Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential
<p>Number of mercury-resistant microorganisms isolated at the different sampling points (<b>a</b>) and using each processing method (<b>b</b>). Margarita Atrato River mouth (MARM), Mangrove Paila Atrato River (MPAR), Mangrove Roto Atrato River (MRAR), Mangrove Via Usaraga Baudó River (MVUBR), Out to Sea Baudó River (OBR), Mangrove Choncho San Juan River two (MCHSJ2), Mangrove San Juan River two (MSJ2), and Beach San Juan River mouth two (BSJM2).</p> "> Figure 2
<p>Phylogenetic tree of the three selected strains of mercury-resistant bacteria from this study (highlighted with a colored dot).</p> "> Figure 3
<p>Bacterial growth curves of the three selected strains studied in this work exposed to HgCl<sub>2</sub> (5.9 ± 0.7 mg Hg/L), and total Hg concentration along time. The growth curve of a control without HgCl<sub>2</sub> has also been represented. INV PRT0231: <span class="html-italic">Stenotrophomonas</span> sp., INV PRT0273: <span class="html-italic">Brucella</span> sp., INV PRT0220: <span class="html-italic">Enterobacter</span> sp. Mean and standard deviation from three replicate samples are also shown.</p> "> Figure 4
<p>Growth and mercury removal evaluation of <span class="html-italic">Stenotrophomonas</span> sp. INV PRT023 at pH 6.0. (<b>a</b>) Dry biomass concentration (mg/L) of two cultures with 5.9 ± 0.6 mg Hg/L and without Hg, and total mercury concentration of the culture with Hg. (<b>b</b>) Total mercury concentration in the abiotic and killed controls. (<b>c</b>) Dry biomass concentration (dots) and % of absorption and volatilization rates from a culture grown with 5.9 ± 0.6 mg Hg/L; the volatilization rate of the abiotic control is also indicated. (<b>d</b>) Mercury concentration in dry biomass and supernatant of the culture grown with 5.9 ± 0.6 mg Hg/L. Mean and standard deviation from three replicate samples are also shown.</p> "> Figure 5
<p>Changes in the FT-IR band area of <span class="html-italic">Stenotrophomonas</span> sp. INV PRT0231 biomass during its growth in cultures supplemented with Hg<sup>2</sup>⁺ (purple line) and cultures without Hg<sup>2</sup>⁺ (green line) for the distinctive functional groups present in (<b>a</b>) spectral window W1: lipids; (<b>b</b>) spectral window W2: proteins and peptides; (<b>c</b>) spectral window W3: mixed region; and (<b>d</b>) spectral window W4: Carbohydrates.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of Microorganisms
2.2. Mercury Resistance Assay
2.3. Minimum Inhibitory Concentration Assays
2.4. Taxonomic Identification
2.5. Measurement of Bacterial Growth and Mercury Concentration in Liquid Medium
2.6. Mercury Reduction at pH 6.0
2.7. Fourier-Transform Infrared (FT-IR) Analysis
2.8. Statistical Analysis
3. Results
3.1. Mercury Tolerance Assay
3.2. Taxonomic Identification of Selected Strains
3.3. Growth Curves of Selected Candidates
3.4. Mercury Reduction of Stenotrophomonas sp. INV PRT0231 in Acidic Conditions
3.5. FT-IR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priyadarshanee, M.; Chatterjee, S.; Rath, S.; Dash, H.R.; Das, S. Cellular and Genetic Mechanism of Bacterial Mercury Resistance and Their Role in Biogeochemistry and Bioremediation. J. Hazard. Mater. 2022, 423, 126985. [Google Scholar] [CrossRef] [PubMed]
- Pushkar, B.; Sevak, P.; Singh, A. Bioremediation Treatment Process through Mercury-Resistant Bacteria Isolated from Mithi River. Appl. Water Sci. 2019, 9, 117. [Google Scholar] [CrossRef]
