The Epistemology of Bacterial Virulence Factor Characterization
Abstract
:1. Importance
2. Introduction
3. Origin and Evolution of Virulence Factors
4. Ecological Arguments Supporting Non-Anthropocentric Roles of Bacterial Virulence Factors
5. Two Case Studies: Staphylococcus aureus and Pseudomonas aeruginosa
5.1. Staphylococcus aureus
5.2. Pseudomonas aeruginosa
6. Sources of Error in the Characterization of Virulence Factors
7. Proposed Guidelines for Characterizing Virulence Factors
- If the identification of a VF is based entirely on in vitro studies with activity extrapolated to a role in mammalian pathogenesis, then it should be designated as a “putative VF” until evidence provides sufficient warrant for categorization.
- If the identification of a VF is based on sequence homology without fulfilling significant criteria establishing its role in disease, then it should be designated as a “putative VF” until evidence provides sufficient warrant for categorization.
- Fitness factors and host interaction factors that do not extend the disease-causing potential beyond commensalism should not be categorized as VFs.
- 4.
- The VF is produced by a bacterium with an established role in disease.
- 5.
- An evolutionary role for the VF in niche survival has been correlated to disease causation.
- 6.
- A role in pathogenesis has been empirically established by loss-of-function (mutation or suppression) and gain-of-function (complementation) experiments.
- 7.
- An immunologic response is observed in response to infection by the VF-producing pathogen.
- 8.
- Therapeutic strategies such as active or passive immunization to the VF or a targeted therapeutic agent have been shown to prevent disease progression.
8. Conclusions
Funding
Conflicts of Interest
Glossary
Analogy by induction or false analogy | The argument that based on similarity, what is true for one is true for the other. Analogy by induction or false analogy may be used to categorize a putative VF based on sequence similarity to an established VF. |
Anthropocentric | Considering human beings as the central entity in the universe. In the context of microbial pathogenesis, this heuristic bias disregards the process of natural selection that contributed to the evolution of VFs and instead focuses on their role in human disease. |
Categorical induction | An inductive process based on comparison to an exemplar. For example, sequence homology or functional analogy may lead to the categorization of a newly discovered gene product as a VF. |
Causation vs. correlation | The erroneous conclusion that because two events are associated, one event is caused by the other. The expression of a particular gene product during infection does not prove that it contributes to pathogenesis. |
Confirmation bias | A tendency to seek evidence that supports a prior belief. Hypotheses should be continuously reassessed to determine what would falsify the claim (see Popper and Platt’s strong inference). |
Empirical adequacy | Explanations that are good enough at that particular time to advance scientific discovery. |
Empirical observation | A common practice in science; information is gathered based on observation. |
Epistemology | A branch of philosophy that studies the nature and extent of knowledge. In this report, we seek to question the knowledge used to prove that a putative VF has a role in bacterial pathogenesis. |
False premise | An incorrect proposition used in an argument. For example, the premise that if a gene product causes disease in animals, then it will also cause disease in humans may be false, although it is frequently used for VF classification. |
Heuristic | The decision-making process that humans use, sometimes referred to as a mental short-cut. The heuristic process is prone to various biases that can affect decisions. |
Lamarckian evolution | An evolutionary hypothesis proposed by the French naturalist Jean Baptiste de Lamarck (1744–1829) that suggests an organism can pass on a physical characteristic that was acquired through a lifetime of use in a single generation. Widely disregarded in favor of natural selection, there are Lamarckian aspects of bacterial and host evolution evident within a Darwinian framework. |
Narrative fallacy | A flawed characterization based on a sequence of facts that reflects a human tendency to practice “makes-sense epistemology” as part of the decision-making process. |
Platt’s strong inference | In a 1963 address to the American Chemical Society, John Platt described a disciplined process of the falsification of multiple hypotheses that he referred to as strong inference. In his address, he described how strong inference was used by some of the most highly successful laboratories of the time. |
Underdetermination | Evidence available to us at a given time may be insufficient to determine what beliefs we should hold in response to it. |
Unwarranted extrapolation | The application of a conclusion based on evidence obtained in one instance to a different case. For example, the protection of mice from a hemagglutinin using an anticoagulant does not establish the effectiveness of this therapeutic intervention in humans. |
Warrant | The property of a belief that substantiates it as knowledge. A scientific theory is warranted if the evidence supporting it at that time is equivalent to its empirically founded alternatives. |
References
- Koch, R. Uber Bakteriologische Forschung. Verhandlung des X Internationalen Medichinischen Congresses, Berlin, 1890, 1, 35. August Hirschwald, Berlin. In Xth International Congress of Medicine; August Hirschwald: Berlin, Germany, 1891. [Google Scholar]
- Darwin, C.; Kebler, L. On the Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life. London: J. Murray. [Pdf] Retrieved from the Library of Congress. 1859. Available online: https://www.loc.gov/item/06017473/ (accessed on 10 May 2024).
