Relationship Between Thermodynamic Modeling and Experimental Process for Optimization Ferro-Nickel Smelting
<p>XRD pattern of calcined nickel ore.</p> "> Figure 2
<p>SEM-EDS image of calcined nickel ore: (<b>a</b>) SEM image and (<b>b</b>) EDS mapping image.</p> "> Figure 3
<p>Schematic diagram of the experimental apparatus.</p> "> Figure 4
<p>The influence of carbon on smelting products: (<b>a</b>) weight of stable compounds and (<b>b</b>) activity of stable compounds.</p> "> Figure 5
<p>Thermodynamic analysis of reduction smelting of calcined nickel ore with carbon addition: (<b>a</b>) Gibbs free energy and (<b>b</b>) heat of reaction in smelting.</p> "> Figure 6
<p>Samples from reduction smelting test: (<b>a</b>) Segregated metal particles, (<b>b</b>) Small metal particles in the slag.</p> "> Figure 7
<p>XRD pattern of slag during reduction smelting with 3 wt.% C and 4 wt.% C addition.</p> "> Figure 8
<p>Analyzing simulated slag structure on MgO-SiO<sub>2</sub>-FeO ternary system using FToxid data, Factsage 8.2 at 1550 °C and 1 atm.</p> "> Figure 9
<p>XRD pattern of slag during Ni reduction smelting with flux addition: (<b>a</b>) with SiO<sub>2</sub> addition and (<b>b</b>) with MgO addition.</p> "> Figure 10
<p>Slag structure analysis on MgO-SiO<sub>2</sub>-FeO ternary phase diagram projection using FToxid data, Factsage 8.2.</p> "> Figure 11
<p>Ferrous nickel and small metal particles extracted from slag in a reduction smelting test with 6 wt.% MgO flux.</p> "> Figure 12
<p>Relationship of slag basicity with nickel smelting’s metal grade and recovery degree. (<b>a</b>) Nickel, (<b>b</b>) Iron.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Procedures
2.3. Analytical Methods
2.3.1. Thermodynamic Modeling
2.3.2. Calculating Nickel Recovery Degree
2.3.3. Chemical and Mineralogical Analysis
3. Results and Discussion
3.1. Carbon-Based Smelting for Selective Reduction
3.1.1. Thermodynamic Modeling of Ferro-Nickel Smelting
3.1.2. Ferro-Nickel Smelting with Carbon Reduction
3.2. Optimizing Slag Composition for Ferro-Nickel Smelting
3.2.1. Thermodynamic Modeling for Optimal Slag Composition
3.2.2. Ferro-Nickel Smelting for Optimizing Slag M/S Ratio
3.3. Effect of Slag Basicity on Ferro-Nickel Smelting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dilshara, P.; Abeysinghe, B.; Premasiri, R.; Dushyantha, N.; Ratnayake, N.; Senarath, S.; Ratnayake, A.S.; Batapola, N. The role of nickel (Ni) as a critical metal in clean energy transition: Applications, global distribution and occurrences, production-demand and phytomining. J. Asian Earth Sci. 2023, 259, 105912. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Zheng, S.; Xing, W.; Yang, H.; Zhao, Y. A study on the transmission of trade behavior of global nickel products from the perspective of the industrial chain. Resour. Policy 2023, 81, 103376. [Google Scholar] [CrossRef]
