In Vitro Activity of Ampicillin Plus Ceftriaxone Against Non-faecalis and Non-faecium Enterococcal Isolates With/Without VanC Phenotype: Clinical Implications for Infective Endocarditis
<p>Ampicillin (AMP) plus gentamicin (GEN) time–kill curves for the study isolates: ECAS-1219, ECAS-1247, ECAS-1461, EDUR-440, EHIR-1400, ERAF-1465, and EGALL-PT. The isolates were classified in the VanC phenotype (<b>A</b>,<b>B</b>): (<b>A</b>) Initial standard inoculum (ISI) and (<b>B</b>) initial higher inoculum (IHI) or no VanC phenotype (<b>C</b>,<b>D</b>): (<b>C</b>) ISI and (<b>D</b>) IHI. The black circle indicates growth control; the inverted black triangle indicates GEN monotherapy; the black triangle indicates AMP monotherapy; and the red square indicates combined therapy. The blue line indicates bactericidal activity. At ISI, the isolates were incubated with AMP + GEN at concentrations of 1×MIC for both antibiotics. At IHI, the isolates were incubated with AMP + GEN at concentrations of 20 mg/L for AMP and 8 mg/L for GEN. Values are the mean standard deviations from two independent experiments.</p> "> Figure 1 Cont.
<p>Ampicillin (AMP) plus gentamicin (GEN) time–kill curves for the study isolates: ECAS-1219, ECAS-1247, ECAS-1461, EDUR-440, EHIR-1400, ERAF-1465, and EGALL-PT. The isolates were classified in the VanC phenotype (<b>A</b>,<b>B</b>): (<b>A</b>) Initial standard inoculum (ISI) and (<b>B</b>) initial higher inoculum (IHI) or no VanC phenotype (<b>C</b>,<b>D</b>): (<b>C</b>) ISI and (<b>D</b>) IHI. The black circle indicates growth control; the inverted black triangle indicates GEN monotherapy; the black triangle indicates AMP monotherapy; and the red square indicates combined therapy. The blue line indicates bactericidal activity. At ISI, the isolates were incubated with AMP + GEN at concentrations of 1×MIC for both antibiotics. At IHI, the isolates were incubated with AMP + GEN at concentrations of 20 mg/L for AMP and 8 mg/L for GEN. Values are the mean standard deviations from two independent experiments.</p> "> Figure 2
<p>Ampicillin (AMP) plus ceftriaxone (CTR) time–kill curves for the study isolates: ECAS-1219, ECAS-1247, ECAS-1461, EDUR-440, EHIR-1400, ERAF-1465, and EGALL-PT. The isolates were classified in the VanC phenotype (<b>A</b>,<b>B</b>): (<b>A</b>) Initial standard inoculum (ISI) and (<b>B</b>) initial higher inoculum (IHI) or no VanC phenotype (<b>C</b>,<b>D</b>): (<b>C</b>) ISI and (<b>D</b>) IHI. The black circle indicates growth control; the inverted black triangle indicates CTR monotherapy; the black triangle indicates AMP monotherapy; and the red square indicates combined therapy. The blue line indicates bactericidal activity. At ISI, the isolates were incubated with AMP + CTR at concentrations of 1×MIC for both antibiotics. At IHI, the isolates were incubated with AMP + CTR at concentrations of 20 mg/L for AMP and 64 mg/L for CTR. Values are the mean standard deviations from two independent experiments.</p> "> Figure 2 Cont.
