Enhancing Lithium Recovery from Slag Through Dry Forced Triboelectric Separation: A Sustainable Recycling Approach
<p>Schematic of (<b>a</b>) liberation by comminution (crushing and grinding), (<b>b</b>) slag components liberated to various degrees of free surface area (FSA) (partially and fully surface-liberated target phases).</p> "> Figure 2
<p>Experimental setup: (<b>a</b>) combination of dry forced triboelectric charging (FTC) of powders and the Faraday cup electrometer (FCE) test to determine the PZNC of the used materials and (<b>b</b>) the electrostatic separator, including five collection bins at the bottom.</p> "> Figure 3
<p>Slag’s transformation from (<b>a</b>) solid block to (<b>b</b>) powder form and (<b>c</b>) mineral characterization using an electron probe micro-analyzer (EPMA).</p> "> Figure 4
<p>(<b>a</b>) Particle size distribution of Li-Slag obtained by MLA and (<b>b</b>) X-ray diffraction (XRD) pattern of Li-Slag and single-phase components [<a href="#B8-minerals-14-01254" class="html-bibr">8</a>].</p> "> Figure 5
<p>Characterization of the liberation of the lithium aluminate component in the Li-Slag: (<b>a</b>) examples of particles extracted from EPMA analysis (from <a href="#minerals-14-01254-f003" class="html-fig">Figure 3</a>c, lithium aluminate in pink color) exhibiting different degrees of FSA, (<b>b</b>) lithium aluminate percentage in each liberation class by free surface area, and (<b>c</b>) particle size classes in the 90%–100% liberation class by free surface area.</p> "> Figure 6
<p>The specific charge of powders as a function of the applied voltage in the range of −12 to +12 kV for pure lithium aluminate, Li-Slag, and their mixture (10%/90%). From the fits of the two powders, the charging behavior of the mixture was calculated as a weighted average (black dashed line), which agrees very well with the measurements (green points).</p> "> Figure 7
<p>Free fall test of (<b>a</b>) Li-Slag and (<b>b</b>) lithium aluminate powders, demonstrating particle settling behavior through the separator without applied voltages (V<sub>chute</sub> = 0 kV, V<sub>sep</sub> = 0 kV).</p> "> Figure 8
<p>Electrostatic separation of original Li-Slag (<b>a</b>) at −3 kV (PZNC of Li-Slag) and (<b>b</b>) at −10.3 kV (PZNC of lithium aluminate). The numbers in the figure give the mass fraction of lithium slag (red) and of lithium aluminate (blue) (the sum of a mass fraction over all bins accounts for 100%).</p> "> Figure 9
<p>Electrostatic separation of the mixture of Li-Slag and lithium aluminate (<b>a</b>) at −3 kV (PZNC of Li-Slag) and (<b>b</b>) at −10.3 kV (PZNC of lithium aluminate). The numbers in the figure show the mass fraction of lithium slag (red) and lithium aluminate (blue).</p> "> Figure A1
<p>Conductivity of the mixture of Li-Slag and lithium aluminate for adding different amounts of lithium aluminate.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Slag Production
2.2. Liberation of Lithium Aluminate
2.3. Characterizing of Materials
2.4. Triboelectric Charging and Electrostatic Separation
2.4.1. FTC Process
2.4.2. Electrostatic Separation of Charged Particles
2.4.3. Free Fall Test
3. Results
3.1. Material Preparation and Analysis
3.2. Charging Behavior of Used Materials
3.3. Electrostatic Separation
3.3.1. Free Fall Test
3.3.2. Electrostatic Separation of Li-Slag
3.3.3. Electrostatic Separation of Mixed Powder
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lebrouhi, B.E.; Baghi, S.; Lamrani, B.; Schall, E.; Kousksou, T. Critical Materials for Electrical Energy Storage: Li-Ion Batteries. J. Energy Storage 2022, 55, 105471. [Google Scholar] [CrossRef]
- Liu, W.; Sun, X.; Yan, X.; Gao, Y.; Zhang, X.; Wang, K.; Ma, Y. Review of Energy Storage Capacitor Technology. Batteries 2024, 10, 271. [Google Scholar] [CrossRef]
- Kaur, B.; Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors—A Comprehensive Review of the Years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. [Google Scholar] [CrossRef]