- Padalkar, P.P.; Chakraborty, P.; Chennuri, K.; Jayachandran, S.; Sitlhou, L.; Nanajkar, M.; Tilvi, S.; Singh, K. Molecular Characteristics of Sedimentary Organic Matter in Controlling Mercury (Hg) and Elemental Mercury (Hg0) Distribution in Tropical Estuarine Sediments. Sci. Total Environ. 2019, 668, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Torres, Y.; Caballero-Gallardo, K.; Olivero-Verbel, J. Mercury Pollution by Gold Mining in a Global Biodiversity Hotspot, the Choco Biogeographic Region, Colombia. Chemosphere 2018, 193, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Mosquera, H.; Marrugo-Negrete, J.; Díez, S.; Morales-Mira, G.; Montoya-Jaramillo, L.J.; Jonathan, M.P. Mercury Distribution in Different Environmental Matrices in Aquatic Systems of Abandoned Gold Mines, Western Colombia: Focus on Human Health. J. Hazard. Mater. 2021, 404, 124080. [Google Scholar] [CrossRef]
- Gworek, B.; Bemowska-Kałabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. Mercury in Marine and Oceanic Waters—A Review. Water Air Soil Pollut. 2016, 227, 371. [Google Scholar] [CrossRef]
- Urbano, T.; Malavolti, M.; Vinceti, M.; Filippini, T. Mercuric Chloride (HgCl2). In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2024; pp. 117–122. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V. Mercury Detoxification by Absorption, Mercuric Ion Reductase, and Exopolysaccharides: A Comprehensive Study. Environ. Sci. Pollut. Res. 2020, 27, 27181–27201. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, Y.; Liu, B.; Deng, X. MerP/MerT-Mediated Mechanism: A Different Approach to Mercury Resistance and Bioaccumulation by Marine Bacteria. J. Hazard. Mater. 2020, 388, 122062. [Google Scholar] [CrossRef]
- Hui, C.; Ma, B.; Hu, S.; Wu, C. Tailored Bacteria Tackling with Environmental Mercury: Inspired by Natural Mercuric Detoxification Operons. Environ. Pollut. 2024, 341, 123016. [Google Scholar] [CrossRef]
- Joshi, G.; Verma, P.; Meena, B.; Goswami, P.; Peter, D.M.; Jha, D.K.; Vinithkumar, N.V.; Dharani, G. Unraveling the Potential of Bacteria Isolated from the Equatorial Region of Indian Ocean in Mercury Detoxification. Front. Mar. Sci. 2022, 9, 986493. [Google Scholar] [CrossRef]
- Al-Ansari, M.M. Biodetoxification Mercury by Using a Marine Bacterium Marinomonas sp. RS3 and Its merA Gene Expression under Mercury Stress. Environ. Res. 2022, 205, 112452. [Google Scholar] [CrossRef] [PubMed]
- Tanwer, N.; Bumbra, P.; Khosla, B.; Laura, J.S. Chapter 35—Mercury Pollution and Its Bioremediation by Microbes. In Microbes and Microbial Biotechnology for Green Remediation; Malik, J.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 651–664. [Google Scholar] [CrossRef]
- Alvarado-Campo, K.L.; Quintero, M.; Cuadrado-Cano, B.; Montoya-Giraldo, M.; Otero-Tejada, E.L.; Blandón, L.; Sánchez, O.; Zuleta-Correa, A.; Gómez-León, J. Heavy Metal Tolerance of Microorganisms Isolated from Coastal Marine Sediments and Their Lead Removal Potential. Microorganisms 2023, 11, 2708. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H. Experiments in Molecular Genetics; N.Y. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1972; Available online: https://scholar.google.com/scholar_lookup?title=Experiments+in+molecular+genetics&author=Miller%2C+Jeffrey+H.&publication_year=1972 (accessed on 28 April 2023).
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Markossian, S., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Cardona, G.I.; Escobar, M.C.; Acosta-González, A.; Marín, P.; Marqués, S. Highly Mercury-Resistant Strains from Different Colombian Amazon Ecosystems Affected by Artisanal Gold Mining Activities. Appl. Microbiol. Biotechnol. 2022, 106, 2775–2793. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Sáez, I.; Pereira-García, C.; Bravo, A.G.; Trujillo, L.; Pla i Ferriol, M.; Capilla, M.; Sánchez, P.; Rodríguez Martín-Doimeadios, R.C.; Acinas, S.G.; Sánchez, O. Prevalence of Heterotrophic Methylmercury Detoxifying Bacteria across Oceanic Regions. Environ. Sci. Technol. 2022, 56, 3452–3461. [Google Scholar] [CrossRef] [PubMed]
- ISO 17025:2017; General requirements for the competence of testing and calibration laboratories. ISO: Geneva, Switzerland, 2017.
