Field to Greenhouse: How Stable Is the Soil Microbiome after Removal from the Field?
<p>Soil bacterial/archaeal and fungal diversity during the 9 weeks of soil storage duration. Alpha diversity is depicted as richness (number of observed amplicon sequence variants (ASVs)) and Shannon index across the four time points for (<b>A</b>) bacteria and archaea, and (<b>B</b>) fungi. Boxes represent the inter-quartile range of the data, and the median is indicated by a horizontal line. Statistically significant differences across the four time points are represented by the different letters (Kruskal–Wallis test; <span class="html-italic">p</span> ≤ 0.05). Bacterial/archaeal (<b>C</b>) and fungal (<b>D</b>) community composition are represented by the non-metric multidimensional scaling (NMDS) ordination plots generated using Bray–Curtis dissimilarity (PERMANOVA; R<sup>2</sup> = 0.18, <span class="html-italic">p</span> ≤ 0.001 for bacteria/archaea and R<sup>2</sup> = 0.36, <span class="html-italic">p</span> ≤ 0.001 for fungi). The centroid of each time point is represented with a circle outlined in black and the larger circles around the samples represent the variation within each time point. W0, Week 0; W3, Week 3; W6, Week 6; and W9, Week 9.</p> "> Figure 2
<p>Relative abundance of various bacterial/archaeal (<b>A</b>) and fungal (<b>B</b>) taxa during the 9 weeks of soil storage. Bars represent mean abundance of each family at each time point in descending order with standard deviation as error bars. Differences in relative abundances across the four time points were evaluated using Kruskal–Wallis tests. Statistically significant differences in relative abundance are represented by the different letters (<span class="html-italic">p</span>-value ≤ 0.05). Taxa that were significantly different and had a mean relative abundance of >1% across any of the four time points are depicted in the figure. W0, Week 0; W3, Week 3; W6, Week 6; and W9, Week 9.</p> "> Figure 3
<p>Functional predictions of the bacterial/archaeal and fungal community using FAPROTAX and FUNGuild analyses, respectively. Heatmap represents the mean proportion of the functional groups across the four time points. Functions with statistically significant differences across the time points are represented with an ‘*’ (Kruskal–Wallis test, <span class="html-italic">p</span>-value ≤ 0.05). The fungal guilds, ectomycorrhizal and endophyte, were sub-categorized as fungal parasite-soil saprotroph-undefined saprotroph and litter saprotroph-soil saprotroph-undefined saprotroph, respectively (‡). The mean proportion values range from 0 (yellow) to 0.2 (red). W0, Week 0; W3, Week 3; W6, Week 6; and W9, Week 9.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Long, J.R.; Fry, E.L.; Veen, G.F.; Kardol, P. Why are plant-soil feedbacks so unpredictable, and what to do about it? Funct. Ecol. 2019, 33, 118–128. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant-microbe interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Nunan, N.; Hirsch, P.R.; Sun, B.; Zhou, J.; Liang, Y. Theory of microbial coexistence in promoting soil-plant ecosystem health. Biol. Fertil. Soils 2021, 57, 897–911. [Google Scholar] [CrossRef]
- Steinauer, K.; Thakur, M.P.; Hannula, S.E.; Weinhold, A.; Uthe, H.; van Dam, N.M.; Bezemer, T.M. Root exudates and rhizosphere microbiomes jointly determine temporal shifts in plant-soil feedbacks. Plant Cell Environ. 2023, 46, 1885–1899. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Nuccio, E.; Herman, D.J.; Rijkers, R.; Estera, K.; Li, J.; Da Rocha, U.N.; He, Z.; Pett-Ridge, J.; Brodie, E.L.; et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 2015, 6, e00746-15. [Google Scholar] [CrossRef]
- Hannula, S.E.; Heinen, R.; Huberty, M.; Steinauer, K.; De Long, J.R.; Jongen, R.; Bezemer, T.M. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat. Commun. 2021, 12, 5686. [Google Scholar] [CrossRef]
- Mariotte, P.; Vandenberghe, C.; Meugnier, C.; Rossi, P.; Bardgett, R.D.; Buttler, A. Subordinate plant species impact on soil microbial communities and ecosystem functioning in grasslands: Findings from a removal experiment. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 77–85. [Google Scholar] [CrossRef]
- Harrison, K.A.; Bardgett, R.D. Influence of plant species and soil conditions on plant–soil feedback in mixed grassland communities. J. Ecol. 2010, 98, 384–395. [Google Scholar] [CrossRef]
- Wardle, D.A.; Yeates, G.W.; Barker, G.; Bonner, K.I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 2006, 38, 1052–1062. [Google Scholar] [CrossRef]
- Stotzky, G.; Goos, R.D.; Timonin, M.I. Microbial changes occurring in soil as a result of storage. Plant Soil. 1962, 16, 1–18. [Google Scholar] [CrossRef]
- Wollum, A.G. Soil sampling for microbiological analysis. In Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties; Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 1–14. [Google Scholar]
