A Review of the Classification of Opal with Reference to Recent New Localities
<p>Patterns and spectra of typical samples showing (<b>a</b>) XRD patterns, (<b>b</b>) Raman spectra, (<b>c</b>) attenuated total reflectance mid-IR spectra and (<b>d</b>) single-pulse <sup>29</sup>Si MAS NMR spectra. In ascending order, the samples are: opal-AG (White Cliffs, Australia G13771) (red); opal-AN/hyalite (Valec, Czech Republic G32740) (green); opal-CT (Angaston, Australia, G9942) (blue) and opal-C (Iceland M5081) (purple). Spectra were scaled and offset for comparison.</p> "> Figure 2
<p>Far IR spectra of opal-AG samples showing the range of types. In ascending order: (<b>a</b>) White Cliffs, Australia (G8608), Lightening Ridge, Australia (G13769), Coober Pedy Australia (G9594) and Iron Monarch, Australia (G9260). (<b>b</b>) Mid-IR spectra of opal-A samples showing the range of types. In ascending order: Valec, Czech Republic (OOC11) (opal-AN), Coober Pedy Australia (G9594) (opal-AG), Springsure, Australia (M8736) (opal-AN) and White Cliffs, Australia (G1401) (opal-AG). Spectra were scaled and offset (<span class="html-italic">y</span>-axis) for comparison.</p> "> Figure 3
<p>Experimental and fitted curves for <sup>29</sup>Si MAS NMR spectra. The exemplar opal-AG, opal-AN and opal-CT samples: opal-AG (White Cliffs, Australia G13771) (red), opal-AN/hyalite (Valec, Czech Republic G32740) (green) and opal-CT (Angaston, Australia, G9942) (blue).</p> "> Figure 4
<p>Raman spectra (700 to 1200 cm<sup>−1</sup>) of opal samples. In ascending order: White Cliffs, Australia (G13771) (opal-AG), Valec, Czech Republic (G32740) (opal-AN), Angaston, Australia (G9942) (opal-CT) and Iceland (M5081) (opal-C). Spectra were scaled and offset for comparison.</p> "> Figure 5
<p>A series of XRD patterns illustrating the structural changes across the opal-CT group. The patterns were arranged in order of increasing complexity of the main peak at ̴ 4.1 Å. Any subdivision between “simple” opal-CT and “complex” opal-CT is arbitrary, but patterns <span class="html-italic">a</span> and <span class="html-italic">b</span> are clearly distinct from patterns <span class="html-italic">i</span>, <span class="html-italic">j</span> and <span class="html-italic">k</span>. Note the progressive change in the sharpness and shape of the reflections at 4.1 and 2.5 Å. The specimens are (in ascending order from simplest to most complex): (<b>a</b>) Afar, Ethiopia (G32752), (<b>b</b>) Mezezo, Ethiopia (NMNH Eth 1), (<b>c</b>) Murwillumbah, Australia (G9964), (<b>d</b>) Acari, Peru (G33912), (<b>e</b>) Honduras (G1441), (<b>f</b>) Indonesia (OOC6), (<b>g</b>) Kazakhstan (M53407), (<b>h</b>) Nevada, USA (G32263), (<b>i</b>) Tanzania (G34238), (<b>j</b>) Nevada, USA (G31851) and (<b>k</b>) Tanzania (G NEW19).</p> "> Figure 6
<p>Comparison of mixed XRD patterns for mineral samples of tridymite (G1395) and cristobalite (RRUFF Database ID R060648) with Ross, Tasmania, Australia (G13755) and Iron Monarch, Australia (G9620) showing curve-fitting elements and actual pattern. Spectra were scaled and offset for comparison.</p> "> Figure 7