- Tan, A.; Wang, H.; Ji, J.; Yao, H.; Tang, H. Hg2+ Removal Characteristics of a Strain of Mercury-Tolerant Bacteria Screened from Heavy Metal-Contaminated Soil in a Molybdenum-Lead Mining Area. Int. Microbiol. 2024, 1–14. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Gao, B.; Mohan, R.; Gupta, R.S. Phylogenomics and Protein Signatures Elucidating the Evolutionary Relationships among the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 2009, 59, 234–247. [Google Scholar] [CrossRef]
- Williams, K.P.; Gillespie, J.J.; Sobral, B.W.S.; Nordberg, E.K.; Snyder, E.E.; Shallom, J.M.; Dickerman, A.W. Phylogeny of Gammaproteobacteria. J. Bacteriol. 2010, 192, 2305–2314. [Google Scholar] [CrossRef]
- Hördt, A.; López, M.G.; Meier-Kolthoff, J.P.; Schleuning, M.; Weinhold, L.-M.; Tindall, B.J.; Gronow, S.; Kyrpides, N.C.; Woyke, T.; Göker, M. Analysis of 1000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front. Microbiol. 2020, 11, 468. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury Speciation, Trans-formation, and Transportation in Soils, Atmospheric Flux, and Implications for Risk Management: A Critical Review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef] [PubMed]
- Helm, D.; Labischinski, H.; Schallehn, G.; Naumann, D. Classification and Identification of Bacteria by Fourier-Transform Infrared Spectroscopy. Microbiology 1991, 137, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Anaya, J.A.; Gutiérrez-Vélez, V.H.; Pacheco-Pascagaza, A.M.; Palomino-Ángel, S.; Han, N.; Balzter, H. Drivers of Forest Loss in a Megadiverse Hotspot on the Pacific Coast of Colombia. Remote Sens. 2020, 12, 1235. [Google Scholar] [CrossRef]
- Gutiérrez-Mosquera, H.; Marrugo-Negrete, J.; Díez, S.; Morales-Mira, G.; Montoya-Jaramillo, L.J.; Jonathan, M.P. Distribution of Chemical Forms of Mercury in Sediments from Abandoned Ponds Created during Former Gold Mining Operations in Colombia. Chemosphere 2020, 258, 127319. [Google Scholar] [CrossRef]
- Reyes, N.S.; Frischer, M.E.; Sobecky, P.A. Characterization of Mercury Resistance Mechanisms in Marine Sediment Microbial Communities. FEMS Microbiol. Ecol. 1999, 30, 273–284. [Google Scholar] [CrossRef]
- Chang, J.; Shi, Y.; Si, G.; Yang, Q.; Dong, J.; Chen, J. The Bioremediation Potentials and Mercury(II)-Resistant Mechanisms of a Novel Fungus Penicillium spp. DC-F11 Isolated from Contaminated Soil. J. Hazard. Mater. 2020, 396, 122638. [Google Scholar] [CrossRef]
- Foti, C.; Giuffrè, O.; Lando, G.; Sammartano, S. Interaction of Inorganic Mercury(II) with Polyamines, Polycarboxylates, and Amino Acids. J. Chem. Eng. Data 2009, 54, 893–903. [Google Scholar] [CrossRef]
- Pereira-García, C.; del Amo, E.H.; Vigués, N.; Rey-Velasco, X.; Rincón-Tomás, B.; Pérez-Cruz, C.; Sanz-Sáez, I.; Hu, H.; Bertilsson, S.; Pannier, A.; et al. Unmasking the Physiology of Mercury Detoxifying Bacteria from Polluted Sediments. J. Hazard. Mater. 2024, 467, 133685. [Google Scholar] [CrossRef]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef]
- Mangwani, N.; Kumari, S.; Das, S. Taxonomy and Characterization of Biofilm Forming Polycyclic Aromatic Hydrocarbon Degrading Bacteria from Marine Environments. Polycycl. Aromat. Compd. 2021, 41, 1249–1262. [Google Scholar] [CrossRef]
- Chen, W.; Sang, S.; Shao, L.; Li, Y.; Li, T.; Gan, L.; Liu, L.; Wang, D.; Zhou, L. Biogeographic Patterns and Community Assembly Processes of Bacterioplankton and Potential Pathogens in Subtropical Estuaries in China. Microbiol. Spectr. 2022, 11, e03683-22. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.P.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M.B.; Berg, G.; van der Lelie, D.; Dow, J.M. The Versatility and Adaptation of Bacteria from the Genus Stenotrophomonas. Nat. Rev. Microbiol. 2009, 7, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Yasmin, A.; Thomas, T. Essential Gene Clusters Identified in Stenotrophomonas MB339 for Multiple Metal/Antibiotic Resistance and Xenobiotic Degradation. Curr. Microbiol. 