Multimodal Augmented Reality Applications for Training of Traffic Procedures in Aviation
<p>Augmented Reality (AR) Moving ball scheme for the scanning pattern.</p> "> Figure 2
<p>AR Moving ball guidance for the scanning pattern in the application.</p> "> Figure 3
<p>AR Heading exercise.</p> "> Figure 4
<p>Scanning performance of the AR and conventional training groups in AR post-test. Error bars represent standard errors.</p> "> Figure 5
<p>Mean scores of the ARI subscales in female and male trainees from the experimental group that used the AR applications. Error bars represent standard errors.</p> ">
Abstract
:1. Introduction
1.1. Collision Avoidance Training
1.2. Gender and Flight Training
1.3. Research Questions
2. Materials and Methods
2.1. Participants
2.2. Equipment
- Moving ball guidance and assessment of the scanning pattern
- Simulation of traffic with an additional quiz to assess the collision detection accuracy, the avoidance maneuver, and the identification of the right-of-way.
- Spatial orientation exercises and assessment
Flight Simulator
2.3. Procedure
2.4. Independent Variables
2.5. Dependent Measures
2.6. Data Analysis
3. Results
3.1. Collision Detection and Avoidance Training
3.2. Effects of the Type of Training
3.3. AR Scanning Training
3.4. Gender Effects
3.5. Assessment of the AR Application and the Subjective AR Experience
4. Discussion
4.1. Effects of the Traffic Detection and Collision Avoidance Training
4.2. Gender Diversity and AR Immersion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caudell, T.; Mizell, D. Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, Kauai, HI, USA, 7–10 January 1992; Volume 2, pp. 659–669. [Google Scholar] [CrossRef]
- Garzón, J. An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Wu, H.K.; Lee, S.W.Y.; Chang, H.Y.; Liang, J.C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Billinghurst, M.; Kato, H.; Poupyrev, I. The magicbook-moving seamlessly between reality and virtuality. IEEE Comput. Graph. Appl. 2001, 21, 6–8. [Google Scholar]
- Billinghurst, M.; Kato, H. Collaborative augmented reality. Commun. ACM 2002, 45, 64–70. [Google Scholar] [CrossRef]
- Feng, S.; He, X.; He, W.; Billinghurst, M. Can you hear it? Stereo sound-assisted guidance in augmented reality assembly. Virtual Real. 2022, 1–11. [Google Scholar] [CrossRef]
- Huang, W.; Wakefield, M.; Rasmussen, T.A.; Kim, S.; Billinghurst, M. A review on communication cues for augmented reality based remote guidance. J. Multimodal User Interfaces 2022, 16, 239–256. [Google Scholar] [CrossRef]
- Bower, M.; Howe, C.; McCredie, N.; Robinson, A.; Grover, D. Augmented reality in Education—Cases, places, and potentials. In Proceedings of the 2013 IEEE 63rd Annual Conference International Council for Education Media (ICEM), Singapore, 1–4 October 2013; pp. 1–11. [Google Scholar] [CrossRef]
- Lasica, I.E.; Katzis, K.; Meletiou-Mavrotheris, M.; Dimopoulos, C. Augmented reality in laboratory-based education: Could it change the way students decide about their future studies? In Proceedings of the 2017 IEEE Global Engineering Education Conference (EDUCON), Athens, Greece, 25–28 April 2017; pp. 1473–1476. [Google Scholar] [CrossRef]
- Vergara, D.; Extremera, J.; Rubio, M.P.; Dávila, L.P. The proliferation of virtual laboratories in educational fields. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2020, 9, 85–97. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 2017, 143, 05016009. [Google Scholar] [CrossRef]