- Kaya, M. State-of-the-Art Lithium-Ion Battery Recycling Technologies. Circ. Econ. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Ambrose, H.; Kendall, A. Understanding the Future of Lithium: Part 1, Resource Model. J. Ind. Ecol. 2020, 24, 80–89. [Google Scholar] [CrossRef]
- Lima, M.C.C.; Pontes, L.P.; Vasconcelos, A.S.M.; de Araujo Silva, W., Jr.; Wu, K. Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles. Energies 2022, 15, 2203. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Vonderstein, C.; Dertmann, C.; Klimko, J.; Oráč, D.; Miškufová, A.; Havlík, T.; Friedrich, B. A Combined Pyro- and Hydrometallurgical Approach to Recycle Pyrolyzed Lithium-Ion Battery Black Mass Part 1: Production of Lithium Concentrates in An Electric Arc Furnace. Metals 2020, 10, 1069. [Google Scholar] [CrossRef]
- Rachmawati, C.; Weiss, J.; Lucas, H.I.; Löwer, E.; Leißner, T.; Ebert, D.; Möckel, R.; Friedrich, B.; Peuker, U.A. Characterisation of the Grain Morphology of Artificial Minerals (EnAMs) in Lithium Slags by Correlating Multi-Dimensional 2D and 3D Methods. Minerals 2024, 14, 130. [Google Scholar] [CrossRef]
- Wills, B.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7th ed.; Elsevier Science & Technology: Oxford, UK, 2011; ISBN 978-0-7506-4450-1. [Google Scholar]
- Falconi, I.B.A.; Botelho, A.B.; Baltazar, M.D.P.G.; Espinosa, D.C.R.; Tenório, J.A.S. An Overview of Treatment Techniques to Remove Ore Flotation Reagents from Mining Wastewater. J. Environ. Chem. Eng. 2023, 11, 111270. [Google Scholar] [CrossRef]
- Aaltonen, A.; Izart, C.; Lyyra, M.; Lang, A.; Saari, E.; Dahl, O. Simulating the Impact of Ore and Water Quality on Flotation Recovery During the Life of A Mine. Minerals 2023, 13, 1230. [Google Scholar] [CrossRef]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Huang, W.; Omran, M.; Zhang, F.; Gao, L.; Chen, G. Reductive Roasting of Cathode Powder of Spent Ternary Lithium-Ion Battery by Pyrolysis of Invasive Plant Crofton Weed. Renew. Energy 2023, 206, 86–96. [Google Scholar] [CrossRef]
- Lu, J.; Tian, C.; Ren, C.; Omran, M.; Zhang, F.; Gao, L.; Chen, G. Priority Recovering of Lithium from Spent Lithium-Ion Battery Cathode Powder by Pyrolysis Reduction of Bidens Pilosa. J. Clean. Prod. 2024, 439, 140775. [Google Scholar] [CrossRef]
- Xing, Z.; Srinivasan, M. Electrochemical Approach for Lithium Recovery from Spent Lithium-Ion Batteries: Opportunities and Challenges. ACS Sustain. Resour. Manag. 2024, 1, 1326–1339. [Google Scholar] [CrossRef]
- Lang, N.D.; Kohn, W. Theory of Metal Surfaces: Work Function. Phys. Rev. B 1971, 3, 1215–1223. [Google Scholar] [CrossRef]
- Gupta, R.; Gidaspow, D.; Wasan, D.T. Electrostatic Separation of Powder Mixtures Based on the Work Functions of Its Constituents. Powder Technol. 1993, 75, 79–87. [Google Scholar] [CrossRef]
- Ban, H.; Li, T.X.; Schaefer, J.L.; Stencel, J.M. Triboelectrostatic Separation of Unburned Carbon from Fly Ash. Fuel Energy Abstr. 1996, 37, 426. [Google Scholar] [CrossRef]
- Peretti, R.; Serci, A.; Zucca, A. Electrostatic K-Feldspar/Na-Feldspar and Feldspar/Quartz Separation: Influence of Feldspar Composition. Miner. Process. Extr. Metall. Rev. 2012, 33, 220–231. [Google Scholar] [CrossRef]
- Ruan, Y.; He, D.; Chi, R. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef]
- Dötterl, M.; Wachsmuth, U.; Waldmann, L.; Flachberger, H.; Mirkowska, M.; Brands, L.; Beier, P.-M.; Stahl†, I. Electrostatic Separation. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd.: New York, NY, USA, 2016; pp. 1–35. ISBN 978-3-527-30673-2. [Google Scholar]
- Gehringer, S.; Luckeneder, C.; Flachberger, H. Systematic Separation Studies on Finely Dispersed Raw Magnesite by Using Triboelectrostatic Belt Separation. Berg Huettenmaenn Monatsh 2020, 165, 364–368. [Google Scholar] [CrossRef]
