PbS Nanocrystallites. Adv. Mater. 2002, 14, 815. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K. PbS Nanoparticles: Biosynthesis and Characterisation. Int. J. Nanopart. 2012, 5, 369. [Google Scholar] [CrossRef]
- Sandana Mala, J.G.; Rose, C. Facile Production of ZnS Quantum Dot Nanoparticles by Saccharomyces Cerevisiae MTCC 2918. J. Biotechnol. 2014, 170, 73–78. [Google Scholar] [CrossRef]
- Cuéllar-Cruz, M.; Lucio-Hernández, D.; Martínez-Ángeles, I.; Demitri, N.; Polentarutti, M.; Rosales-Hoz, M.J.; Moreno, A. Biosynthesis of Micro- and Nanocrystals of Pb (II), Hg (II) and Cd (II) Sulfides in Four Candida Species: A Comparative Study of in Vivo and in Vitro Approaches. Microb. Biotechnol. 2017, 10, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Asghari-Paskiabi, F.; Imani, M.; Eybpoosh, S.; Rafii-Tabar, H.; Razzaghi-Abyaneh, M. Population Kinetics and Mechanistic Aspects of Saccharomyces Cerevisiae Growth in Relation to Selenium Sulfide Nanoparticle Synthesis. Front. Microbiol. 2020, 11, 1019. [Google Scholar] [CrossRef] [PubMed]
- Asghari-Paskiabi, F.; Imani, M.; Rafii-Tabar, H.; Razzaghi-Abyaneh, M. Physicochemical Properties, Antifungal Activity and Cytotoxicity of Selenium Sulfide Nanoparticles Green Synthesized by Saccharomyces Cerevisiae. Biochem. Biophys. Res. Commun. 2019, 516, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Sur, V.P.; Kominkova, M.; Buchtova, Z.; Dolezelikova, K.; Zitka, O.; Moulick, A. CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing. Nanomaterials 2019, 9, 1463. [Google Scholar] [CrossRef]
- Venegas, F.A.; Saona, L.A.; Monrás, J.P.; Órdenes-Aenishanslins, N.; Giordana, M.F.; Ulloa, G.; Collao, B.; Bravo, D.; Pérez-Donoso, J.M. Biological Phosphorylated Molecules Participate in the Biomimetic and Biological Synthesis of Cadmium Sulphide Quantum Dots by Promoting H2S Release from Cellular Thiols. RSC Adv. 2017, 7, 40270–40278. [Google Scholar] [CrossRef]
- Garber, W.F.; Nagano, J.; Wada, F.F. Instrumentation for Hydrogen Sulfide Measurement. J. Water Pollut. Control Fed. 1970, 42, R209–R220. [Google Scholar]
- Xia, C.; Wu, W.; Yu, T.; Xie, X.; Van Oversteeg, C.; Gerritsen, H.C.; De Mello Donega, C. Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS2 Quantum Dots. ACS Nano 2018, 12, 8350–8361. [Google Scholar] [CrossRef] [PubMed]
- Órdenes-Aenishanslins, N.; Anziani-Ostuni, G.; Monrás, J.P.; Tello, A.; Bravo, D.; Toro-Ascuy, D.; Soto-Rifo, R.; Prasad, P.N.; Pérez-Donoso, J.M. Bacterial Synthesis of Ternary CdSAg Quantum Dots through Cation Exchange: Tuning the Composition and Properties of Biological Nanoparticles for Bioimaging and Photovoltaic Applications. Microorganisms 2020, 8, 631. [Google Scholar] [CrossRef] [PubMed]
- Vishniact, H.S.; Hempfling, W.P. Cryptococcus vishniacii Sp. Nov., an Antarctic Yeast. Int. J. Syst. Bacteriol. 1979, 29, 153–158. [Google Scholar] [CrossRef]
- Golubev, W.I.; Sampaio, J.P.; Golubeva, E.W. Cryptococcus Stepposus, a New Filobasidiaceous Yeast Species Found in the Prioksko-Terrasny Biosphere Reserve in Russia. Mycol. Res. 2006, 110, 957–961. [Google Scholar] [CrossRef]
- Brandão, L.R.; Libkind, D.; Vaz, A.B.M.; Santo, L.C.E.; Moliné, M.; de García, V.; van Broock, M.; Rosa, C.A. Yeasts from an Oligotrophic Lake in Patagonia (Argentina): Diversity, Distribution and Synthesis of Photoprotective Compounds and Extracellular Enzymes. FEMS Microbiol. Ecol. 2011, 76, 1–13. [Google Scholar] [CrossRef]