- Maisel, F.; Neef, C.; Marscheider-Weidemann, F.; Nissen, N.F. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour. Conserv. Recycl. 2023, 192, 106920. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Cathelineau, M.; Blancher, S.B.; Laugier, O.; Filippov, L. Characterization of Weda Bay nickel laterite ore from Indonesia. J. Geochem. Explor. 2018, 196, 270–281. [Google Scholar] [CrossRef]
- Fu, W.; Feng, Y.; Luo, P.; Zhang, Y.; Huang, X.; Zeng, X.; Cai, Q.; Zhou, Y. Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China). Minerals 2019, 9, 51. [Google Scholar] [CrossRef]
- Pandey, N.; Tripathy, S.K.; Patra, S.K.; Jha, G. Recent Progress in Hydrometallurgical Processing of Nickel Lateritic Ore. Trans. Indian. Inst. Met. 2023, 76, 11–30. [Google Scholar] [CrossRef]
- Oxley, A.; Barcza, N. Hydro–pyro integration in the processing of nickel laterites. Miner. Eng. 2013, 54, 2–13. [Google Scholar] [CrossRef]
- Nurjaman, F.; Astuti, W.; Bahfie, F.; Suharno, B. Study of selective reduction in lateritic nickel ore: Saprolite versus limonite. Mater. Today Proc. 2021, 44, 1488–1494. [Google Scholar] [CrossRef]
- Pickles, C.A.; Marzoughi, O. Temperature and frequency dependencies of the permittivities of nickeliferous silicate laterite ores and reaction mixtures. Powder Technol. 2023, 428, 118867. [Google Scholar] [CrossRef]
- Vahed, A.; Mackey, P.J.; Warner, A.E.M.; Anderson, C. A Review of Nickel Pyrometallurgy Over the Past 50 Years with Special Reference to the Former Inco Ltd and Falconbridge Ltd. In Ni-Co 2021: The 5th International Symposium on Nickel and Cobalt; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Tian, H.; Pan, J.; Zhu, D.; Yang, C.; Guo, Z.; Xue, Y. Improved beneficiation of nickel and iron from a low-grade saprolite laterite by addition of limonitic laterite ore and CaCO3. J. Mater. Res. Technol. 2020, 9, 2578–2589. [Google Scholar] [CrossRef]
- Zevgolis, E.N.; Daskalakis, K.A. The Nickel Production Methods From Laterites and the Greek Ferronickel Production Among Them. Mater. Proc. 2021, 5, 104. [Google Scholar] [CrossRef]
- Uddin, M.H.; Khajavi, L.T. The effect of sulfur in rotary kiln fuels on nickel laterite calcination. Miner. Eng. 2020, 157, 106563. [Google Scholar] [CrossRef]
- Park, J.-O.; Kim, H.-S.; Jung, S.-M. Use of oxidation roasting to control NiO reduction in Ni-bearing limonitic laterite. Miner. Eng. 2014, 71, 205–215. [Google Scholar] [CrossRef]
- Tamehe, L.S.; Zhao, Y.; Xu, W.; Gao, J. Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective. Minerals 2024, 14, 134. [Google Scholar] [CrossRef]
- Heijlen, W.; Duhayon, C. An empirical estimate of the land footprint of nickel from laterite mining in Indonesia. Extr. Ind. Soc. 2024, 17, 101421. [Google Scholar] [CrossRef]
- Sufriadin, F.S.; Tindoilo, P.D.; Nur, I.; Purwanto, A.R.; Irfan, U.R.; Basir, D.N.; Otake, T. Thermal Beneficiation of a Nickel Laterite Ore from the Obi Island of North Maluku, Indonesia Using Corncob Char as Reductant. Adv. Sci. Technol. 2024, 141, 95–102. [Google Scholar] [CrossRef]