<p>Correlations of XRD curve fitting data: (<b>a</b>) FWHM for P1 (<span class="html-italic">x</span>-axis) and P4 (<span class="html-italic">y</span>-axis), and (<b>b</b>) relative amounts of the P1 (<span class="html-italic">x</span>-axis) and P3 (<span class="html-italic">y</span>-axis) peaks (P2 is set at unity). Samples showing play-of-colour (POC) are shown as red-filled circles, whereas non-POC samples are represented by green-open circles. The subset of samples from Ethiopia displaying POC are circled in panel (<b>a</b>).</p> "> Figure 8
<p>Raman spectra of opal-CT showing progressive structure. In ascending order: (<b>a</b>) “simple” opal-CT from Mezezo Ethiopia (G25374), and increasingly complex forms from Eurolowie, Australia (G1425), Angaston, Australia (G9942) and Iron Monarch Australia (G9620). (<b>b</b>) Plot of the XRD pattern FWHM of P4 versus P1 separated into different Raman types. See text for details regarding the definitions of the Raman types observed in this study. Not all samples yielded a Raman spectrum due to the problems with fluorescence.</p> "> Figure 9
<p>Transitional opal XRD pattern (lower-middle OOC4 from Mazarron, Murcia, Spain, upper-middle T22824 from Megyasro, Hungary). Shown with G9304 (opal-A, lower) and G25374 (simple opal-CT, upper). Scaled and offset (<span class="html-italic">y</span>-axis) for comparison.</p> "> Figure 10
<p>SEM of: (<b>a</b>) OOC4 AND (<b>b</b>) T22824 (RHS) showing large spheres and bundles of plates.</p> "> Figure 11
<p>Transitional opal CT to C from Opal Butte Mine, Oregon USA (G NEW18). (<b>a</b>) XRD pattern and (<b>b</b>) Raman spectrum.</p> ">
Abstract
:1. Introduction
- Opal-A (both AG and AN): broad absorption only, centred on 4.0 Å.
- Opal-CT: two prominent peaks at ~4.1 Å and 2.5 Å with a further peak showing variable degrees of separation at ~4.27 Å.
- Opal-C: prominent peaks at 4.04 Å and 2.5 Å.
2. Materials and Methods
3. Results
3.1. Overview
3.2. Opal-A
3.3. Opal-CT
3.4. Opal-C
3.5. Transitional Samples
3.5.1. Samples Showing Opal-A and Opal-CT Characteristics
3.5.2. Samples Showing Opal-CT and Opal-C Characteristics
4. Discussion
4.1. Applicability of XRD for Primary Classification
4.2. Homogeneity and Characterisation of Opal Groups
4.2.1. Opal-A
4.2.2. Opal-CT
4.2.3. Opal-C
4.3. Spectroscopic Characterisation Techniques
4.4. Comments on Nature of Opal-CT
4.5. Comments on Opal Formation and Transitions Between Opal-A, Opal-CT, Opal-C and Quartz
4.6. Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, J.B.; Segnit, E.R. The Nature of Opal I. Nomenclature and Constituent Phases. J. Geol. Soc. Aust. 1971, 18, 57–68. [Google Scholar] [CrossRef]
- Murray, M.J.; Sanders, J.V. Close packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Philos. Mag. A 1980, 42, 721–740. [Google Scholar] [CrossRef]
- Caucia, F.; Ghisoli, C.; Marinoni, L.; Bordoni, V. Opal, a beautiful gem between myth and reality. Neues Jahrbuch für Mineralogie Abhandlungen J. Miner. Geochem. 2013, 190, 1–9. [Google Scholar] [CrossRef]
- Sanders, J.V. Colour of precious opal. Nature 1964, 204, 1151–1153. [Google Scholar] [CrossRef]
- Chauvire, B.; Rondeau, B.; Mazzero, F.; Ayalew, D. The precious opal deposit at Wegel Tena, Ethiopia: Formation via successive pedogenesis events. Can. Miner. 2017, 55, 701–723. [Google Scholar] [CrossRef]
- Simoni, M.; Caucia, F.; Adamo, I.; Galinetto, P. New occurence of fire opal from Bemia, Madagascar. Gems Gemol. 2010, 46, 114–121. [Google Scholar] [CrossRef]
- Ansori, C. Model mineralisasi pembentukan opal banten. Jurnal Geol. Indones. 2010, 5, 151–170. [Google Scholar] [CrossRef]