- Brown, L. The Next Generation Classroom: Transforming Aviation Training with Augmented Reality. In Proceedings of the National Training Aircraft Symposium (NTAS), Daytona Beach, FL, USA, 14–16 August 2017. [Google Scholar]
- Brown, L. Holographic Micro-simulations to Enhance Aviation Training with Mixed Reality. In Proceedings of the National Training Aircraft Symposium (NTAS), Daytona Beach, FL, USA, 15 August 2018. [Google Scholar]
- Brown, L. Augmented Reality in International Pilot Training to Meet Training Demands; Instructional Development Grants, Western Michigan University: Kalamazoo, MI, USA, 2019. [Google Scholar]
- Moesl, B.; Schaffernak, H.; Vorraber, W.; Braunstingl, R.; Herrele, T.; Koglbauer, I.V. A Research Agenda for Implementing Augmented Reality in Ab Initio Pilot Training. Aviat. Psychol. Appl. Hum. Factors 2021, 11, 118–126. [Google Scholar] [CrossRef]
- Schaffernak, H.; Moesl, B.; Vorraber, W.; Braunstingl, R.; Herrele, T.; Koglbauer, I. Design and Evaluation of an Augmented Reality Application for Landing Training. In Human Interaction, Emerging Technologies and Future Applications IV; Advances in Intelligent Systems and Computing; Ahram, T., Taiar, R., Groff, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1378, pp. 107–114. [Google Scholar] [CrossRef]
- Moesl, B.; Schaffernak, H.; Vorraber, W.; Holy, M.; Herrele, T.; Braunstingl, R.; Koglbauer, I.V. Towards a More Socially Sustainable Advanced Pilot Training by Integrating Wearable Augmented Reality Devices. Sustainability 2022, 14, 2220. [Google Scholar] [CrossRef]
- Schaffernak, H.; Moesl, B.; Vorraber, W.; Holy, M.; Herzog, E.M.; Novak, R.; Koglbauer, I.V. Novel Mixed Reality Use Cases for Pilot Training. Educ. Sci. 2022, 12, 345. [Google Scholar] [CrossRef]
- Brooks, K. There Is Nothing Virtual about Immersion: Narrative Immersion for VR and Other Interfaces; Motorola Labs/Human Interface Labs. 2003. Available online: http://desres18.netornot.at/md/there-is-nothing-virtual-about-immersion/ (accessed on 1 November 2022).
- Qin, H.; Patrick Rau, P.L.; Salvendy, G. Measuring player immersion in the computer game narrative. Int. J. Hum.-Comput. Interact. 2009, 25, 107–133. [Google Scholar] [CrossRef]
- Brown, E.; Cairns, P. A Grounded Investigation of Game Immersion. In Proceedings of the CHI ’04 Extended Abstracts on Human Factors in Computing Systems, Vienna, Austria, 24–29 April 2004; Association for Computing Machinery: New York, NY, USA, 2004; pp. 1297–1300. [Google Scholar] [CrossRef]
- Ermi, L.; Mäyrä, F. Fundamental Components of the Gameplay Experience: Analysing Immersion. In Proceedings of the Digital Games Research Conference 2005, Changing Views: Worlds in Play, Vancouver, BC, Canada, 16–20 June 2005; pp. 16–20. [Google Scholar]
- Csikszentmihalyi, M.; Csikzentmihaly, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York, NY, USA, 1990. [Google Scholar]
- Georgiou, Y.; Kyza, E.A. The development and validation of the ARI questionnaire: An instrument for measuring immersion in location-based augmented reality settings. Int. J. Hum.-Comput. Stud. 2017, 98, 24–37. [Google Scholar] [CrossRef]