- Mirkowska, M.; Kratzer, M.; Teichert, C.; Flachberger, H. Principal Factors of Contact Charging of Minerals for a Successful Triboelectrostatic Separation Process—A Review. Berg Huettenmaenn Monatsh 2016, 161, 359–382. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Peng, Z.; Hao, J.; Zhang, G.; Xie, W.; He, Y. Triboelectric Properties of Ilmenite and Quartz Minerals and Investigation of Triboelectric Separation of Ilmenite Ore. Int. J. Min. Sci. Technol. 2018, 28, 223–230. [Google Scholar] [CrossRef]
- Wei, J.; Realff, M.J. Design and Optimization of Free-Fall Electrostatic Separators for Plastics Recycling. AIChE J. 2003, 49, 3138–3149. [Google Scholar] [CrossRef]
- Javadi, M.; Abohelwa, M.; Wollmann, A.; Weber, A.P. Dry Recycling of Lithium-Containing Material by Forced Tribocharging and Electrostatic Separation. Chem. Ing. Tech. 2024, 96, 950–957. [Google Scholar] [CrossRef]
- Javadi, M.; Abohelwa, M.; Wollmann, A.; Weber, A.P. Characteristics of Powder Charging Behavior Via Forced Triboelectric Charging on An Inclined Chute. Powder Technol. 2025, 449, 120400. [Google Scholar] [CrossRef]
- Li, Z.; Fu, Y.; Yang, C.; Yu, W.; Liu, L.; Qu, J.; Zhao, W. Mineral Liberation Analysis on Coal Components Separated Using Typical Comminution Methods. Miner. Eng. 2018, 126, 74–81. [Google Scholar] [CrossRef]
- Hirschberger, P.; Võ, T.T.; Peuker, U.; Kruggel-Emden, H. A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Miner. Eng. 2024, 205, 108491. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Shen, L.; Yang, S.; Luo, L.; Song, S. Liberation and Enrichment of Metallic Iron from Reductively Roasted Copper Slag. JOM 2021, 73, 1013–1022. [Google Scholar] [CrossRef]
- Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-Based Automated Mineralogy and Its Application in Geo-And Material Sciences. Minerals 2020, 10, 1004. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Li, H.; Schirmer, T.; Hampel, S.; Fittschen, U.E.A.; Fischlschweiger, M. Non-Equilibrium Thermodynamic Modelling of Cooling Path Dependent Phase Evolution of Li2SiO3 from Li2O-SiO2 Melt by Considering Mixed Kinetic Phenomena and Time-Dependent Concentration Fields. Scr. Mater. 2024, 242, 115922. [Google Scholar] [CrossRef]
- Schnickmann, A.; De Abreu, D.A.; Fabrichnaya, O.; Schirmer, T. Stabilization of Mn4+ in Synthetic Slags and Identification of Important Slag Forming Phases. Minerals 2024, 14, 368. [Google Scholar] [CrossRef]
Powder Material | Supplier | Density (g cm−3) | Particle Size (µm) | ||
---|---|---|---|---|---|
(x10) | (x50) | (x90) | |||
Li-Slag (Multiple minerals) | IME-Institute of Process Metallurgy and Metal Recycling—RWTH | 3.21 | 27 | 75 | 106 |
Lithium Aluminate | Sigma Aldrich Chemie GmbH | 2.62 | 7.7 | 38 | 74 |
Components | Lithium Aluminate (LiAlO2) | Mn-Al Spinel (MnAl2O4) | Gehlenite (Ca2Al2SiO7) | Li2MnSiO4 | Eucryptite (LiAlSiO4) |
---|---|---|---|---|---|
Wt.% | 8.2 | 36.1 | 31.7 | 13.8 | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javadi, M.; Rachmawati, C.; Wollmann, A.; Weiss, J.; Lucas, H.; Möckel, R.; Friedrich, B.; Peuker, U.; Weber, A.P. Enhancing Lithium Recovery from Slag Through Dry Forced Triboelectric Separation: A Sustainable Recycling Approach. Minerals 2024, 14, 1254. https://doi.org/10.3390/min14121254
Javadi M, Rachmawati C, Wollmann A, Weiss J, Lucas H, Möckel R, Friedrich B, Peuker U, Weber AP. Enhancing Lithium Recovery from Slag Through Dry Forced Triboelectric Separation: A Sustainable Recycling Approach. Minerals. 2024; 14(12):1254. https://doi.org/10.3390/min14121254
Chicago/Turabian StyleJavadi, Mehran, Cindytami Rachmawati, Annett Wollmann, Joao Weiss, Hugo Lucas, Robert Möckel, Bernd Friedrich, Urs Peuker, and Alfred P. Weber. 2024. "Enhancing Lithium Recovery from Slag Through Dry Forced Triboelectric Separation: A Sustainable Recycling Approach" Minerals 14, no. 12: 1254. https://doi.org/10.3390/min14121254
APA StyleJavadi, M., Rachmawati, C., Wollmann, A., Weiss, J., Lucas, H., Möckel, R., Friedrich, B., Peuker, U., & Weber, A. P. (2024). Enhancing Lithium Recovery from Slag Through Dry Forced Triboelectric Separation: A Sustainable Recycling Approach. Minerals, 14(12), 1254. https://doi.org/10.3390/min14121254