- Shigley, J.E.; Laurs, B.M.; Renfro, N.D. Chrysoprase and prase opal from Haneti, Central Tanzania. Gems Gemol. 2009, 45, 271–279. [Google Scholar] [CrossRef]
- Hatipoglu, M.; Kibici, Y.; Yanik, G.; Ozkul, C.; Demirbilek, M.; Yardmici, Y. Nano-structure of the Cristobalite and Tridymite Staking Sequences in the Common Purple Opal from the Gevrekseydi Deposit, Seyitomer-Kutahka, Turkey. Orient. J. Chem. 2015, 31, 35–49. [Google Scholar] [CrossRef]
- Pewkliang, B.; Pring, A.; Brugger, J. The formation of precious opal: Clues from the opalization of bone. Can. Miner. 2008, 46, 139–149. [Google Scholar] [CrossRef]
- Gauthier, J.-P.; Fritsch, E.; Aguilar-Reyes, B.; Barreau, A.; Lasnier, B. Phase de Laves dans la première opale CR disperse. Mineralogie 2004, 336, 187–196. [Google Scholar]
- Sanders, J.V. Close-packed structures of spheres of two different sizes I. Observations of natural opal. Philos. Mag. A 1980, 42, 705–720. [Google Scholar] [CrossRef]
- Sodo, A.; Municchia, A.C.; Barucca, S.; Bellatreccia, F.; Ventura, G.D.; Butini, F.; Ricci, M.A. Raman, FT-IR and XRD investigation of natural opals. J. Raman Spectrosc. 2016, 47, 1444–1451. [Google Scholar] [CrossRef]
- Ghisoli, C.; Caucia, F.; Marinoni, L. XRPD patterns of opals: A brief review and new results from recent studies. Powder Diffr. 2010, 25, 274–282. [Google Scholar] [CrossRef]
- Liesegang, M.; Milke, R. Australian sedimentary opal-A and its associated minerals: Implications for natural silica sphere formation. Am. Miner. 2014, 99, 1488–1499. [Google Scholar] [CrossRef]
- Jones, J.B.; Segnit, E.R. Genesis of Cristobalite and Tridymite at Low Temperature. J. Geol. Soc. Aust. 1972, 18, 419–422. [Google Scholar] [CrossRef]
- Elzea, E.L.; Odom, I.E.; Miles, W.J. Distinguishing well ordered opal-CT and opal-C from high temperature cristoblite by x-ray diffraction. Anal. Chim. Acta 1994, 286, 106–116. [Google Scholar] [CrossRef]
- Gaillou, E.; Delaunay, A.; Rondeau, B.; Bouhnik-le-Coz, M.; Fritsch, E.; Corren, G.; Monnier, C. The geochemistry of gem opals as evidence of their origin. Ore Geol. Rev. 2008, 34, 113–126. [Google Scholar] [CrossRef]
- Ostrooumov, N.; Fritsch, E.; Lasnier, B.; Lefrant, S. Spectres Raman des opales: Aspect diagnostique et aide a la classification. Eur. J. Miner. 1999, 11, 899–908. [Google Scholar] [CrossRef]
- Smallwood, A.G.; Thomas, P.S.; Ray, A.S. Characterisation of sedimentary opals by Fourier transfrom Raman spectroscopy. Spectrochim. Acta Part A 1997, 53, 2341–2345. [Google Scholar] [CrossRef]
- Kingma, K.J.; Hemley, R.J. Raman spectroscopic study of microcrystalline silica. Am. Miner. 1994, 79, 269–273. [Google Scholar]
- Paris, M.; Fritsch, E.; Aguilar-Reyes, B. 1H, 29Si and 27Al NMR study of the destabilization process of a paracrystalline opal from Mexico. J. Non-Cryst. Solids 2007, 353, 1650–1656. [Google Scholar] [CrossRef]
- Brown, L.D.; Ray, A.S.; Thomas, P.S. 29Si and 27Al NMR study of amorphous and paracrystalline opals from Australia. J. Non-Cryst. Solids 2003, 332, 242–248. [Google Scholar] [CrossRef]
- de Jong, B.W.H.S.; van Hoek, J.; Veeeman, W.S.; Manson, D.V. X-ray diffraction and 29Si magic-angle-spinning NMR of opals: Incoherent long- and short-range order in opal-CT. Am. Miner. 1987, 72, 1195–1203. [Google Scholar]
- Graetsch, H.; Gies, H.; Topalovic, I. NMR, XRD and IR study on microcrstalline opal. Phys. Chem. Miner. 1994, 21, 166–175. [Google Scholar] [CrossRef]