- Sokurenko, E.V.; Hasty, D.L.; Dykhuizen, D.E. Pathoadaptive mutations: Gene loss and variation in bacterial pathogens. Trends Microbiol. 1999, 7, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Ahlinder, J.; Mathisen, P.; Hägglund, M.; Bäckman, S.; Nilsson, E.; Sjödin, A. Predators and nutrient availability favor protozoa-resisting bacteria in aquatic systems. Nat. Sci. Rep. 2018, 8, 8415. [Google Scholar] [CrossRef] [PubMed]
- Matz, C.; Kjelleberg, S. Off the hook—How bacteria survive protozoan grazing. Trends Microbiol. 2005, 13, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Rayamajhee, B.; Willcox, M.D.P.; Henriquez, F.L.; Petsoglou, C.; Subedi, D.; Carnt, N. Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol. 2022, 38, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Shteindel, N.; Gerchman, Y. Pseudomonas aeruginosa Mobbing-Like Behavior against Acanthamoeba castellanii Bacterivore and Its Rapid Control by Quorum Sensing and Environmental Cues. Microbiol. Spectr. 2021, 9, e00642-21. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.; Brown, M.R.W. Trojan Horses of the microbial world: Protozoa and the survival of bacterial pathogens in the environment. Microbiology 1994, 140, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L.A. Accidental Virulence, Cryptic Pathogenesis, Martians, Lost Hosts, and the Pathogenicity of Environmental Microbes. Eukaryot. Cell 2007, 6, 2169–2174. [Google Scholar] [CrossRef] [PubMed]
- Erken, M.; Lutz, C.; McDougald, D. The Rise of Pathogens: Predation as a Factor Driving the Evolution of Human Pathogens in the Environment. Microb. Ecol. 2013, 65, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Adiba, S.; Nizak, C.; van Baalen, M.; Denamur, E.; Depaulis, F. From Grazing Resistance to Pathogenesis: The Coincidental Evolution of Virulence Factors. PLoS ONE 2010, 5, e11882. [Google Scholar] [CrossRef]
- Alizon, S.; Michalakis, Y. Adaptive virulence evolution: The good old fitness-based approach. Trends Ecol. Evol. 2015, 30, 248–254. [Google Scholar] [CrossRef]
- Fredricks, D.N.; Relman, D.A. Sequence-Based Identification of Microbial Pathogens: A Reconsideration of Koch’s Postulates. Clin. Microbiol. Rev. 1996, 9, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Diard, M.; Hardt, W.D. Evolution of bacterial virulence. FEMS Microbiol. Rev. 2017, 41, 679–697. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D1250–D1256. [Google Scholar] [CrossRef] [PubMed]
- Doxey, A.C.; Mansfield, M.J.; Lobb, B. Exploring the evolution of virulence factors through bioinformatic data mining. mSystems 2019, 4, e00162-19. [Google Scholar] [CrossRef] [PubMed]
- Ho Sui, S.J.; Fedynak, A.; Hsiao, W.W.L.; Langille, M.G.I.; Brinkman, F.S.L. The Association of Virulence Factors with Genomic Islands. PLoS ONE 2009, 4, e8094. [Google Scholar] [CrossRef] [PubMed]
- Hung, D.T.; Shakhnovich, E.A.; Pierson, E.; Mekalanos, J.J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 2005, 310, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Rüssmann, H. Inverted pathogenicity: The use of pathogen-specific molecular mechanisms for prevention or therapy of disease. Int. J. Med. Microbiol. 2004, 293, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.F.; Wickham, M.E.; Coombes, B.K.; Finlay, B.B. Crossing the line: Selection and evolution of virulence traits. PLoS Pathog. 2006, 2, e42. [Google Scholar] [CrossRef]
- Kreibich, S.; Hardt, W.D. Experimental approaches to phenotypic diversity in infection. Curr. Opin. Microbiol. 2015, 27, 25–36. [Google Scholar] [CrossRef]
- Brussow, H. Bacteria between protists and phages: From antipredation strategies to the evolution of pathogenicity. Mol. Microbiol. 2007, 65, 583–589. [Google Scholar] [CrossRef]
- Doxey, A.C.; McConkey, B.J. Prediction of molecular mimicry candidates in human pathogenic bacteria. Virulence 2013, 4, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Greub, G.; Raoult, D. History of the ADP/ATP-Translocase-Encoding Gene, a Parasitism Gene Transferred from a Chlamydiales Ancestor to Plants 1 Billion Years Ago. Appl. Environ. Microbiol. 2003, 69, 5530–5535. [Google Scholar] [CrossRef]