- Bressler, D.; Bodzin, A. A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. J. Comput. Assist. Learn. 2013, 29, 505–517. [Google Scholar] [CrossRef]
- Schaffernak, H.; Moesl, B.; Vorraber, W.; Koglbauer, I.V. Potential Augmented Reality Application Areas for Pilot Education: An Exploratory Study. Educ. Sci. 2020, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Schutz, P.A.; Pekrun, R. Emotion in Education—A Volume in Educational Psychology; Elsevier Inc.: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Eccles, D.W.; Ward, P.; Woodman, T.; Janelle, C.M.; Scanff, C.L.; Ehrlinger, J.; Castanier, C.; Coombes, S.A. Where’s the Emotion? How Sport Psychology Can Inform Research on Emotion in Human Factors. Hum. Factors 2011, 53, 180–202. [Google Scholar] [CrossRef]
- Rheinberg, F.; Vollmeyer, R.; Burns, B.D. QCM: A questionnaire to assess current motivation in learning situations. Diagnostica 2001, 47, 57–66. [Google Scholar] [CrossRef]
- Vollmeyer, R.; Rheinberg, F. Motivation and metacognition when learning a complex system. Eur. J. Psychol. Educ. 1999, 14, 541–554. [Google Scholar] [CrossRef]
- Vollmeyer, R.; Rheinberg, F. Does motivation affect performance via persistence? Learn. Instr. 2000, 10, 293–309. [Google Scholar] [CrossRef]
- Bauer, S.; Braunstingl, R.; Riesel, M.; Koglbauer, I. Improving the method for upset recovery training of ab initio student pilots in simulated and real flight. In Proceedings of the 33rd Conference of the European Association for Aviation Psychology, Dubrovnik, Croatia, 24–28 September 2019; Schwarz, M., Lasry, J., Schnücker, G.N., Becherstorfer, H., Eds.; 2019; pp. 167–179. [Google Scholar]
- Koglbauer, I.; Kallus, K.W.; Braunstingl, R.; Boucsein, W. Recovery Training in Simulator Improves Performance and Psychophysiological State of Pilots During Simulated and Real Visual Flight Rules Flight. Int. J. Aviat. Psychol. 2011, 21, 307–324. [Google Scholar] [CrossRef]
- Braunstingl, R.; Baciu, C.; Koglbauer, I. Learning Style, Motivation, Emotional State And Workload of High Performers. In Proceedings of the ERD 2018 Social & Behavioural Sciences, Cluj-Napoca, Romania, 6–7 July 2018; pp. 374–381. [Google Scholar] [CrossRef]
- Koglbauer, I. Evaluation of A Coaching Program with Ab Initio Student Pilots. In Proceedings of the ERD 2017 Social & Behavioural Sciences, Cluj-Napoca, Romania, 6–7 July 2018; pp. 663–669. [Google Scholar] [CrossRef]
- European Aviation Safety Agency. The European Plan for Aviation Safety EPAS 2019–2023; European Aviation Safety Agency: Cologne, Germany, 2018. [Google Scholar]
- Haberkorn, T.; Koglbauer, I.; Braunstingl, R.; Prehofer, B. Requirements for Future Collision Avoidance Systems in Visual Flight: A Human-Centered Approach. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 583–594. [Google Scholar] [CrossRef]
- Koglbauer, I. Gender differences in time perception. In The Cambridge Handbook of Applied Perception Research, 1st ed.; Cambridge University Press: Cambridge, UK, 2015; pp. 1004–1028. [Google Scholar]
- Koglbauer, I. Simulator Training Improves the Estimation of Collision Parameters and the Performance of Student Pilots. Procedia-Soc. Behav. Sci. 2015, 209, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Koglbauer, I.; Braunstingl, R. Ab initio pilot training for traffic separation and visual airport procedures in a naturalistic flight simulation environment. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 1–10. [Google Scholar] [CrossRef]