- Graetsch, H.; Mosset, A.; Gies, H. XRD and 29Si MAS-NMR study of some non-crystalline silica minerals. J. Non-Cryst. Solids 1990, 119, 173–190. [Google Scholar] [CrossRef]
- Smith, J.V.; Blackwell, C.S. Nuclear magnetic resonance of silica polymorphs. Nature 1983, 303, 223–225. [Google Scholar] [CrossRef]
- Day, R.; Jones, B. Variations in water content in opal-A and opal-CT from geyser discharge aprons. J. Sediment. Res. 2008, 78, 301–315. [Google Scholar] [CrossRef]
- Bobon, M.; Christy, A.A.; Kluvanec, D.; Illasova, L. State of water molecules and silanol groups in opal minerals: A near infrared spectrscopic study of opals from Slovakia. Phys. Chem. Miner. 2011, 38, 809–818. [Google Scholar] [CrossRef]
- Chauviré, B.; Rondeau, B.; Mangold, N. Near infrared signature of opal and chalcedony as a proxy for their structure and formation conditions. Eur. J. Miner. 2017, 29, 409–421. [Google Scholar] [CrossRef]
- Eckert, J.; Gourdon, O.; Jacob, D.E.; Meral, C.; Monteiro, P.J.M.; Vogel, S.C.; Wirth, R.; Wenk, H.-R. Ordering of water in opals with different microstructures. Eur. J. Miner. 2015, 27, 203–213. [Google Scholar] [CrossRef]
- Rondeau, B.; Fritz, E.; Mazzero, F.; Gauthier, J.-P.; Cencki-Tok, B.; Bekele, E.; Gaillou, E. Play-of-color opal from Wegel Tena, Wollo Province, Ethiopia. Gems Gemol. 2010, 46, 90–105. [Google Scholar] [CrossRef]
- McOrist, G.D.; Smallwood, A. Trace elements in precious and common opals using neutron activation analysis. J. Radioanal. Nucl. Chem. 1997, 223, 9–15. [Google Scholar] [CrossRef]
- Brown, L.D.; Ray, A.S.; Thomas, P.S. Elemental Analysis of Australian amorphous banded opals by laser-ablation ICP-MS. Neues Jahrbuch für Minerologie Monatshefte 2004, 2004, 411–424. [Google Scholar] [CrossRef]
- Dutkiewicz, A.; Landgrebe, T.C.W.; Rey, P.F. Origin of silica and fingerprinting of Australian sedimentary opals. Gondwana Res. 2015, 27, 786–795. [Google Scholar] [CrossRef]
- Rondeau, B.; Cenki-Tok, B.; Fritsch, E.; Mazzero, F.; Gauthier, J.-P.; Bodeur, Y.; Bekele, E.; Gaillou, E.; Ayalew, D. Geochemical and petrological characterizarion of gem opals from Wegel Tena, Wolo, Ethiopia: Opal formation in an Oligocene soil. Geochem. Explan. Environ. Anal. 2012, 12, 93–104. [Google Scholar] [CrossRef]
- Ivey, J. Grape agate from West Sulawesi, Indonesia. Miner. Rec. 2018, 49, 827–836. [Google Scholar]
- Jones, B.; Renaut, R.W. Microstructural changes accompanying the opal-A to opal-CT transition: New evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 2007, 54, 921–948. [Google Scholar] [CrossRef]
- Martin, E.; Gaillou, E. Insight on gem opal formation in volcanic ash deposits from a supereruption: A case study through oxygen and hydrogen isotopic composition of opals from Lake Tecopa, California, U.S.A. Am. Miner. 2018, 103, 803–811. [Google Scholar] [CrossRef]
- Fritsch, E.; Gaillou, E.; Rondeau, B.; Barreau, A.; Albertini, D.; Ostroumov, M. The nanostructure of fire opal. J. Non-Cryst. Solids 2006, 352, 3957–3960. [Google Scholar] [CrossRef]
- Williams, L.A.; Crerar, D.A. Silica diagenesis, II. General mechanisms. J. Sediment. Petrol. 1985, 55, 312–321. [Google Scholar]
- Lynne, B.Y.; Campbell, K.A.; James, B.; Browne, P.R.L.; Moore, J. Siliceous sinter diagenesis: Order among the randomness. In Proceedings of the 28th NZ Geothermal Workshop, Auckland, New Zealand, 15–17 November 2006. [Google Scholar]