- Lederberg, J. Infectious History. Science 1998, 288, 287. [Google Scholar] [CrossRef] [PubMed]
- Molmeret, M.; Horn, M.; Wagner, M.; Santic, M.; Abu Kwaik, Y. Amoebae as Training Grounds for Intracellular Bacterial Pathogens. Appl. Environ. Microbiol. 2005, 71, 20–28. [Google Scholar] [CrossRef]
- Bertelli, C.; Greub, G. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Front. Cell. Infect. Microbiol. 2012, 2, 110. [Google Scholar] [CrossRef]
- Brandl, M.T.; Rosenthal, B.M.; Haxo, A.F.; Berk, S.G. Enhanced Survival of Salmonella enterica in Vesicles Released by a Soilborne Tetrahymena Species. Appl. Environ. Microbiol. 2005, 71, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Cordes, M.H.J.; Binford, G.J. Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria. Bioinform. Discov. Note 2006, 22, 264–268. [Google Scholar] [CrossRef]
- Brussow, H.; Canchaya, C.; Hardt, W.D. Phages and the Evolution of Bacterial Pathogens: From Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [PubMed]
- Maurelli, A.T. Black holes, antivirulence genes and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol. Lett. 2007, 267, 1–8. [Google Scholar] [CrossRef]
- Brown, J.R. Ancient Horizontal Gene Transfer. Nat. Rev. Genet. 2003, 4, 121–132. [Google Scholar] [CrossRef]
- Zhang, D.; de Souza, R.F.; Anantharaman, V.; Iyer, L.M.; Aravind, L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 2012, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.W.; Koudelka, G.B. The Trojan Horse of the microbiological arms race: Phage-encoded toxins as a defence against eukaryotic predators. Environ. Microbiol. 2014, 16, 454–466. [Google Scholar] [CrossRef]
- Gandon, S.; Day, T. Evidences of parasite evolution after vaccination. Vaccine 2008, 26, C4–C7. [Google Scholar] [CrossRef] [PubMed]
- Matz, C.; Bergfeld, T.; Rice, S.A.; Kjelleberg, S. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ. Microbiol. 2004, 6, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Leong, W.; Poh, W.H.; Williams, J.; Lutz, C.; Hoque, M.M.; Poh, Y.H.; Yee, B.Y.K.; Chua, C.; Givskov, M.; Sanderson-Smith, M.; et al. Adaptation to an Amoeba Host Leads to Pseudomonas aeruginosa Isolates with Attenuated Virulence. Appl. Environ. Microbiol. 2022, 88, e0232221. [Google Scholar] [CrossRef]
- O’Malley, M.A. Philosophy of Microbiology; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Koonin, E.V.; Wolf, Y.I. Is evolution Darwinian or/and Lamarckian? Biol. Direct 2009, 4, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Casadevall, A.; Pirofski, L.A. Host-Pathogen Interactions: Redefining the Basic Concepts of Virulence and Pathogenicity. Infect. Immun. 1999, 67, 3703–3713. [Google Scholar] [CrossRef]
- DasGupta, B.R. Botulinum neurotoxins: Perspective on their existence and as polyproteins harboring viral proteases. J. Gen. Appl. Microbiol. 2006, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kebbi-Beghdadi, C.; Greub, G. Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: The Chlamydia paradigm. Environ. Microbiol. Rep. 2014, 6, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, K.N.; Klahr, D. Scientific Thinking and Reasoning. In Oxford Handbook of Thinking and Reasoning; Oxford University Press: Oxford, UK, Chapter 35; Available online: https://www.researchgate.net/publication/232242213_Scientific_Thinking (accessed on 10 May 2022).
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence Factors of Pseudomonas aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926758. [Google Scholar] [CrossRef]
- The Stanford Encyclopedia of Philosophy Principal Editor: Edward, N. Zalta. The Metaphysics Research Lab, Philosophy Department, Stanford University. ISSN 1095-5054. Available online: https://plato.stanford.edu/ (accessed on 29 May 2024).