- Koglbauer, I.; Leveson, N. System-Theoretic Analysis of Air Vehicle Separation in Visual Flight. In Proceedings of the 32nd Conference of the European Association for Aviation Psychology, Cascais, Portugal, 26–30 September 2016; Schwarz, M., Harfmann, J., Eds.; 2017; pp. 117–131. [Google Scholar]
- Koglbauer, I.; Braunstingl, R. Anticipation-Based Methods for Pilot Training and Aviation Systems Engineering. In Aviation Psychology: Applied Methods and Techniques; Koglbauer, I., Biede-Straussberger, S., Eds.; Hogrefe Verlag GmbH & Co. KG: Göttingen, Germany, 2021; pp. 51–68. [Google Scholar]
- Endsley, M. Theoretical underpinnings of situation awareness: A critical review. In Situation Awareness Analysis and Measurement; Endsley, M., Garland, D., Eds.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 2000; pp. 3–28. [Google Scholar]
- Koglbauer, I. Training for Prediction and Management of Complex and Dynamic Flight Situations. Procedia-Soc. Behav. Sci. 2015, 209, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Lanini-Maggi, S.; Ruginski, I.T.; Shipley, T.F.; Hurter, C.; Duchowski, A.T.; Briesemeister, B.B.; Lee, J.; Fabrikant, S.I. Assessing how visual search entropy and engagement predict performance in a multiple-objects tracking air traffic control task. Comput. Hum. Behav. Rep. 2021, 4, 100127. [Google Scholar] [CrossRef]
- Maggi, S.; Fabrikant, S.I.; Imbert, J.P.; Hurter, C. How do display design and user characteristics matter in animations? An empirical study with air traffic control displays. Cartogr. Int. J. Geogr. Inf. Geovisualization 2016, 51, 25–37. [Google Scholar] [CrossRef]
- Lee, Y.; Marks, S.; Connor, A.M. An Evaluation of the Effectiveness of Virtual Reality in Air Traffic Control; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar]
- Vlasblom, J.; Van der Pal, J.; Sewnath, G. Making the invisible visible—Increasing pilot training effectiveness by visualizing scan patterns of trainees through AR. In Proceedings of the International Training Technology Exhibition & Conference (IT2EC), Bangkok, Thailand, 1–2 March 2019; pp. 26–28. [Google Scholar]
- Braunstingl, R.; Baciu, C.; Koglbauer, I. A review of instruction methods for collision detection and avoidance. In Proceedings of the ERD 2018 Social & Behavioural Sciences, Cluj-Napoca, Romania, 6–7 July 2018; pp. 382–388. [Google Scholar]
- Keil, J.; Edler, D.; Dickmann, F. Preparing the HoloLens for user studies: An augmented reality interface for the spatial adjustment of holographic objects in 3D indoor environments. KN-J. Cartogr. Geogr. Inf. 2019, 69, 205–215. [Google Scholar] [CrossRef] [Green Version]
- European General Aviation Safety Team. Collision Avoidance; European General Aviation Safety Team: Cologne, Germany, 2010. [Google Scholar]
- Mitchell, J.; Kristovics, A.; Vermeulen, L.; Wilson, J.; Martinussen, M. How Pink is the Sky? A Cross-national Study of the Gendered Occupation of Pilot. Employ. Relations Rec. 2005, 5, 43–60. [Google Scholar]
- Woods, B. How Airlines Plan to Create a New Generation of Pilots Amid Fears of Decade-Long Cockpit Crisis. 2022. Available online: https://www.cnbc.com/2022/11/11/how-airlines-plan-to-create-new-generation-of-pilots-at-time-of-crisis.html (accessed on 16 December 2022).