- Rice, S.B.; Freund, H.; Huang, W.-L.; Clouse, J.A.; Isaacs, C.M. Application of Fourier transform infrared spectrscopy to silica diagenis: The opal-A to opal-CT transformation. J. Sediment. Res. 1995, A65, 639–647. [Google Scholar]
- Smith, D.K. Opal, cristobalite and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography. Powder Diffr. 1998, 13, 2–19. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbook of Mineralogy, vol 2 Silica, Silicates; Mineral Data Publishing: Tucson, AZ, USA, 1995. [Google Scholar]
- Pecharsky, V.L.; Zavalij, P.Y. Fundamentals of Powder Diffraction and Structural Characterization of Materials; Springer Verlag: Secaucus, NJ, USA, 2005. [Google Scholar]
- Kihara, K.; Hirose, T.; Shinoda, K. Raman spectra, normal modes and disorder in monoclinic tridymite and its higher temperature orthorhombic modification. J. Miner. Petrol. Sci. 2005, 100, 91–103. [Google Scholar] [CrossRef]
- Schmidt, P.; Bellot-Gurlet, L.; Sciau, P. Moganite detection in silica rocks using Raman and inrared spectroscopy. Eur. J. Miner. 2013, 25, 797–805. [Google Scholar] [CrossRef]
- Ostrooumov, M. A Raman, infrared and XRD analysis of the instability in volcanic opals from Mexico. Spectrochim. Acta Part A 2007, 68, 1070–1076. [Google Scholar] [CrossRef]
- Etchepare, J.; Merian, M.; Kaplan, P. Vibrational normal modes of SiO2, II Cristobalite and tridymite. J. Chem. Phys. 1978, 68, 1531–1537. [Google Scholar] [CrossRef]
- Bates, J.B. Raman Spectra of alpha and beta cristobalite. J. Chem. Phys. 1972, 57, 4042–4047. [Google Scholar] [CrossRef]
- Ilieva, A.; Mihailova, B.; Tsintov, Z.; Petrov, O. Structural state of microcrystalline opals: A Raman spectroscopic study. Am. Miner. 2007, 92, 1325–1333. [Google Scholar] [CrossRef]
- Schmidt, P.; Bellot-Gurlet, L.; Slodczyk, A.; Froehlich, F. A hitherto unrecognised band ub the Raman spectra of silica rocks: Influence of hydroxylated Si-O bonds (silanole) on the Raman moganite band in chalcedony and flint (SiO2). Phys. Chem. Miner. 2012, 39, 455–464. [Google Scholar] [CrossRef]
- Lippincott, E.R.; Valkenbur, A.v.; Weir, C.E.; Bunting, E.N. Infrared studies of polymorphs of silicon dioxide and germaniun dioxide. J. Res. Natl. Bur. Stand. 1958, 61, 61–70. [Google Scholar] [CrossRef]
- Elzea, J.M.; Rice, S.B. TEM and X-Ray diffraction evidence for cristobalite and tridymite stacking sequences in opal. Clays Clay Miner. 1996, 44, 492–500. [Google Scholar] [CrossRef]
- Nagase, T.; Akizura, M. Texture and structure of opal-CT and opal-C in volcanic rocks. Can. J. Miner. 2007, 35, 947–958. [Google Scholar]
- Wilson, M.J. The structure of opal-CT revisited. J. Non-Cryst. Solids 2014, 405, 68–75. [Google Scholar] [CrossRef]
- Esenli, F.; Sans, B.E. XRD studies of opals (4A peak) in bentonites from Turkey: Implications for the origin of bentonites. Neues Jahrbuch für Minerologie Abhandlungen 2013, 191, 45–63. [Google Scholar] [CrossRef]
- Smallwood, A.G.; Thomas, P.S.; Ray, A.S. Comparative Analysis of Sedimentary and Volcanic Opals from Australia. J. Aust. Ceram. Soc. 2008, 44, 17–22. [Google Scholar]
- Thomas, P.S.; Ray, A. The thermophysical properties of australian opal. In Proceedings of the 9th International Congress for Appplied Mineralogy, Brisbane, Australia, 8–10 September 2008; pp. 557–565. [Google Scholar]