- Platt, J.R. Strong Inference. Science 1964. Available online: https://courses.pbsci.ucsc.edu/eeb/bioe200b/pdf%20files/Platt%20Science%201964%20Stronf%20Inference.pdf (accessed on 18 May 2022).
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Bubeck Wardenburg, J.; Bae, T.; Otto, M.; DeLeo, F.R.; Schneewind, O. Poring over pores: Alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 2007, 13, 1405–1406. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.D.; Malachowa, N.; Whitney, A.R.; Braughton, K.R.; Gardner, D.J.; Long, D.; Wardenburg, J.B.; Schneewind, O.; Otto, M.; DeLeo, F.R. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J. Infect. Dis. 2011, 204, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Villaruz, A.E.; Bubeck Wardenburg, J.; Khan, B.A.; Whitney, A.R.; Sturdevant, D.E.; Gardner, D.J.; DeLeo, F.R.; Otto, M. A point mutation in the agr locus rather than expression of the Panton-Valentine leukocidin caused previously reported phenotypes in Staphylococcus aureus pneumonia and gene regulation. J. Infect. Dis. 2009, 200, 724–734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.-O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine Leukocidin—Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Atkins, K.L.; Burman, J.D.; Chamberlain, E.S.; Cooper, J.E.; Poutrel, B.; Bagby, S.; Jenkins, A.T.; Feil, E.J.; van den Elsen, J.M. S. aureus IgG-binding proteins SpA and Sbi: Host specificity and mechanisms of immune complex formation. Mol. Immunol. 2008, 45, 1600–1611. [Google Scholar] [CrossRef] [PubMed]
- Berends, E.T.; Horswill, A.R.; Haste, N.M.; Monestier, M.; Nizet, V.; von Köckritz-Blickwede, M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2010, 2, 576–586. [Google Scholar] [CrossRef] [PubMed]
- McAdow, M.; Kim, H.K.; Dedent, A.C.; Hendrickx, A.P.A.; Schneewind, O.; Missiakas, D.M. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 2011, 7, e1002307. [Google Scholar] [CrossRef]
- Ko, Y.-P.; Kuipers, A.; Freitag, C.M.; Jongerius, I.; Medina, E.; van Rooijen, W.J.; Spaan, A.N.; van Kessel, K.P.M.; Höök, M.; Rooijakkers, S.H.M. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog. 2013, 9, e1003816. [Google Scholar] [CrossRef]
- Jongerius, I.; von Köckritz-Blickwede, M.; Horsburgh, M.J.; Ruyken, M.; Nizet, V.; Rooijakkers, S.H. Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J. Innate Immun. 2012, 4, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, R.; Panizzi, P.; Fuentes-Prior, P.; Richter, K.; Verhamme, I.; Anderson, P.J.; Kawabata, S.-I.; Huber, R.; Bode, W.; Bock, P.E. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 2003, 425, 535–539. [Google Scholar] [CrossRef]
- McAdow, M.; DeDent, A.C.; Emolo, C.; Cheng, A.G.; Kreiswirth, B.N.; Missiakas, D.M.; Schneewind, O. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect. Immun. 2012, 80, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Peetermans, M.; Vanassche, T.; Liesenborghs, L.; Claes, J.; Velde, G.V.; Kwiecinksi, J.; Jin, T.; De Geest, B.; Hoylaerts, M.F.; Lijnen, R.H.; et al. Plasminogen activation by staphylokinase enhances local spreading of, S. aureus in Skin Infections. BMC Microbiol. 2014, 14, 310. [Google Scholar] [CrossRef] [PubMed]
- Boyle-Vavra, S.; Li, X.; Alam, M.T.; Read, T.D.; Sieth, J.; Cywes-Bentley, C.; Dobbins, G.; David, M.Z.; Kumar, N.; Eells, S.J.; et al. USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. mBio 2015, 6, e02585-14. [Google Scholar] [PubMed]