- Tian, L.-J.; Zhou, N.-Q.; Liu, X.-W.; Liu, J.-H.; Zhang, X.; Huang, H.; Zhu, T.-T.; Li, L.-L.; Huang, Q.; Li, W.-W.; et al. A Sustainable Biogenic Route to Synthesize Quantum Dots with Tunable Fluorescence Properties for Live Cell Imaging. Biochem. Eng. J. 2017, 124, 130–137. [Google Scholar] [CrossRef]
- Trevors, J.T.; Cotter, C.M. Copper Toxicity and Uptake in Microorganisms. J. Ind. Microbiol. 1990, 6, 77–84. [Google Scholar] [CrossRef]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact Killing and Antimicrobial Properties of Copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Gunn, G. (Ed.) Critical Metals Handbook; John Wiley & Sons; American Geophysical Union: Chichester, UK, 2014; ISBN 978-1-118-75521-1. [Google Scholar]
- Adamo, G.M.; Lotti, M.; Tamás, M.J.; Brocca, S. Amplification of the CUP1 Gene Is Associated with Evolution of Copper Tolerance in Saccharomyces Cerevisiae. Microbiology 2012, 158, 2325–2335. [Google Scholar] [CrossRef] [PubMed]
- Weissman, Z.; Berdicevsky, I.; Cavari, B.Z.; Kornitzer, D. The High Copper Tolerance of Candida Albicans Is Mediated by a P-Type ATPase. Proc. Natl. Acad. Sci. USA 2000, 97, 3520–3525. [Google Scholar] [CrossRef] [PubMed]
- Colipai, C.; Southam, G.; Oyarzún, P.; González, D.; Díaz, V.; Contreras, B.; Nancucheo, I. Synthesis of Copper Sulfide Nanoparticles Using Biogenic H2S Produced by a Low-pH Sulfidogenic Bioreactor. Minerals 2018, 8, 35. [Google Scholar] [CrossRef]
- Bruna, N.; Galliani, E.; Oyarzún, P.; Bravo, D.; Fuentes, F.; Pérez-Donoso, J.M. Biomineralization of Lithium Nanoparticles by Li-Resistant Pseudomonas Rodhesiae Isolated from the Atacama Salt Flat. Biol. Res. 2022, 55, 12. [Google Scholar] [CrossRef] [PubMed]
- Marusak, K.E.; Feng, Y.; Eben, C.F.; Payne, S.T.; Cao, Y.; You, L.; Zauscher, S. Cadmium Sulphide Quantum Dots with Tunable Electronic Properties by Bacterial Precipitation. RSC Adv. 2016, 6, 76158–76166. [Google Scholar] [CrossRef] [PubMed]
- Monrás, J.P.; Díaz, V.; Bravo, D.; Montes, R.A.; Chasteen, T.G.; Osorio-Román, I.O.; Vásquez, C.C.; Pérez-Donoso, J.M. Enhanced Glutathione Content Allows the In Vivo Synthesis of Fluorescent CdTe Nanoparticles by Escherichia Coli. PLoS ONE 2012, 7, e48657. [Google Scholar] [CrossRef]
- Rabouw, F.T.; de Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top. Curr. Chem. 2016, 374, 1–30. [Google Scholar] [CrossRef]
- Gallardo-Benavente, C.; Carrión, O.; Todd, J.D.; Pieretti, J.C.; Seabra, A.B.; Durán, N.; Rubilar, O.; Pérez-Donoso, J.M.; Quiroz, A. Biosynthesis of CdS Quantum Dots Mediated by Volatile Sulfur Compounds Released by Antarctic Pseudomonas Fragi. Front. Microbiol. 2019, 10, 1866. [Google Scholar] [CrossRef]
- Pérez-Donoso, J.M.; Monrás, J.P.; Bravo, D.; Aguirre, A.; Quest, A.F.; Osorio-Román, I.O.; Aroca, R.F.; Chasteen, T.G.; Vásquez, C.C. Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility. PLoS ONE 2012, 7, e30741. [Google Scholar] [CrossRef]
- Jara, D.H.; Yoon, S.J.; Stamplecoskie, K.G.; Kamat, P.V. Size-Dependent Photovoltaic Performance of CuInS2 Quantum Dot-Sensitized Solar Cells. Chem. Mater. 2014, 26, 7221–7228. [Google Scholar] [CrossRef]
- Feng, X.; Li, R.; Wang, M.; Chen, Y. Switchable Synthesis of P- and n-Type Cu–In–S Grooved Pyramid-like Microcrystals for Unassisted Photoelectrochemical Water Splitting. J. Mater. Chem. A 2018, 6, 11180–11188. [Google Scholar] [CrossRef]