<p>Ampicillin (AMP) plus ceftriaxone (CTR) time–kill curves for the study isolates: ECAS-1219, ECAS-1247, ECAS-1461, EDUR-440, EHIR-1400, ERAF-1465, and EGALL-PT. The isolates were classified in the VanC phenotype (<b>A</b>,<b>B</b>): (<b>A</b>) Initial standard inoculum (ISI) and (<b>B</b>) initial higher inoculum (IHI) or no VanC phenotype (<b>C</b>,<b>D</b>): (<b>C</b>) ISI and (<b>D</b>) IHI. The black circle indicates growth control; the inverted black triangle indicates CTR monotherapy; the black triangle indicates AMP monotherapy; and the red square indicates combined therapy. The blue line indicates bactericidal activity. At ISI, the isolates were incubated with AMP + CTR at concentrations of 1×MIC for both antibiotics. At IHI, the isolates were incubated with AMP + CTR at concentrations of 20 mg/L for AMP and 64 mg/L for CTR. Values are the mean standard deviations from two independent experiments.</p> "> Figure 3
<p>Results from the PFGE and FTIR analysis.</p> "> Figure 4
<p>Flowchart summarizing the selection of manuscripts for this narrative review. This work is licensed under CC BY 4.0. To view a copy of this license, visit: <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a> (accessed on 31 October 2024) Source: [<a href="#B28-microorganisms-12-02511" class="html-bibr">28</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Clonality Studies
2.3. Antimicrobial Agents
2.4. Susceptibility Testing
2.5. Synergy Study by Time–Kill Curves
2.6. Clinical Data
2.7. Literature Research
3. Results
3.1. Recovered Isolates
3.2. Susceptibility Testing
3.3. In Vitro Time–Kill Synergy Studies
3.4. Clinical Data
Reference | Species (Strain ID) | Sex | Age | Type of IE | Valve Affected/Complicactions | Antibiotic Treatment | Treatment Duration (Weeks) | Surgery | Outcome | Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|
Zala A et al., 2016 [26] | E.durans | M | 61 | PVE | Ao Myocardial infarction | PEN + CTR (salvage) | 6 weeks | Yes | Survival | Unknown |
Ebeling C et al., 2019 [27] | E.hirae | M | 70 | NVE | Ao Root abscess | AMP + CTR | 17 days | Yes | Survival | Unknown |
PEN + CTR | 6 weeks | |||||||||
PEN | Chronic-suppressive | |||||||||
Pinkes M et al., 2019 [28] | E.hirae | F | 64 | NVE | Ao Root abscess | AMP + CTR | 6 weeks | Yes | No relapse/Survival | 15 months |
Radovanovic M et al., 2022 [16] | E.durans | M | 58 | CIED | Large lead vegetations | AMP + CTR | 6 weeks | Yes | No relapse/Survival | 2 months |
Gaudiano R et al., 2023 [17] | E.hirae | M | 62 | NVE | Mi Severe regurgitation | AMP + CTR | 6 weeks | Yes | Survival | Unknown |
Own case #1—2019 | E.casseliflavus (ECAS-1219) | M | 61 | NVE | Ao | AMP + CTR | 6 weeks | No | Relapse/Survival | 12 months |
Own case #2—2022 | E.hirae (EHIR-1400) | M | 91 | NVE | Mi | AMP + CTR | 6 weeks | No | No relapse/Survival | 6 months |
Own case #3—2023 | E.casseliflavus (ECAS-1461) | M | 65 | NVE | Ao | AMP + CTR | 6 weeks | No | Relapse/Survival | 12 months |
3.5. Clonality Studies
3.6. Literature Search
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMP + CTR | ampicillin + ceftriaxone |
AMP + GEN | ampicillin + gentamicin |
Ao | aortic |
CIED | cardiovascular implantable electronic device |
CRP | C-reactive protein |
EAG | Endovascular Aortic Graft |
ECAS | E. casseliflavus |
EDUR | E. durans |
EFAC | E. faecium |
EFAE | E. faecalis |
EGALL | E. gallinarum |
EHIR | E. hirae |
ERAF | E. raffinosus |
F | female |
HB | Hospital de Barcelona |
HC | Hospital Clínic |
HLAR | high-level aminoglycoside resistance |
