Basic Treatment in Natural Clinoptilolite for Improvement of Physicochemical Properties
<p>Three-dimensional structure of clinoptilolite, (<b>a</b>) [001] and (<b>b</b>) [100].</p> "> Figure 2
<p>Diffractograms of natural zeolite and standard (<b>a</b>) and natural zeolites treated at: (<b>b</b>) 50 °C, (<b>c</b>) 70 °C, and (<b>d</b>) 90 °C.</p> "> Figure 3
<p>Statistical analysis. (<b>a</b>) Effect of the parameters on the response % crystallinity (Pareto chart). Response surface for (<b>b</b>) time = 0.5 h, (<b>c</b>) time = 4 h, and (<b>d</b>) concentration = 3 mol∙L<sup>−1</sup>.</p> "> Figure 4
<p>Statistical analysis. (<b>a</b>) Effect of the parameters on the response Si/Al molar ratio. Response surface for (<b>b</b>) time = 0.5 h, (<b>c</b>) time = 4 h.</p> "> Figure 5
<p>N<sub>2</sub> adsorption and desorption isotherms at 77 K for the zeolites before and after basic treatments. The isotherms of E1ZNbs, E2ZNbs, E3ZNbs, E4ZNbs, E5ZNbs, E6ZNbs, E7ZNbs, E9ZNbs, E10ZNbs, and E12ZNbs samples were vertically offset by 1, 2, 3.3, 4.3, 7.5, 8.3, 9.7, 10.5, 11.5, 14, and 16 mmol∙g<sup>−1</sup>, respectively.</p> "> Figure 6
<p>Statistical analysis. Effect of the parameters on the specific surface area response.</p> "> Figure 7
<p>Pareto graphs of (<b>a</b>) the total pore volume and (<b>b</b>) the mesopore volume.</p> "> Figure 8
<p>Characterization of micropores. (<b>a</b>) CO<sub>2</sub> adsorption isotherm at 273 K and (<b>b</b>) micropore size distribution by HK method.</p> "> Figure 9
<p>Pyridine adsorption: A = 150 °C, B = 250 °C, C = 350 °C.</p> "> Figure 10
<p>Thermogravimetric analysis of the (<b>a</b>) natural sample and the (<b>b</b>) E8ZNbs sample.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Modification of Materials
2.3. Characterization of Materials
3. Results and Discussion
3.1. Crystallinity
3.2. Si/Al Molar Ratio
3.3. Textural Analysis
3.4. Acidity Analysis
3.5. Thermogravimetric Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johan, E.; Yamada, T.; Munthali, M.W.; Kabwadza-Cornerc, P.; Aono, H.; Matsue, N. Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environ. Sci. 2015, 28, 52–56. [Google Scholar] [CrossRef]
- Huo, H.; Lin, H.; Dong, Y.; Cheng, H.; Wang, H.; Cao, L. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. J. Hazard. Mater. 2012, 229–230, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Doula, M.K. Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity. Chemosphere 2007, 67, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, F.; Haghighi, M.; Amini, M. The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene. J. Ind. Eng. Chem. 2015, 31, 142–155. [Google Scholar] [CrossRef]
- Ortíz, F.A.Q.; Valenzuela, J.T.; Reyes, C.A.R. Zeolitisation of Neogene sedimentary and pyroclastic rocks exposed in Paipa (Boyacá), in the Colombian Andes: Simulating their natural formation conditions. Earth Sci. Res. J. 2011, 15, 89–100. [Google Scholar]
- Akgul, M.; Karabakan, A. Promoted dye adsorption performance over desilicated natural zeolite. Microporous Mesoporous Mater. 2011, 145, 157–164. [Google Scholar] [CrossRef]