- Maddela, N.R.; Golla, N.; Vengatampalli, R. Soil microbiological properties. In Soil Enzymes: Influence of Sugar Industry Effluents on Soil Enzyme Activities; Springer Briefs in Environmental Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 11–16. [Google Scholar]
- Kirchner, M.J.; Wollum, A.G.; King, L.D. Soil microbial populations and activities in reduced chemical input agrosystems. Soil Sci. Soc. Am. J. 1993, 57, 1289–1295. [Google Scholar] [CrossRef]
- Lee, Y.B.; Lorenz, N.; Dick, L.K.; Dick, R.P. Cold storage and pretreatment incubation effects on soil microbial properties. Soil Sci. Soc. Am. J. 2007, 71, 1299–1305. [Google Scholar] [CrossRef]
- Šimek, M. Changes in potential denitrification and respiration during the cold storage of soils. Folia Microbiol. 2000, 45, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.S.; Elshikha, D.E.M.; Katterman, M.E.; Sullivan, T.; Dittmar, S.; Cruz, V.M.V.; Hunsaker, D.J.; Waller, P.M.; Ray, D.T.; Dierig, D.A. Irrigation effects on seasonal growth and rubber production. Ind. Crops Prod. 2022, 177, 114442. [Google Scholar] [CrossRef]
- Cornish, K. Alternative natural rubber crops: Why should we care? Technol. Innov. 2017, 18, 245–256. [Google Scholar] [CrossRef]
- Dehghanizadeh, M.; Cheng, F.; Jarvis, J.M.; Holguin, F.O.; Brewer, C.E. Characterization of resin extracted from guayule (Parthenium argentatum): A data set including GC-MS and FT-ICR MS. Data Brief. 2020, 31, 105989. [Google Scholar] [CrossRef]
- Kushwaha, P.; Neilson, J.W.; Barberán, A.; Chen, Y.; Fontana, C.G.; Butterfield, B.J.; Maier, R.M. Arid ecosystem vegetation canopy-gap dichotomy: Influence on soil microbial composition and nutrient cycling functional potential. Appl. Environ. Microbiol. 2021, 87, e02780-20. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 2016, 1, e00009-15. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J. A new model for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package. v1. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 25 September 2022).
- Tóth, E.M.; Borsodi, A.K. The family Nocardioidaceae. In The Prokaryotes: Actinobacteria; Springer: Berlin/Heidelberg, Germany, 2014; pp. 651–694. [Google Scholar]
- Ortiz-Cornejo, N.L.; Romero-Salas, E.A.; Navarro-Noya, Y.E.; González-Zúñiga, J.C.; Ramirez-Villanueva, D.A.; Vásquez-Murrieta, M.S.; Verhulst, N.; Govaert, B.; Dendooven, L.; Luna-Guido, M. Incorporation of bean plant residue in soil with different agricultural practices and its effect on the soil bacteria. Appl. Soil Ecol. 2017, 119, 417–427. [Google Scholar] [CrossRef]
- Wang, T.; Hao, Y.; Zhu, M.; Yu, S.; Ran, W.; Xue, C.; Ling, N.; Shen, Q. Characterizing differences in microbial community composition and function between Fusarium wilt disease and healthy soils under watermelon cultivation. Plant Soil. 2019, 438, 421–433. [Google Scholar] [CrossRef]
- Wilhelm, R.C.; Cardenas, E.; Leung, H.; Szeitz, A.; Jensen, L.D.; Mohn, W.W. Long-term enrichment of stress-tolerant cellulolytic soil populations following timber harvesting evidenced by multi-omic stable isotope probing. Front. Microbiol. 2017, 8, 537. [Google Scholar]
- de Araujo Pereira, A.P.; Mendes, L.W.; Oliveira, F.A.S.; Antunes, J.E.L.; Melo, V.M.M.; Araujo, A.S.F. Land degradation affects the microbial communities in the Brazilian Caatinga biome. Catena 2022, 211, 105961. [Google Scholar] [CrossRef]
- Peterson, S.O.; Klug, M.J. Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl. Environ. Microbiol. 1994, 60, 2421–2430. [Google Scholar] [CrossRef]
- Bonfante, P.; Anca, I.A. Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, B.D.; Tunlid, A. Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprophytes. New Phytol. 2015, 205, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 2004, 7, 740–754. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushwaha, P.; Soto Velázquez, A.L.; McMahan, C.; Neilson, J.W. Field to Greenhouse: How Stable Is the Soil Microbiome after Removal from the Field? Microorganisms 2024, 12, 110. https://doi.org/10.3390/microorganisms12010110
Kushwaha P, Soto Velázquez AL, McMahan C, Neilson JW. Field to Greenhouse: How Stable Is the Soil Microbiome after Removal from the Field? Microorganisms. 2024; 12(1):110. https://doi.org/10.3390/microorganisms12010110
Chicago/Turabian StyleKushwaha, Priyanka, Ana L. Soto Velázquez, Colleen McMahan, and Julia W. Neilson. 2024. "Field to Greenhouse: How Stable Is the Soil Microbiome after Removal from the Field?" Microorganisms 12, no. 1: 110. https://doi.org/10.3390/microorganisms12010110
APA StyleKushwaha, P., Soto Velázquez, A. L., McMahan, C., & Neilson, J. W. (2024). Field to Greenhouse: How Stable Is the Soil Microbiome after Removal from the Field? Microorganisms, 12(1), 110. https://doi.org/10.3390/microorganisms12010110