HP | Hospital Parc Taulí |
HV | Hospital de Vic |
IHI | initial high inoculum |
ISI | initial standard inoculum |
M | male |
Mi | mitral |
N | native |
ND | no data |
TKC | time–kill curves |
References
- Holland, T.L.; Baddour, L.M.; Bayer, A.S.; Hoen, B.; Miro, J.M.; Fowler, V.G. Infective endocarditis. Nat. Rev. Dis. Primers 2016, 2, 16059. [Google Scholar] [CrossRef] [PubMed]
- Habib, G.; Erba, P.A.; Lung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, L.; Bruun, N.E.; Voldstedlund, M.; Arpi, M.; Andersen, C.Ø.; Schønheyder, H.C.; Lemming, L.; Rosenvinge, F.; Valeur, N.; Søgaard, P.; et al. Prevalence of infective endocarditis in patients with positive blood cultures: A Danish nationwide study. Eur. Heart J. 2019, 40, 3237–3244. [Google Scholar] [CrossRef]
- Olmos, C.; Vilacosta, I.; Fernández-Pérez, C.; Bernal, J.L.; Ferrera, C.; García-Arribas, D.; Pérez-García, C.N.; San Román, J.A.; Maroto, L.; Macaya, C.; et al. The Evolving Nature of Infective Endocarditis in Spain: A Population-Based Study (2003 to 2014). J. Am. Coll. Cardiol. 2017, 70, 2795–2804. [Google Scholar] [CrossRef] [PubMed]
- DeSimone, D.C.; Lahr, B.D.; Anavekar, N.S.; Sohail, M.R.; Tleyjeh, I.M.; Wilson, W.R.; Baddour, L.M. Temporal Trends of Infective Endocarditis in Olmsted County, Minnesota, Between 1970 and 2018: A Population-Based Analysis. Open Forum Infect. Dis. 2021, 8, ofab038. [Google Scholar] [CrossRef]
- Chirouze, C.; Athan, E.; Alla, F.; Chu, V.H.; Ralph Corey, G.; Selton-Suty, C.; Erpelding, M.-L.; Miró, J.M.; Olaison, L.; Hoen, B.; et al. Enterococcal endocarditis in the beginning of the 21st century: Analysis from the International Collaboration on Endocarditis-Prospective Cohort Study. Clin. Microbiol. Infect. 2013, 19, 1140–1147. [Google Scholar] [CrossRef]
- Pericas, J.M.; Cervera, C.; del Rio, A.; Moreno, A.; Garcia de la Maria, C.; Almela, M.; Falces, C.; Ninot, S.; Castañeda, X.; Armero, Y.; et al. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: From ampicillin plus gentamicin to ampicillin plus ceftriaxone. Clin. Microbiol. Infect. 2014, 20, O1075–O1803. [Google Scholar] [CrossRef]
- Pericàs, J.M.; Llopis, J.; Muñoz, P.; Gálvez-Acebal, J.; Kestler, M.; Valerio, M.; Hernández-Meneses, M.; Goenaga, M.A.; Cobo-Belaustegui, M.; Montejo, M.; et al. A Contemporary Picture of Enterococcal Endocarditis. J. Am. Coll. Cardiol. 2020, 75, 482–494. [Google Scholar] [CrossRef]
- Toc, D.A.; Pandrea, S.L.; Botan, A.; Mihaila, R.M.; Costache, C.A.; Colosi, I.A.; Junie, L.M. Enterococcus raffinosus, Enterococcus durans and Enterococcus avium Isolated from a Tertiary Care Hospital in Romania—Retrospective Study and Brief Review. Biology 2022, 11, 598. [Google Scholar] [CrossRef]
- Lohikoski, R.; Oldberg, K.; Rasmussen, M. Bacteraemia caused by non-faecalis and non-faecium Enterococcus species—A retrospective study of incidence, focus of infection, and prognosis. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 45–53. [Google Scholar] [CrossRef]
- Delgado, V.; Ajmone Marsan, N.; De Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [PubMed]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef] [PubMed]
- Mainardi, J.L.; Gutmann, L.; Acar, J.F.; Goldstein, F.W. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob. Agents Chemother. 1995, 39, 1984–1987. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, Y. Enterococcus casseliflavus Infection: A Review of Clinical Features and Treatment. Infect. Drug Resist. 2023, 16, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. J. Infect. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef]