- Yeliz, Y.-A. Characterization of two natural zeolites for geotechnical and geoenvironmental applications. Appl. Clay Sci. 2010, 50, 130–136. [Google Scholar] [CrossRef]
- Motsa, M.M.; Mamba, B.B.; Thwala, J.M.; Msagati, T.A.M. Preparation, characterization, and application of polypropylene–clinoptilolite composites for the selective adsorption of lead from aqueous media. J. Colloid Interface Sci. 2011, 359, 210–219. [Google Scholar] [CrossRef]
- Bayat, M.; Sohrabi, M.; Royaee, S.J. Degradation of phenol by heterogeneous Fenton reaction using Fe/clinoptilolite. J. Ind. Eng. Chem. 2012, 18, 957–962. [Google Scholar] [CrossRef]
- Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and physicochemical properties of modified natural clinoptilolite. Catal. Today 2015, 259, 50–58. [Google Scholar] [CrossRef]
- Moradi, M.; Karimzadeh, R.; Moosavi, E.S. Modified and ion exchanged clinoptilolite for the adsorptive removal of sulfur compounds in a model fuel: New adsorbents for desulfurization. Fuel 2018, 217, 467–477. [Google Scholar] [CrossRef]
- Groen, J.C.; Jansen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication. J. Phys. Chem. 2004, 108, 13062–13065. [Google Scholar] [CrossRef]
- Souza, V.C.; Villarroel-Rocha, J.; Araújo, M.J.G.; Sapag, K.; Pergher, S.B.C. Dealumination of Natural Clinoptilolite by Acid Treatment: Structural and Textural Characterization. Microporous Mesoporous Mater. 2018. (under review). [Google Scholar]
- Ates, A.; Akgül, G. Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technol. 2016, 287, 285–291. [Google Scholar] [CrossRef]
- Su, L.; Liu, L.; Zhuang, J.; Wang, H.; Li, Y.; Shen, W.; Xu, Y.; Bao, X. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catal. Lett. 2003, 91, 155–167. [Google Scholar] [CrossRef]
- Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Como Fazer Experimentos Pesquisae Desenvolvimentona CiênciaenaIndústria, 2nd ed.; Editora da Unicamp: Campinas, Brazil, 2001; ISBN 85-268-0544-4. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powder sand Porous Solids; Academic Press: San Diego, CA, USA, 1999; ISBN 978-0-08-097035-6. [Google Scholar]
- Jaroniec, M.; Kruk, M.; Olivier, J. Standard nitrogen adsorption data for characterization of nanoporous silicas. Langmuir 1999, 15, 5410–5413. [Google Scholar] [CrossRef]
- Dubinin, M.M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chem. Rev. 1960, 60, 235. [Google Scholar] [CrossRef]
- Horváth, G.; Kawazoe, K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 1983, 16, 470–475. [Google Scholar] [CrossRef]
- Verboekend, D.; Pérez-Ramíriz, J. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 2011, 1, 879–890. [Google Scholar] [CrossRef]
- Taffarel, S.R.; Rubio, J. Removal of Mn2+ from aqueous solution by manganese oxidecoated zeolite. Miner. Eng. 2010, 23, 1131–1138. [Google Scholar] [CrossRef]
- Loiola, A.R.; Andrade, J.C.R.A.; Sasaki, J.M.; Da Silva, L.R.D. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. J. Colloid Interface Sci. 2012, 367, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Guisnted, M.; Ribeiro, F.R. Um Mundo a Serviço da Catálise; Edição da Fundação Calouste Gulbenkian: Lisboa, Portugal, 2004; ISBN 972-31-1071-7. [Google Scholar]