- Li, T.L.; Lee, Y.L.; Teng, H. High-Performance Quantum Dot-Sensitized Solar Cells Based on Sensitization with CuInS2 Quantum Dots/CdS Heterostructure. Energy Environ. Sci. 2012, 5, 5315–5324. [Google Scholar] [CrossRef]
- Chumha, N.; Thongtem, T.; Thongtem, S.; Kittiwachana, S.; Kaowphong, S. Cyclic Microwave Radiation Synthesis, Photoconductivity, and Optical Properties of CuInS2 Hollow Sub-Microspheres. Appl. Surf. Sci. 2018, 447, 292–299. [Google Scholar] [CrossRef]
- Dunleavy, R.; Lu, L.; Kiely, C.J.; McIntosh, S.; Berger, B.W. Single-Enzyme Biomineralization of Cadmium Sulfide Nanocrystals with Controlled Optical Properties. Proc. Natl. Acad. Sci. USA 2016, 113, 5275–5280. [Google Scholar] [CrossRef]
- Ríos-Silva, M.; Pérez, M.; Luraschi, R.; Vargas, E.; Silva-Andrade, C.; Valdés, J.; Sandoval, J.M.; Vásquez, C.; Arenas, F. Anaerobiosis Favors Biosynthesis of Single and Multi-Element Nanostructures. PLoS ONE 2022, 17, e0273392. [Google Scholar] [CrossRef]
- Xie, B.-B.; Hu, B.-B.; Jiang, L.-F.; Li, G.; Du, Z.-L. The Phase Transformation of CuInS2 from Chalcopyrite to Wurtzite. Nanoscale Res. Lett. 2015, 10, 86. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, H.-J.; Cao, C.; Sun, Y.-Y.; Yang, L.; Wang, B.-Q.; Zhou, J.-G. Inhibition Effects of Protein-Conjugated Amorphous Zinc Sulfide Nanoparticles on Tumor Cells Growth. J. Nanopart. Res. 2011, 13, 2759–2767. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, Y.; Lian, L.; Fu, X.; Yin, L.; Zhang, J.; Luo, W.; Miao, X.; Zhang, D. Dependence of the Photoluminescence of Hydrophilic CuInS2 Colloidal Quantum Dots on Cu-to-In Molar Ratios. J. Electron. Mater. 2019, 48, 286–295. [Google Scholar] [CrossRef]
- Chen, B.; Zhong, H.; Zhang, W.; Tan, Z.; Li, Y.; Yu, C.; Zhai, T.; Bando, Y.; Yang, S.; Zou, B. Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance. Adv. Funct. Mater. 2012, 22, 2081–2088. [Google Scholar] [CrossRef]
- Carrillo-Carrión, C.; Cárdenas, S.; Simonet, B.M.; Valcárcel, M. Quantum Dots Luminescence Enhancement Due to Illumination with UV/Vis Light. Chem. Commun. 2009, 35, 5214–5216. [Google Scholar] [CrossRef]
- Sharma, V.; Mehata, M.S. Synthesis of Photoactivated Highly Fluorescent Mn2+-Doped ZnSe Quantum Dots as Effective Lead Sensor in Drinking Water. Mater. Res. Bull. 2021, 134, 111121. [Google Scholar] [CrossRef]
- Zaini, M.S.; Ying Chyi Liew, J.; Alang Ahmad, S.A.; Mohmad, A.R.; Kamarudin, M.A. Quantum Confinement Effect and Photoenhancement of Photoluminescence of PbS and PbS/MnS Quantum Dots. Appl. Sci. 2020, 10, 6282. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Correa-Duarte, M.A.; Pastoriza-Santos, I.; Giersig, M.; Kotov, N.A.; Liz-Marzán, L.M. Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. J. Phys. Chem. B 2004, 108, 15461–15469. [Google Scholar] [CrossRef]
- Gannouni, M.; Ben Assaker, I.; Chtourou, R. Photoelectrochemical Cell Based on N-CuIn5S8 Film as Photoanodes for Photocatalytic Water Splitting. Int. J. Hydrogen Energy 2015, 40, 7252–7259. [Google Scholar] [CrossRef]
- Carrasco, V.; Amarelle, V.; Lagos-Moraga, S.; Quezada, C.P.; Espinoza-González, R.; Faccio, R.; Fabiano, E.; Pérez-Donoso, J.M. Production of Cadmium Sulfide Quantum Dots by the Lithobiontic Antarctic Strain Pedobacter Sp. UYP1 and Their Application as Photosensitizer in Solar Cells. Microb. Cell Factories 2021, 20, 41. [Google Scholar] [CrossRef]