- Pintowantoro, S.; Abdul, F. Selective Reduction of Laterite Nickel Ore. Mater. Trans. 2019, 60, 2245–2254. [Google Scholar] [CrossRef]
- Li, Y.-J.; Sun, Y.-S.; Han, Y.-X.; Gao, P. Coal-based reduction mechanism of low-grade laterite ore. Trans. Nonferrous Met. Soc. China 2013, 23, 3428–3433. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Z.; Zhan, R.; Pan, J.; Zhu, D.; Yang, C.; Pan, L. Effective and economical treatment of low-grade nickel laterite by a duplex process of direct reduction-magnetic separation & rotary kiln-electric furnace and its industrial application. Powder Technol. 2021, 394, 120–132. [Google Scholar] [CrossRef]
- Quast, K.; Connor, J.N.; Skinner, W.; Robinson, D.J.; Li, J.; Addai-Mensah, J. Preconcentration strategies in the processing of nickel laterite ores part 2: Laboratory experiments. Miner. Eng. 2015, 79, 269–278. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, X.; Luo, Y.; Pan, J.; Bai, B. Reduction Smelting Low Ferronickel from Pre-concentrated Nickel-Iron Ore of Nickel Laterite. High Temp. Mater. Process. 2016, 35, 1031–1036. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Lv, X.-M.; Pang, Z.-D. Effect of basicity and Al2O3 on viscosity of ferronickel smelting slag. J. Iron Steel Res. Int. 2020, 27, 1400–1406. [Google Scholar] [CrossRef]
- Luo, J.; Li, G.; Rao, M.; Peng, Z.; Liang, G.; Jiang, T.; Guo, X. Control of slag formation in the electric furnace smelting of ferronickel for an energy-saving production. J. Clean. Prod. 2020, 287, 125082. [Google Scholar] [CrossRef]
- Rao, M.; Li, G.; Jiang, T.; Luo, J.; Zhang, Y.; Fan, X. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review. JOM 2013, 65, 1573–1583. [Google Scholar] [CrossRef]
- Urtnasan, E.; Kumar, A.; Wang, J.P. Artificial Slags with Modulated Properties for Controlled Nickel Dissolution in Smelting Process. Trans. Indian. Inst. Met. 2024, 77, 2293–2302. [Google Scholar] [CrossRef]
- Ma, Y.-T.; Yang, P.; Lu, B.-G.; Dou, Y.-L.; Tian, J.-K.; Guo, W.-B.; Zhang, Z.-Q.; Shen, Y.-Y. Effect of FeO content on melting characteristics and structure of nickel slag. J. Min. Metall. Sect. B Metall. 2022, 58, 427–438. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Y.; Li, X.; Yang, S.; Zhao, J.; Tang, H.; Li, X. Molecular Dynamics Simulation on Microstructure and Physicochemical Properties of FexO-SiO2-CaO-MgO-“NiO” Slag in Nickel Matte Smelting under Modulating CaO Content. Minerals 2020, 10, 149. [Google Scholar] [CrossRef]
- Rowe, H.; Hughes, N.; Robinson, K. The quantification and application of handheld energy-dispersive X-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 2012, 324–325, 122–131. [Google Scholar] [CrossRef]
- Zhang, Y.; Qie, J.; Wang, X.F.; Cui, K.; Fu, T.; Wang, J.; Qi, Y. Mineralogical Characteristics of the Nickel Laterite, Southeast Ophiolite Belt, Sulawesi Island, Indonesia. Min. Metall. Explor. 2019, 37, 79–91. [Google Scholar] [CrossRef]