- Dias, T.; de Almeida, J.; Santos, A.; Santos, R.M.; Carvalho, A. Enterococcus gallinarum causing native valve endocarditis. Eur. J. Case Rep. Intern. Med. 2019, 6, 001054. [Google Scholar] [CrossRef]
- Radovanovic, M.; Jevtic, D.; Barsoum, M.K.; Patel, J.; Dumic, I. Enterococcus durans Cardiac Implantable Electronic Device Lead Infection and Review of Enterococcus durans Endocarditis Cases. Medicina 2022, 58, 307. [Google Scholar] [CrossRef]
- Gaudiano, R.; Trizzino, M.; Torre, S.; Virruso, R.; Fiorino, F.; Argano, V.; Cascio, A. Enterococcus hirae Mitral Valve Infectious Endocarditis: A Case Report and Review of the Literature. Antibiotics 2023, 12, 1232. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2017, 24, 590–606. [Google Scholar] [CrossRef]
- Pitart, C.; Piquet, M.; Burgwinkel, T.; Arazo Del Pino, R.; Rubio, M.; Aguilar, M.; de Gea, S.; Pulgarín, A.; Campo, I.; Torralbo, B.; et al. Early identification of the nosocomial spread of vancomycin-resistant Enterococcus faecium by Fourier-transform infrared spectroscopy and performance comparison with PFGE and WGS. Emerg. Microbes Infect. 2024, 13, 2392659. [Google Scholar] [CrossRef]
- Durmaz, R.; Otlu, B.; Koksal, F.; Hosoglu, F.; Ozturk, R.; Ersoy, Y.; Aktas, E.; Gursoy, N.C.; Caliskan, A. The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn. J. Infect. Dis. 2009, 62, 372–377. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.1. 2024. Available online: http://www.eucast.org (accessed on 19 September 2024).
- CLSI. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. CLSI Document M26-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999; Available online: www.clsi.org (accessed on 28 September 2024).
- del Río, A.; García-de-la-Mària, C.; Entenza, J.M.; Gasch, O.; Armero, Y.; Soy, D.; Mestres, C.A.; Pericás, J.M.; Falces, C.; Ninot, S.; et al. Fosfomycin plus b-lactams as synergistic bactericidal combinations for experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 2016, 60, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.S.; Isenberg, H.D. Clinical Microbiology Procedures Handbook, 3rd ed.; Time-kill Assay; ASM Press: Washington, DC, USA, 2010; pp. 5.10.2.1–5.10.2.12. [Google Scholar]
- Leclercq, R.; Courvalin, P. Resistance to Glycopeptides in Enterococci. Clin. Infect. Dis. 1997, 24, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Zala, A.; Collins, N. Enterococcus durans Prosthetic Valve Endocarditis: A Previously Unreported Clinical Entity. Heart Lung Circ. 2016, 25, e133–e136. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ebeling, C.G.; Romito, B.T. Aortic valve endocarditis from Enterococcus hirae infection. Bayl. Univ. Med. Cent. Proc. 2019, 32, 249–250. [Google Scholar] [CrossRef]
- Pinkes, M.E.; White, C.; Wong, C.S. Native-valve Enterococcus hirae endocarditis: A case report and review of the literature. BMC Infect. Dis. 2019, 19, 891. [Google Scholar] [CrossRef]
- Schwartzman, J.A.; Lebreton, F.; Salamzade, R.; Shea, T.; Martin, M.J.; Schaufler, K.; Urhan, A.; Abeel, T.; Camargo, I.L.B.C.; Sgardioli, B.F.; et al. Global diversity of enterococci and description of 18 previously unknown species. Proc. Natl. Acad. Sci. USA 2024, 121, e2310852121. [Google Scholar] [CrossRef]
- Piras, G.; el Kharroubi, A.; van Beeumen, J.; Coeme, E.; Coyette, J.; Ghuysen, J.M. Characterization of an Enterococcus hirae penicillin-binding protein 3 with low penicillin affinity. J. Bacteriol. 1990, 172, 6856–6862. [Google Scholar] [CrossRef]