- Castañeda, R.; Corma, A.; Fornés, V.; Martínez-Triguero, J.; Valencia, S. Direct synthesis of a 9×10 member ring zeolite (Al-ITQ-13): A highly shape-selective catalyst for catalytic cracking. J. Catal. 2006, 238, 79–87. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of Integrated Molar Extinction Coefficients for Infrared Adsorption Bands of Pyridine Absorbed on Solid Acid Catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
Samples | Time (h) | Temperature (°C) | Concentration (mol·L−1) |
---|---|---|---|
E1ZNbs | 0.50 | 50 | 0.10 |
E2ZNbs | 0.50 | 50 | 3.00 |
E3ZNbs | 0.50 | 90 | 0.10 |
E4ZNbs | 0.50 | 90 | 3.00 |
E5ZNbs | 4.00 | 50 | 0.10 |
E6ZNbs | 4.00 | 50 | 3.00 |
E7ZNbs | 4.00 | 90 | 0.10 |
E8ZNbs | 4.00 | 90 | 3.00 |
E9ZNbs | 2.25 | 70 | 1.55 |
E10ZNbs | 2.25 | 70 | 1.55 |
E11ZNbs | 2.25 | 70 | 1.55 |
Samples | Si/Al | T (°C) | t (h) | C (mol·L−1) |
---|---|---|---|---|
ZN | 4.7 | 0 | 0 | 0 |
E1ZNbs | 4.4 | 50 | 0.5 | 0.1 |
E2ZNbs | 4.6 | 50 | 0.5 | 3.0 |
E3ZNbs | 4.6 | 90 | 0.5 | 0.1 |
E4ZNbs | 3.3 | 90 | 0.5 | 3.0 |
E5ZNbs | 4.6 | 50 | 4.0 | 0.1 |
E6ZNbs | 3.9 | 50 | 4.0 | 3.0 |
E7ZNbs | 4.5 | 90 | 4.0 | 0.1 |
E8ZNbs | 2.6 | 90 | 4.0 | 3.0 |
E9ZNbs | 3.7 | 70 | 2.25 | 1.55 |
E10ZNbs | 3.6 | 70 | 2.25 | 1.55 |
E11ZNbs | 3.7 | 70 | 2.25 | 1.55 |
Samples | Textural Properties | |||||
---|---|---|---|---|---|---|
aSBET (m2·g−1) | bSEXT (m2·g−1) | cVTP (cm3·g−1) | dVμP (cm3·g−1) | eVmeso (cm3·g−1) | fwP (nm) | |
ZN | 27 | 22 | 0.10 | 0.00 | 0.10 | 0.41 |
E1ZNbs | 23 | 16 | 0.11 | 0.00 | 0.11 | - |
E2ZNbs | 26 | 21 | 0.11 | 0.00 | 0.11 | - |
E3ZNbs | 23 | 18 | 0.11 | 0.00 | 0.11 | - |
E4ZNbs | 31 | 23 | 0.20 | 0.00 | 0.20 | - |
E5ZNbs | 25 | 21 | 0.12 | 0.00 | 0.12 | - |
E6ZNbs | 33 | 25 | 0.12 | 0.00 | 0.12 | - |
E7ZNbs | 27 | 21 | 0.10 | 0.00 | 0.10 | - |
E8ZNbs | 42 | 31 | 0.22 | 0.00 | 0.22 | 0.42 |
E9ZNbs | 36 | 31 | 0.09 | 0.00 | 0.09 | - |
E10ZNbs | 38 | 27 | 0.15 | 0.01 | 0.14 | - |
E11ZNbs | 35 | 28 | 0.11 | 0.00 | 0.11 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Souza, V.C.; Villarroel-Rocha, J.; De Araújo, M.J.G.; Sapag, K.; Pergher, S.B.C. Basic Treatment in Natural Clinoptilolite for Improvement of Physicochemical Properties. Minerals 2018, 8, 595. https://doi.org/10.3390/min8120595
De Souza VC, Villarroel-Rocha J, De Araújo MJG, Sapag K, Pergher SBC. Basic Treatment in Natural Clinoptilolite for Improvement of Physicochemical Properties. Minerals. 2018; 8(12):595. https://doi.org/10.3390/min8120595
Chicago/Turabian StyleDe Souza, Vanessa Castro, Jhonny Villarroel-Rocha, Maria José Gomes De Araújo, Karim Sapag, and Sibele B. C. Pergher. 2018. "Basic Treatment in Natural Clinoptilolite for Improvement of Physicochemical Properties" Minerals 8, no. 12: 595. https://doi.org/10.3390/min8120595
APA StyleDe Souza, V. C., Villarroel-Rocha, J., De Araújo, M. J. G., Sapag, K., & Pergher, S. B. C. (2018). Basic Treatment in Natural Clinoptilolite for Improvement of Physicochemical Properties. Minerals, 8(12), 595. https://doi.org/10.3390/min8120595