- Abdul, F.; Firdausi, S.; Widyartha, A.B.; Setiyorini, Y.; Pintowantoro, S. The Role of Limestone in Enhancing Selective Reduction of Nickel in the Carbothermic Reduction of Laterite Nickel. Trans. Indian Inst. Met. 2023, 76, 2211–2219. [Google Scholar] [CrossRef]
- Mudd, G.M.; Jowitt, S.M. The New Century for Nickel Resources, Reserves, and Mining: Reassessing the Sustainability of the Devil’s Metal. Econ. Geol. 2022, 117, 1961–1983. [Google Scholar] [CrossRef]
- Seshadri, S. Fundamentals of Metallurgy; The Institute of Materials, Minerals & Mining: Washington, UK, 2005; pp. 66–72. [Google Scholar]
- Zhang, T.; Wu, F.; Yang, J. Effect of basicity on the flow and crystallization behavior of synthetic nickel–iron alloy residue. Ceram. Int. 2023, 49, 17067–17073. [Google Scholar] [CrossRef]
- Nurjaman, F.; Handoko, A.S.; Bahfie, F.; Astuti, W.; Suharno, B. Effect of modified basicity in selective reduction process of limonitic nickel ore. J. Mater. Res. Technol. 2021, 15, 6476–6490. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, D.; Guo, Z.; Pan, J.; Lv, T.; Yang, C.; Li, S. Efficient Utilization of Limonite Nickel Laterite to Prepare Ferronickel by the Selective Reduction Smelting Process. Sustainability 2023, 15, 7147. [Google Scholar] [CrossRef]
- Shen, Y.; Chong, J.; Huang, Z.; Tian, J.; Zhang, W.; Tang, X.; Ding, W.; Du, X. Viscosity and Structure of a CaO-SiO2-FeO-MgO System during a Modified Process from Nickel Slag by CaO. Materials 2019, 12, 2562. [Google Scholar] [CrossRef]
Ox. | Fe2O3 | NiO | MgO | SiO2 | Cr2O3 | Al2O3 | CaO | MnO | Co2O3 | ZnO | ICP-OES | |
Mass, % | 19.66 | 2.19 | 30.14 | 43.76 | 0.52 | 2.82 | 0.53 | 0.30 | 0.05 | 0.03 | - | - |
El. | Fe | Ni | Mg | Si | Cr | Al | Ca | Mn | Co | Zn | Fe * | Ni * |
Mass, % | 29.25 | 4.27 | 26.94 | 35.04 | 0.70 | 2.49 | 0.72 | 0.45 | 0.08 | 0.06 | 16.5 | 1.9 |
Element | Fe | O | Si | Mg | Ni |
---|---|---|---|---|---|
Mass, % | 18.90 | 29.66 | 29.17 | 19.56 | 2.71 |
C Addition, wt.% | Element, % | Weight, g | Fe/Ni | |||||
---|---|---|---|---|---|---|---|---|
Fe | Ni | C | Cr | Si | O | |||
1 | 6.872 | 93.094 | 0.004 | 0.000 | 0.000 | 0.030 | 1.012 | 0.07 |
2 | 50.089 | 49.832 | 0.007 | 0.049 | 0.004 | 0.018 | 3.805 | 1.0 |
3 | 76.401 | 23.436 | 0.040 | 0.097 | 0.009 | 0.017 | 8.193 | 3.2 |
4 | 84.521 | 15.189 | 0.086 | 0.170 | 0.023 | 0.012 | 12.663 | 5.5 |
5 | 87.912 | 11.353 | 0.219 | 0.404 | 0.106 | 0.006 | 16.951 | 7.7 |
6 | 86.529 | 9.568 | 0.889 | 1.664 | 1.348 | 0.002 | 20.120 | 9.0 |
7 | 81.814 | 8.829 | 1.511 | 2.991 | 4.854 | 0.001 | 21.804 | 9.2 |
8 | 77.565 | 8.334 | 1.509 | 3.292 | 9.299 | 0.001 | 23.101 | 9.3 |
9 | 73.782 | 7.917 | 1.216 | 3.295 | 13.790 | 0.001 | 24.318 | 9.3 |
10 | 70.370 | 7.547 | 0.905 | 3.237 | 17.940 | 0.001 | 25.511 | 9.3 |
C Addition, wt.% | Oxide, % | M/S | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MgO | SiO2 | CaO | FeO | Fe2O3 | NiO | CrO | Al2O3 | Cr2O3 | ||
1 | 22.94 | 46.53 | 0.27 | 24.81 | 0.436 | 0.79686 | 0.94 | 2.74 | 0.54 | 0.49 |
2 | 24.68 | 47.97 | 0.27 | 22.89 | 0.100 | 0.02705 | 0.96 | 2.68 | 0.42 | 0.51 |