- Leimanis, S.; Hoyez, N.; Hubert, S.; Laschet, M.; Sauvage, E.; Brasseur, R.; Coyette, J. PBP5 complementation of a PBP3 deficiency in Enterococcus hirae. J. Bacteriol. 2006, 188, 6298–6307. [Google Scholar] [CrossRef]
- Vincent, S.; Minkler, P.; Bincziewski, B.; Etter, L.; Shlaes, D.M. Vancomycin resistance in Enterococcus gallinarum. Antimicrob. Agents Chemother. 1992, 36, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Grayson, M.L.; Eliopoulos, G.M.; Wennersten, C.B.; Ruoff, K.L.; Klimm, K.; Sapico, F.L.; Bayer, A.S.; Moellering, R.C., Jr. Comparison of Enterococcus raffinosus with Enterococcus avium on the basis of penicillin susceptibility, penicillin-binding protein analysis, and high-level aminoglycoside resistance. Antimicrob. Agents Chemother. 1991, 35, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
Isolates | VAN Phenotype * | MIC/MBC (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|
AMP | PEN | CTR | DAP | VAN | GEN | STR | ||
ECAS-1219 | Van C | 1/64 | 1/16 | 128/128 | 2/8 | 4/>64 | 4/16 | 24 |
ECAS-1247 | Van C | 1/256 | 2/64 | 8/>128 | 0.12/>4 | 4/>64 | 8/16 | 32 |
ECAS-1461 | Van C | 1/64 | 0.5/16 | 8/>128 | 4/32 | 4/>64 | 8/>128 | 32 |
EGALL-PT | Van C | 2/>512 | 1/>512 | 256/>512 | 4/64 | 8/>128 | 8/64 | 24 |
EDUR-440 | Van A | 0.03/0.12 | 0.03/0.5 | 1/8 | 2/32 | 0.5/>8 | 2/8 | 48 |
EHIR-1400 | Van A | 1/64 | 2/2 | 128/512 | 8/64 | 0.5/>8 | 16/64 | 64 |
ERAF-1465 | Van A | 32/>512 | 64/512 | >512/>512 | 0.25/8 | 0.5/>8 | 4/8 | >1024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-González, J.; Cañas, M.A.; Cuervo, G.; Hernández-Meneses, M.; Verdejo, M.A.; Bodro, M.; Díez de los Ríos, J.; Gasch, O.; Ribera, A.; Falces, C.; et al. In Vitro Activity of Ampicillin Plus Ceftriaxone Against Non-faecalis and Non-faecium Enterococcal Isolates With/Without VanC Phenotype: Clinical Implications for Infective Endocarditis. Microorganisms 2024, 12, 2511. https://doi.org/10.3390/microorganisms12122511
García-González J, Cañas MA, Cuervo G, Hernández-Meneses M, Verdejo MA, Bodro M, Díez de los Ríos J, Gasch O, Ribera A, Falces C, et al. In Vitro Activity of Ampicillin Plus Ceftriaxone Against Non-faecalis and Non-faecium Enterococcal Isolates With/Without VanC Phenotype: Clinical Implications for Infective Endocarditis. Microorganisms. 2024; 12(12):2511. https://doi.org/10.3390/microorganisms12122511
Chicago/Turabian StyleGarcía-González, Javier, María A. Cañas, Guillermo Cuervo, Marta Hernández-Meneses, Miguel A. Verdejo, Marta Bodro, Javier Díez de los Ríos, Oriol Gasch, Alba Ribera, Carles Falces, and et al. 2024. "In Vitro Activity of Ampicillin Plus Ceftriaxone Against Non-faecalis and Non-faecium Enterococcal Isolates With/Without VanC Phenotype: Clinical Implications for Infective Endocarditis" Microorganisms 12, no. 12: 2511. https://doi.org/10.3390/microorganisms12122511
APA StyleGarcía-González, J., Cañas, M. A., Cuervo, G., Hernández-Meneses, M., Verdejo, M. A., Bodro, M., Díez de los Ríos, J., Gasch, O., Ribera, A., Falces, C., Perissinotti, A., Vidal, B., Quintana, E., Moreno, A., Piquet, M., Roca, I., Fernández-Pittol, M., San José-Villar, S. M., García-de-la-Mària, C., ... the Hospital Clínic Endocarditis Study Group. (2024). In Vitro Activity of Ampicillin Plus Ceftriaxone Against Non-faecalis and Non-faecium Enterococcal Isolates With/Without VanC Phenotype: Clinical Implications for Infective Endocarditis. Microorganisms, 12(12), 2511. https://doi.org/10.3390/microorganisms12122511