2018, 75, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Pages, D.; Rose, J.; Conrod, S.; Cuine, S.; Carrier, P.; Heulin, T.; Achouak, W. Heavy Metal Tolerance in Stenotrophomonas maltophilia. PLoS ONE 2008, 3, e1539. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Muruganraj, T.; Majumdar, R.; Sugumar, S. Study of Cadmium Metal Resistance in Stenotrophomonas maltophilia. Indian J. Microbiol. 2023, 63, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Rathore, R.S.; Jagoe, C.; Chauhan, A. Multiple Lines of Evidences Reveal Mechanisms Underpinning Mercury Resistance and Volatilization by Stenotrophomonas sp. MA5 Isolated from the Savannah River Site (SRS), USA. Cells 2019, 8, 309. [Google Scholar] [CrossRef]
- Crossman, L.C.; Gould, V.C.; Dow, J.M.; Vernikos, G.S.; Okazaki, A.; Sebaihia, M.; Saunders, D.; Arrowsmith, C.; Carver, T.; Peters, N.; et al. The Complete Genome, Comparative and Functional Analysis of Stenotrophomonas maltophilia Reveals an Organism Heavily Shielded by Drug Resistance Determinants. Genome Biol. 2008, 9, R74. [Google Scholar] [CrossRef]
- Chen, R.; Tu, H.; Chen, T. Potential Application of Living Microorganisms in the Detoxification of Heavy Metals. Foods 2022, 11, 1905. [Google Scholar] [CrossRef]
- Syed, Z.; Sogani, M.; Rajvanshi, J.; Sonu, K. Microbial Biofilms for Environmental Bioremediation of Heavy Metals: A Review. Appl. Biochem. Biotechnol. 2023, 195, 5693–5711. [Google Scholar] [CrossRef]
- Gupta, P.; Diwan, B. Bacterial Exopolysaccharide Mediated Heavy Metal Removal: A Review on Biosynthesis, Mechanism and Remediation Strategies. Biotechnol. Rep. 2017, 13, 58–71. [Google Scholar] [CrossRef]
- De Philippis, R.; Colica, G.; Micheletti, E. Exopolysaccharide-Producing Cyanobacteria in Heavy Metal Removal from Water: Molecular Basis and Practical Applicability of the Biosorption Process. Appl. Microbiol. Biotechnol. 2011, 92, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Hrynkiewicz, K.; Baum, C. Application of Microorganisms in Bioremediation of Environment from Heavy Metals. In Environmental Deterioration and Human Health; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Bosch, A.; Serra, D.; Prieto, C.; Schmitt, J.; Naumann, D.; Yantorno, O. Characterization of Bordetella pertussis Growing as Biofilm by Chemical Analysis and FT-IR Spectroscopy. Appl. Microbiol. Biotechnol. 2006, 71, 736–747. [Google Scholar] [CrossRef] [PubMed]
pH | µ (h−1) with Hg | µ (h−1) without Hg | Mercury Reduction (%) | Removal Efficiency (mg Hg∙h⁻1∙g Biomass−1) |
---|---|---|---|---|
7 | 0.128 ± 0.004 | 0.266 ± 0.037 | 85.4 | 1.2 |
6 | 0.493 ± 0.067 | 0.376 ± 0.156 | 86.9 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintero, M.; Zuluaga-Valencia, S.D.; Ríos-López, L.G.; Sánchez, O.; Bernal, C.A.; Sepúlveda, N.; Gómez-León, J. Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential. Microorganisms 2024, 12, 2631. https://doi.org/10.3390/microorganisms12122631
Quintero M, Zuluaga-Valencia SD, Ríos-López LG, Sánchez O, Bernal CA, Sepúlveda N, Gómez-León J. Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential. Microorganisms. 2024; 12(12):2631. https://doi.org/10.3390/microorganisms12122631
Chicago/Turabian StyleQuintero, Marynes, Sol D. Zuluaga-Valencia, Lady Giselle Ríos-López, Olga Sánchez, Cesar A. Bernal, Niza Sepúlveda, and Javier Gómez-León. 2024. "Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential" Microorganisms 12, no. 12: 2631. https://doi.org/10.3390/microorganisms12122631
APA StyleQuintero, M., Zuluaga-Valencia, S. D., Ríos-López, L. G., Sánchez, O., Bernal, C. A., Sepúlveda, N., & Gómez-León, J. (2024). Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential. Microorganisms, 12(12), 2631. https://doi.org/10.3390/microorganisms12122631