3 | 27.02 | 50.94 | 0.27 | 17.56 | 0.044 | 0.00571 | 1.11 | 2.75 | 0.28 | 0.53 |
4 | 29.87 | 54.10 | 0.28 | 11.51 | 0.018 | 0.00252 | 1.20 | 2.81 | 0.20 | 0.55 |
5 | 32.95 | 57.37 | 0.29 | 5.15 | 0.004 | 0.00106 | 1.24 | 2.89 | 0.10 | 0.57 |
6 | 34.65 | 59.90 | 0.32 | 1.00 | 0.0002 | 0.00021 | 0.94 | 3.17 | 0.03 | 0.58 |
7 | 35.41 | 59.75 | 0.38 | 0.25 | 0.00003 | - | 0.43 | 3.77 | 0.01 | 0.59 |
8 | 35.72 | 59.62 | 0.40 | 0.08 | - | - | 0.20 | 3.97 | - | 0.60 |
9 | 35.73 | 59.63 | 0.40 | 0.04 | - | - | 0.11 | 4.08 | - | 0.60 |
10 | 35.53 | 59.17 | 0.47 | 0.02 | - | - | 0.06 | 4.75 | - | 0.60 |
C Addition, wt.% | Element, % | Fe/Ni | Weight of Metal in Alloy, g | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Cr | Si | C | Etc. | Fe | Ni | Alloy | ||
3 | 78.7 | 20.5 | 0.43 | 0.22 | 0.12 | 0.03 | 3.83 | 5.08 | 1.32 | 6.45 |
4 | 81.7 | 16.1 | 0.82 | 0.46 | 0.31 | 0.61 | 5.07 | 8.74 | 1.72 | 10.71 |
C Addition, wt.% | Oxide, % | M/S | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 | NiO | MgO | SiO2 | Cr2O3 | Al2O3 | CaO | MnO | ZrO2 | Y2O3 | Fe * | Ni * | ||
3 | 14.18 | 0.17 | 28.33 | 38.97 | 1.05 | 5.81 | 4.03 | 0.29 | 6.57 | 0.6 | 11.1 | 0.36 | 0.72 |
4 | 10.14 | - | 30.7 | 46.73 | 0.71 | 6.11 | 4.32 | 0.29 | 1.0 | - | 7.33 | 0.017 | 0.65 |
Flux Addition, wt.% | Amount of Phase Mass.% | ||||
---|---|---|---|---|---|
Slag | Olivine | Metal | Gas | Sum | |
No flux, 4 wt.% C | 78.409 | 7.47 | 12.66 | 9.416 | 103.96 |
With SiO2 | |||||
2 | 83.906 | - | 12.644 | 9.41 | 105.96 |
4 | 85.94 | - | 12.615 | 9.403 | 107.96 |
6 | 87.975 | - | 12.589 | 9.396 | 109.96 |
8 | 90.005 | - | 12.565 | 9.39 | 111.96 |
10 | 92.03 | - | 12.544 | 9.384 | 113.96 |
With MgO | |||||
2 | 73.28 | 10.59 | 12.66 | 9.41 | 105.94 |
4 | 68.18 | 17.68 | 12.67 | 9.41 | 107.94 |
6 | 63.12 | 24.74 | 12.67 | 9.41 | 109.94 |
8 | 58.10 | 31.76 | 12.67 | 9.42 | 111.95 |
10 | 53.12 | 38.73 | 12.68 | 9.42 | 113.95 |
Flux Addition, wt.% | Element, % | ||||||
---|---|---|---|---|---|---|---|
Fe | Ni | C | Cr | Si | O | etc. | |
With SiO2 | |||||||
2 | 84.49 | 15.214 | 0.09 | 0.16 | 0.025 | 0.011 | 0.004 |
4 | 84.45 | 15.249 | 0.09 | 0.16 | 0.030 | 0.010 | 0.005 |
6 | 84.407 | 15.28 | 0.101 | 0.16 | 0.035 | 0.010 | 0.001 |
8 | 84.366 | 15.31 | 0.106 | 0.16 | 0.041 | 0.009 | 0.001 |
10 | 84.328 | 15.336 | 0.11 | 0.16 | 0.046 | 0.009 | 0.003 |
With MgO | |||||||
2 | 84.52 | 15.18 | 0.08 | 0.18 | 0.022 | 0.012 | 0.006 |
4 | 84.51 | 15.17 | 0.08 | 0.19 | 0.021 | 0.012 | 0.017 |
6 | 84.50 | 15.16 | 0.08 | 0.21 | 0.020 | 0.012 | 0.018 |
8 | 84.49 | 15.15 | 0.08 | 0.23 | 0.020 | 0.012 | 0.018 |
10 | 84.48 | 15.14 | 0.08 | 0.25 | 0.018 | 0.012 | 0.02 |
Flux Addition, wt.% | Oxide, % | M/S | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MgO | SiO2 | CaO | FeO | Fe2O3 | NiO | CrO | Al2O3 | Cr2O3 | ||
With SiO2 | ||||||||||
2 | 30.00 | 54.65 | 0.26 | 11.14 | 0.017 | 0.0024 | 1.12 | 2.633 | 0.18 | 0.54 |
4 | 29.28 | 55.68 | 0.26 | 10.92 | 0.016 | 0.0023 | 1.10 | 2.57 | 0.17 | 0.52 |