- Gaillou, E. An overview of gem opals: From the geology to color and microstructure. In Proceedings of the Thirteenth Annual Sinkankas Symposium—Opal, Carlsbad, CA, USA, 18 April 2015. [Google Scholar]
- Kiefert, L.; Karampelas, S. The use of the Raman spectrometer in gemmological laboratories: Review. Spectrochim. Acta Part A 2011, 80, 119–124. [Google Scholar] [CrossRef]
- Guthrie, G.D.; Bish, D.L.; Reynolds, R.C. Modeling the X-ray diffraction pattern of opal-CT. Am. Miner. 1995, 80, 869–872. [Google Scholar] [CrossRef]
- Ivanov, V.G.; Reyes, B.A.; Fritsch, E.; Faulques, E. Vibrational States in Opal Revisited. J. Phys. Chem. C 2011, 115, 11968–11975. [Google Scholar] [CrossRef]
- Eversull, L.G.; Ferrell, R.E. Disordered silica with tridymite-like structure in the Twiggs clay. Am. Miner. 2008, 93, 565–572. [Google Scholar] [CrossRef]
- Altree-Williams, A.; Pring, A.; Ngothai, Y.; Brugger, J. Textural and compositional complexities resulting from coupled dissolution–reprecipitation reactions in geomaterials. Earth-Sci. Rev. 2015, 150, 628–651. [Google Scholar] [CrossRef]
- Xia, F.; Brugger, J.; Ngothai, Y.; O’Neill, B.; Chen, G.; Pring, A. Three-dimensional ordered arrays of zeolite nanocrystals with uniform size and orientation by a pseudomorphic coupled dissolution–reprecipitation replacement route. Cryst. Growth Des. 2009, 9, 4902–4906. [Google Scholar] [CrossRef]
Country | Location | Sample ID | Appearance | Type |
---|---|---|---|---|
Australia | White Cliffs, NSW | G1401 | Translucent no POC | A |
Australia | Eurolowie, NSW | G1425 | Translucent pale brown glossy | CT |
Australia | Iron Monarch, SA | G9620 | White glossy opaque | CT |
Australia | White Cliffs, NSW | G8608 | White opaque POC | A |
Australia | Unknown | G9260 | White to grey opaque | A |
Australia | Two mile Coober Pedy, SA | G9594 | Translucent milky glossy minor POC | A |
Australia | Four miles S of Angaston, SA | G9942 | Translucent white glossy | CT |
Australia | Near Murwillumbah, NSW | G9964 | Slightly cloudy, clear POC | CT |
Australia | Lightning Ridge, NSW | G13769 | Black, glassy band in matrix | A |
Australia | White Cliffs, NSW | G13771 | Bag of samples | A |
Australia | Angaston, SA | G24346 | Brown opaque | CT |
Australia | Springsure, Qld | M8736 | Glassy (hyalite like) | A |
Australia | Yinnar, Vic | T19006 | Glassy grey-brown | CT |
Czech Rep | Valec, Bohemia | OOC11 | Glassy clear | A |
Czech Rep | Valec, Bohemia | G32740 | Hyalite outgrowth, colourless | A |
Ethiopia | Mezezo | G25374 | Deep-brown translucent | CT |
Ethiopia | Afar | G32752 | Brown glass, some with POC | CT |
Ethiopia | Mezezo | NMNH Eth1 | Pinkish POC on white | CT |
Ethiopia | Yita Ridge, Menz-Gishe | G31892 | Nodules with clear orange centres | CT |
Ethiopia | Mezezo | NMNH Eth 2 | Transparent brown POC | CT |
Ethiopia | Wello | NMNH Eth 3 | Milky transparent POC | CT |
Honduras | Unknown | G1441 | Milky transparent some POC | CT |
Iceland | Unknown | M5081 | Opaque white | C |
Indonesia | Cilayang Village, West Java | G34240 | Colourless with POC | CT |
Indonesia | Mangarrai Prov, Flores | OOC6 | Translucent white | CT |
Indonesia | Mamuju, West Sulawesi | OOC13 | Blue-green matrix of “grape agate” | A |
Kazakhstan | Voznesenovka, Martuk | M53407 | Orange glass | CT |
Kazakhstan | Zelinograd | G32925 | Translucent vermilion glassy | CT |