- Montagni, T.; Enciso, P.; Marizcurrena, J.J.; Castro-Sowinski, S.; Fontana, C.; Davyt, D.; Cerdá, M.F. Dye Sensitized Solar Cells Based on Antarctic Hymenobacter Sp. UV11 Dyes. Environ. Sustain. 2018, 1, 89–97. [Google Scholar] [CrossRef]
- Órdenes-Aenishanslins, N.; Anziani-Ostuni, G.; Vargas-Reyes, M.; Alarcón, J.; Tello, A.; Pérez-Donoso, J.M. Pigments from UV-Resistant Antarctic Bacteria as Photosensitizers in Dye Sensitized Solar Cells. J. Photochem. Photobiol. B 2016, 162, 707–714. [Google Scholar] [CrossRef]
- Maurya, I.C.; Singh, S.; Senapati, S.; Srivastava, P.; Bahadur, L. Green Synthesis of TiO2 Nanoparticles Using Bixa Orellana Seed Extract and Its Application for Solar Cells. Sol. Energy 2019, 194, 952–958. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, C.-Y.; Roy, P.; Chang, H.-T. Quantum Dot-Sensitized Solar Cells Incorporating Nanomaterials. Chem. Commun. 2011, 47, 9561. [Google Scholar] [CrossRef]
- Litvin, A.P.; Martynenko, I.V.; Purcell-Milton, F.; Baranov, A.V.; Fedorov, A.V.; Gun’ko, Y.K. Colloidal Quantum Dots for Optoelectronics. J. Mater. Chem. A 2017, 5, 13252–13275. [Google Scholar] [CrossRef]
- Chaudhari, N.; Darvekar, S.; Nasikkar, P.; Kulkarni, A.; Tagad, C. Recent Developments on Green Synthesised Nanomaterials and Their Application in Dye-Sensitised Solar Cells. Int. J. Ambient Energy 2022, 43, 7133–7149. [Google Scholar] [CrossRef]
Sample Code | Coordinates |
---|---|
GUMRC-5B-2018 | 79°47′26.1″ S/82°55′43.2″ E |
GUNRC-1C-2018 | 79°47′32.5″ S/32°58′01.4″ E |
GUNRC-4C-2018 | 79°47′27.9″ S/32°55′47.6″ E |
GUNEH-1B-2018 | 79°47′18.7″ S/83°19′52.5″ E |
GUNEH-3A-2018 | 79°47′14.2″ S/83°19′9.4″ E |
GUNEH-1A-2018 | 79°47′18.1″ S/83°19′52.5″ E |
GUNEH-4A-2018 | 79°47′21.9″ S/83°19′58.1″ E |
Code | Primer | Name | Query Coverage | Identity |
---|---|---|---|---|
A1 | ITS1 | Naganishia uzbekistanensis | 94% | 99.81% |
ITS4 | Naganishia uzbekistanensis | 100% | 100% | |
A2 | ITS1 | Naganishia vishniacii | 100% | 99.81% |
ITS4 | Naganishia vishniacii | 100% | 100% | |
A3 | ITS1 | Filobasidium stepposum | 100% | 100% |
ITS4 | Filobasidium stepposum | 100% | 100% |
Cell | Open Circuit Voltage Voc (V) | Short Circuit Current Isc (A) | Pmax (W) | Fill Factor FF | Efficiency η (%) |
---|---|---|---|---|---|
TiO2 | 0.150 | 1.030 × 10−5 | 1.803 × 10−6 | 0.955 | 0.0017 |
CIS (biosynthesis) | 0.247 | 2.729 × 10−4 | 2.247 × 10−5 | 0.367 | 0.0247 |
CIS (biomimetic) | 0.335 | 8.951 × 10−4 | 1.047 × 10−4 | 0.349 | 0.1047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arriaza-Echanes, C.; Campo-Giraldo, J.L.; Valenzuela-Ibaceta, F.; Ramos-Zúñiga, J.; Pérez-Donoso, J.M. Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells. Nanomaterials 2024, 14, 552. https://doi.org/10.3390/nano14060552
Arriaza-Echanes C, Campo-Giraldo JL, Valenzuela-Ibaceta F, Ramos-Zúñiga J, Pérez-Donoso JM. Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells. Nanomaterials. 2024; 14(6):552. https://doi.org/10.3390/nano14060552
Chicago/Turabian StyleArriaza-Echanes, Carolina, Jessica L. Campo-Giraldo, Felipe Valenzuela-Ibaceta, Javiera Ramos-Zúñiga, and José M. Pérez-Donoso. 2024. "Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells" Nanomaterials 14, no. 6: 552. https://doi.org/10.3390/nano14060552
APA StyleArriaza-Echanes, C., Campo-Giraldo, J. L., Valenzuela-Ibaceta, F., Ramos-Zúñiga, J., & Pérez-Donoso, J. M. (2024). Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells. Nanomaterials, 14(6), 552. https://doi.org/10.3390/nano14060552