6 | 28.61 | 56.66 | 0.25 | 10.71 | 0.014 | 0.0022 | 1.09 | 2.51 | 0.15 | 0.50 |
8 | 27.97 | 57.60 | 0.24 | 10.51 | 0.014 | 0.0020 | 1.07 | 2.45 | 0.15 | 0.48 |
10 | 27.35 | 58.51 | 0.24 | 10.31 | 0.013 | 0.0019 | 1.05 | 2.4 | 0.14 | 0.46 |
With MgO | ||||||||||
2 | 29.80 | 53.90 | 0.29 | 11.47 | 0.018 | 0.0025 | 1.27 | 3.01 | 0.20 | 0.55 |
4 | 29.72 | 53.65 | 0.32 | 11.44 | 0.018 | 0.0025 | 1.36 | 3.24 | 0.22 | 0.55 |
6 | 29.64 | 53.36 | 0.34 | 11.41 | 0.018 | 0.0025 | 1.47 | 3.50 | 0.24 | 0.55 |
8 | 29.54 | 53.0 | 0.37 | 11.39 | 0.018 | 0.0024 | 1.59 | 3.80 | 0.26 | 0.55 |
10 | 29.44 | 52.57 | 0.40 | 11.37 | 0.018 | 0.0024 | 1.73 | 4.16 | 0.28 | 0.56 |
Flux Addition, wt.% | Element, % | Fe/Ni | Weight of Metal in Alloy, g | ||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Cr | Si | Etc. | Fe | Ni | Alloy | ||
With SiO2 | |||||||||
2 | 83.8 | 15.8 | 0.15 | 0.17 | 0.08 | 5.30 | 9.59 | 1.78 | 11.51 |
4 | 84.1 | 15.9 | 0.09 | 0.21 | - | 5.29 | 8.58 | 1.62 | 10.20 |
6 | 83.4 | 15.5 | 0.33 | 0.45 | 0.32 | 5.38 | 8.42 | 1.59 | 10.05 |
With MgO | |||||||||
2 | 81.6 | 17.3 | 0.27 | 0.16 | 0.67 | 4.72 | 8.57 | 1.82 | 10.50 |
4 | 81.8 | 17.5 | 0.16 | 0.20 | 0.34 | 4.67 | 7.81 | 1.67 | 9.55 |
6 | 81.9 | 15.9 | 0.21 | 0.12 | 1.87 | 5.15 | 6.39 | 1.24 | 7.8 |
Flux Addition, wt.% | Oxide, % | M/S | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MgO | SiO2 | CaO | Fe2O3 | MnO | Al2O3 | Cr2O3 | NiO | Fe * | Ni * | ||
With SiO2 | |||||||||||
2 | 29.73 | 46.39 | 5.17 | 11.82 | 0.32 | 6.18 | 0.40 | - | 6.19 | 0.012 | 0.64 |
4 | 26.96 | 48.18 | 4.45 | 11.31 | 0.31 | 8.35 | 0.29 | 0.15 | 7.48 | 0.37 | 0.55 |
6 | 26.40 | 50.64 | 4.90 | 10.10 | 0.31 | 5.90 | 1.03 | 0.71 | 10.0 | 1.0 | 0.52 |
With MgO | |||||||||||
2 | 30.98 | 44.49 | 4.14 | 10.23 | 0.30 | 8.13 | 1.73 | - | 7.20 | 0.016 | 0.69 |
4 | 32.38 | 44.47 | 4.75 | 10.41 | 0.31 | 5.79 | 1.76 | 0.11 | 7.04 | 0.13 | 0.73 |
6 | 33.97 | 41.08 | 4.47 | 12.25 | 0.30 | 5.46 | 1.87 | 0.30 | 7.28 | 1.17 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urtnasan, E.; Heo, S.-B.; Yu, J.-W.; Jung, C.-H.; Wang, J.-P. Relationship Between Thermodynamic Modeling and Experimental Process for Optimization Ferro-Nickel Smelting. Minerals 2025, 15, 101. https://doi.org/10.3390/min15020101
Urtnasan E, Heo S-B, Yu J-W, Jung C-H, Wang J-P. Relationship Between Thermodynamic Modeling and Experimental Process for Optimization Ferro-Nickel Smelting. Minerals. 2025; 15(2):101. https://doi.org/10.3390/min15020101
Chicago/Turabian StyleUrtnasan, Erdenebold, Seong-Bong Heo, Joo-Won Yu, Chang-Ho Jung, and Jei-Pil Wang. 2025. "Relationship Between Thermodynamic Modeling and Experimental Process for Optimization Ferro-Nickel Smelting" Minerals 15, no. 2: 101. https://doi.org/10.3390/min15020101
APA StyleUrtnasan, E., Heo, S.-B., Yu, J.-W., Jung, C.-H., & Wang, J.-P. (2025). Relationship Between Thermodynamic Modeling and Experimental Process for Optimization Ferro-Nickel Smelting. Minerals, 15(2), 101. https://doi.org/10.3390/min15020101