- Hamilton, P. The Teaching Women to Fly Research Project. In Absent Aviators, Gender Issues in Aviation; Bridges, D., Neal-Smith, J., Mills, A., Eds.; Ashgate Publishing, Ltd.: Surrey, UK, 2014; pp. 313–331. [Google Scholar]
- Sitler, R. Gender differences in learning to fly. In Tapping Diverse Talents in Aviation: Culture, Gender, and Diversity; Turney, M.A., Ed.; Ashgate: Aldershot, UK, 2004; pp. 77–90. [Google Scholar]
- Turney, M.A.; Bishop, J.C.; Karp, M.R.; Niemczyk, M.; Sitler, R.L.; Green, M.F. National survey results: Retention of women in collegiate aviation. J. Air Transp. 2002, 7, 1–24. [Google Scholar]
- Turney, M.; Henley, I.; Niemczyk, M.; McCurry, W. Inclusive versus exclusive strategies in aviation training. In Tapping Diverse Talents in Aviation: Culture, Gender, and Diversity; Turney, M.A., Ed.; Ashgate: Aldershot, UK, 2004; pp. 185–196. [Google Scholar]
- Neubauer, A.C.; Grabner, R.H.; Fink, A.; Neuper, C. Intelligence and neural efficiency: Further evidence of the influence of task content and sex on the brain–IQ relationship. Cogn. Brain Res. 2005, 25, 217–225. [Google Scholar] [CrossRef]
- Koglbauer, I.V. Forschungsmethoden in der Verbindung Gender und Technik: Research Methods Linking Gender and Technology. Psychol. Österreich 2017, 37, 354–359. [Google Scholar]
- Microsoft. HoloLens-Hardware (1. Generation). Available online: https://learn.microsoft.com/de-de/hololens/hololens1-hardware (accessed on 16 November 2022).
- Taylor, R. Situation Awareness Rating Technique (SART): The development of a tool for aircrew systems design. In Proceedings of the Situational Awareness in Aerospace Operations (AGARD-CP-478), Neuilly-Sur-Seine, France; NATO-AGARD, Ed. 1990; pp. 3.1–3.17. Available online: https://ext.eurocontrol.int/ehp/?q=node/1608 (accessed on 1 November 2012).
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Santel, C.; Klingauf, U. A review of low-cost collision alerting systems and their human-machine interfaces. Tech. Soar. 2012, 36, 31–39. [Google Scholar]
- Haberkorn, T.; Koglbauer, I.; Braunstingl, R. Traffic Displays for Visual Flight Indicating Track and Priority Cues. IEEE Trans. Hum.-Mach. Syst. 2014, 44, 755–766. [Google Scholar] [CrossRef]
Phase | Content | Experimental Group | Control Group |
---|---|---|---|
Introduction | Briefing | written instructions | |
Familiarization | with simulator | ||
Pre-test (eight scenarios) | Collision detection and avoidance maneuvers | with simulator | |
Training 1 (eight scenarios) | Familiarization | with HoloLens | — |
Scanning training | with AR | without AR | |
Collision detection | with AR | with simulator | |
Orientation exercise | with AR | with simulator | |
Training 2 (eight scenarios) | Scanning training | without AR | |
Collision detection | with simulator | ||
Orientation exercise | with simulator | ||
Post-test 1 (eight scenarios) | Collision detection and avoidance maneuvers | with simulator | |
Post-test 2 | Familiarization | — | with HoloLens |
Scanning test | with AR | with AR |
Group | Experimental Group | Control Group | ||
---|---|---|---|---|
Test | Pre-Test | Post-Test | Pre-Test | Post-Test |
Collision detection accuracy | ||||
Mean | 6.20 | 6.61 | 6.26 | 6.56 |
SE | 0.21 | 0.22 | 0.22 | 0.23 |