Madagascar | Bemi, Befotaka District | G NEW05 | Clear yellow | CT |
Madagascar | Bemi, Befotaka District | G NEW07 | Translucent pale brown | CT |
Mexico | La Trinidad Queretaro | G31851 | Single piece with opal inclusions | CT |
Namibia | Khorixas district | G NEW29 | Blue to white opaque | CT |
Peru | Acari | G33912 | Massive blue | CT |
Spain | Mazarron, Murcia | OOC4 | Composite with green zones | CT |
Tanzania | Kigoma, Region | G NEW19 | Pale orange shades glassy | CT |
Tanzania | Haneti | G NEW03 | Opaque green | CT |
Tanzania | Haneti | G NEW04 | Opaque green, some glassy zones | CT |
Tanzania | Arusha | G34238 | Transparent green layer | CT |
Turkey | Kutahya | G NEW24 | Translucent green and brown | CT |
Turkey | Eskisehir | G NEW25 | Opaque white with indigo speckles | CT |
Turkey | Anatolia | G NEW26 | Opaque white transparent green inside | CT |
Turkey | Yozgat, Anatolia | G NEW27 | Blue-green transparent glass | CT |
Turkey | Yozgat, Anatolia | G NEW28 | Olive-green transparent glass | CT |
USA | Opal Butte Mine, Oregon | G NEW18 | Glassy white | CT-C |
USA | Manzano Mtns. New Mexico | G NEW30 | White opaque mass | CT |
USA | Virgin Valley, Nevada | G31852 | Milky and translucent zones | CT |
USA | Virgin Valley, Nevada | G32263 | Translucent brown | CT |
USA | Virgin Valley, Nevada | M19717 | Opaque glassy POC | CT |
USA | Virgin Valley, Nevada | OOC5 | White and POC zones | CT |
Opal Type | XRD | Raman a | IR b (ATR) | 29Si NMR b (Single Pulse) |
---|---|---|---|---|
Opal-AG | Very broad peak between ~2.2 Å and ~6.5 Å with maximum at 3.9–4.0 Å | Broad peak between ~230 and ~530 cm−1 with maximum at ~370 cm−1; 760–860 cm−1 970–975 cm−1 | Peak at 530 cm−1 | Q4 FWHM 8.5 ppm Q3 peak(s) not prominent |
Opal-AN (hyalite) | Very broad peak between ~2.2 Å and ~6.5 Å with maximum at 3.9–4.0 Å | Broad peak between ~230 and ~530 cm−1 with maximum at ~370 cm−1 760–860 cm−1 960–965 cm−1 | Peak at 530 cm−1 | Q4 FWHM 8.3 ppm Q3 peak visible as a shoulder |
Opal-CT c | All have peak at 2.50 Å. Simpler types have a single peak at 4.08 Å. More complex types also show a peak or shoulder at 4.28 Å and a shoulder at 3.89 Å | Broad peak between ~180 and ~500 cm−1 with maximum at ~300 cm−1 to more defined maxima at 220, 295, 340 and 410 cm−1 | Absence of peaks at 530 and 625 cm−1 | Q4 FWHM 6.5 ppm Q3 peak visible |
Opal-C | 4.04 Å and 2.50 Å | Sharp peaks at 107, 222 and 409 cm−1 | Peaks at 300, 385, 470 and 625 cm−1 | No common feature |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtis, N.J.; Gascooke, J.R.; Johnston, M.R.; Pring, A. A Review of the Classification of Opal with Reference to Recent New Localities. Minerals 2019, 9, 299. https://doi.org/10.3390/min9050299
Curtis NJ, Gascooke JR, Johnston MR, Pring A. A Review of the Classification of Opal with Reference to Recent New Localities. Minerals. 2019; 9(5):299. https://doi.org/10.3390/min9050299
Chicago/Turabian StyleCurtis, Neville J., Jason R. Gascooke, Martin R. Johnston, and Allan Pring. 2019. "A Review of the Classification of Opal with Reference to Recent New Localities" Minerals 9, no. 5: 299. https://doi.org/10.3390/min9050299
APA StyleCurtis, N. J., Gascooke, J. R., Johnston, M. R., & Pring, A. (2019). A Review of the Classification of Opal with Reference to Recent New Localities. Minerals, 9(5), 299. https://doi.org/10.3390/min9050299