Selection of the collision avoidance maneuver | ||||
Mean | 1.51 | 2.35 | 1.64 | 1.82 |
SE | 0.37 | 0.39 | 0.39 | 0.41 |
Identification of the right-of-way | ||||
Mean | 1.43 | 2.04 | 1.54 | 1.64 |
SE | 0.35 | 0.38 | 0.38 | 0.40 |
Subjective Situational Awareness (SART 10D) | ||||
Mean | 20.75 | 20.83 | 22.76 | 21.63 |
SE | 1.18 | 1.187 | 1.25 | 1.26 |
Workload (NASA-TLX) | ||||
Mean | 10.20 | 9.12 | 10.18 | 9.19 |
SE | 1.23 | 1.08 | 1.30 | 1.15 |
Positive emotion | ||||
Mean | 31.81 | 30.91 | 32.54 | 31.10 |
SE | 1.33 | 1.43 | 1.41 | 1.52 |
Negative emotion | ||||
Mean | 13.32 | 11.61 | 13.75 | 11.55 |
SE | 0.78 | 0.39 | 0.82 | 0.41 |
Challenge | ||||
Mean | 16.04 | 14.01 | 16.40 | 14.94 |
SE | 0.69 | 0.84 | 0.73 | 0.89 |
Interest | ||||
Mean | 22.19 | 21.60 | 21.86 | 22.21 |
SE | 0.89 | 0.92 | 0.95 | 0.98 |
Success probability | ||||
Mean | 8.95 | 8.64 | 8.57 | 8.30 |
SE | 0.42 | 0.39 | 0.44 | 0.42 |
Fear of failure | ||||
Mean | 8.51 | 7.60 | 9.71 | 7.75 |
SE | 0.70 | 0.54 | 0.74 | 0.58 |
Variable | Experimental Group | Control Group | ||
---|---|---|---|---|
(AR Training) | (Simulator Training) | |||
Mean | Standard Error | Mean | Standard Error | |
Collision detection | 6.41 | 0.18 | 6.41 | 0.19 |
Avoidance decision | 1.93 | 0.29 | 1.73 | 0.31 |
Priority decision | 1.74 | 0.28 | 1.59 | 0.30 |
Subjective workload | 9.66 | 1.10 | 9.69 | 1.16 |
Situational awareness | 20.79 | 1.05 | 22.19 | 1.12 |
Positive emotion | 31.36 | 1.27 | 31.82 | 1.35 |
Negative emotion | 12.46 | 0.55 | 12.65 | 0.58 |
Challenge | 15.02 | 0.73 | 15.67 | 0.78 |
Interest | 21.89 | 0.87 | 22.03 | 0.93 |
Success probability | 8.80 | 0.37 | 8.44 | 0.39 |
Fear of failure | 8.06 | 0.59 | 8.73 | 0.62 |
Gender Group | Female Trainees | Male Trainees | ||
---|---|---|---|---|
Variable | Mean | Standard Error | Mean | Standard Error |
Comfort | 2.27 | 0.38 | 2.50 | 0.40 |
Trust | 2.46 | 0.37 | 3.50 | 0.39 |
Gesture interaction | 1.73 | 0.64 | 1.00 | 0.67 |
Voice interaction | 2.64 | 0.40 | 1.20 | 0.42 |
Quiz | 3.27 | 0.39 | 4.20 | 0.41 |
Traffic holograms | 1.46 | 0.37 | 3.60 | 0.39 |
Projection field | 2.00 | 0.39 | 3.30 | 0.41 |
Compass hologram | 1.36 | 0.29 | 0.50 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moesl, B.; Schaffernak, H.; Vorraber, W.; Braunstingl, R.; Koglbauer, I.V. Multimodal Augmented Reality Applications for Training of Traffic Procedures in Aviation. Multimodal Technol. Interact. 2023, 7, 3. https://doi.org/10.3390/mti7010003
Moesl B, Schaffernak H, Vorraber W, Braunstingl R, Koglbauer IV. Multimodal Augmented Reality Applications for Training of Traffic Procedures in Aviation. Multimodal Technologies and Interaction. 2023; 7(1):3. https://doi.org/10.3390/mti7010003
Chicago/Turabian StyleMoesl, Birgit, Harald Schaffernak, Wolfgang Vorraber, Reinhard Braunstingl, and Ioana Victoria Koglbauer. 2023. "Multimodal Augmented Reality Applications for Training of Traffic Procedures in Aviation" Multimodal Technologies and Interaction 7, no. 1: 3. https://doi.org/10.3390/mti7010003
APA StyleMoesl, B., Schaffernak, H., Vorraber, W., Braunstingl, R., & Koglbauer, I. V. (2023). Multimodal Augmented Reality Applications for Training of Traffic Procedures in Aviation. Multimodal Technologies and Interaction, 7(1), 3. https://doi.org/10.3390/mti7010003