- Nemeth, J.; Lee, J.C. Antibodies to capsular polysaccharides are not protective against experimental Staphylococcus aureus endocarditis. Infect. Immun. 1995, 63, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Rooijakkers, S.H.M.; Ruyken, M.; Roos, A.; Daha, M.R.; Presanis, J.S.; Sim, R.B.; van Wamel, W.J.B.; van Kessel, K.P.M.; van Strijp, J.A.G. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 2005, 6, 920–927. [Google Scholar] [CrossRef]
- Casilag, F.; Lorenz, A.; Krueger, J.; Klawonn, F.; Weiss, S.; Häussler, S. The LasB Elastase of Pseudomonas Aeruginosa Acts in Concert With Alkaline Protease AprA to Prevent Flagellin-Mediated Immune Recognition. Infect. Immun. 2015, 84, 162. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Kang, Y.; Norris, M.H.; Troyer, R.M.; Son, M.S.; Schweizer, H.P.; Dow, S.W.; Hoang, T.T. Blocking Phosphatidylcholine Utilization in Pseudomonas Aeruginosa, via Mutagenesis of Fatty Acid, Glycerol and Choline Degradation Pathways, Confirms the Importance of This Nutrient Source In Vivo. PLoS ONE 2014, 9, e103778. [Google Scholar] [CrossRef]
- Michalska, M.; Wolf, P. Pseudomonas Exotoxin A: Optimized by Evolution for Effective Killing. Front. Microbiol. 2015, 6, 963. [Google Scholar] [CrossRef]
- Pollack, M.; Young, L.S. Protective activity of antibodies to exotoxin A and lipopolysaccharide at the onset of Pseudomonas aeruginosa septicemia in man. J. Clin. Investig. 1979, 63, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Yahr, T.L.; Vallis, A.J.; Hancock, M.K.; Barbieri, J.T.; Frank, D.W. ExoY, an Adenylate Cyclase Secreted by the Pseudomonas Aeruginosa Type III System. Proc. Natl. Acad. Sci. USA 1998, 95, 13899–13904. [Google Scholar] [CrossRef] [PubMed]
- Sundin, C.; Henriksson, M.L.; Hallberg, B.; Forsberg, Å.; Frithz-Lindsten, E. Exoenzyme T of Pseudomonas Aeruginosa Elicits Cytotoxicity without Interfering with Ras Signal Transduction. Cell. Microbiol. 2001, 3, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Horna, G.; Ruiz, J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol. Res. 2021, 246, 126719. [Google Scholar] [CrossRef] [PubMed]
- Tielen, P.; Kuhn, H.; Rosenau, F.; Jaeger, K.-E.; Flemming, H.-C.; Wingender, J. Interaction Between Extracellular Lipase LipA and the Polysaccharide Alginate of Pseudomonas Aeruginosa. BMC Microbiol. 2013, 13, 159. [Google Scholar] [CrossRef]
- Persat, A.; Inclan, Y.F.; Engel, J.N.; Stone, H.A.; Gitai, Z. Type IV Pili Mechanochemically Regulate Virulence Factors in Pseudomonas Aeruginosa. Proc. Natl. Acad. Sci. USA 2015, 112, 7563–7568. [Google Scholar] [CrossRef]
- Engel, L.S.; Hill, J.M.; Caballero, A.R.; Green, L.C.; O’Callaghan, R.J. Protease IV, a Unique Extracellular Protease and Virulence Factor From Pseudomonas Aeruginosa. J. Biol. Chem. 1998, 273, 16792–16797. [Google Scholar] [CrossRef]
- Bradshaw, J.L.; Caballero, A.R.; Bierdeman, M.A.; Adams, K.V.; Pipkins, H.R.; Tang, A.; O’callaghan, R.J.; McDaniel, L.S. Pseudomonas Aeruginosa Protease IV Exacerbates Pneumococcal Pneumonia and Systemic Disease. mSphere 2018, 3, e00212-18. [Google Scholar] [CrossRef]
- Bianchi, S.M.; Prince, L.R.; McPhillips, K.; Allen, L.; Marriott, H.M.; Taylor, G.W.; Hellewell, P.G.; Sabroe, I.; Dockrell, D.H.; Henson, P.W.; et al. Impairment of Apoptotic Cell Engulfment by Pyocyanin, a Toxic Metabolite of Pseudomonas Aeruginosa. Am. J. Respir. Crit. Care Med. 2008, 177, 35–43. [Google Scholar] [CrossRef]
- Bonneau, A.; Roche, B.; Schalk, I.J. Iron Acquisition in Pseudomonas aeruginosa by the Siderophore Pyoverdine: An Intricate Interacting Network Including Periplasmic and Membrane Proteins. Sci. Rep. 2020, 10, 120. [Google Scholar] [CrossRef]
- Sass, G.; Conrad, L.; Nguyen, T.; Stevens, D.A. The Pseudomonas Aeruginosa Product Pyochelin Interferes With Trypanosoma Cruzi Infection and Multiplication In Vitro. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Young, B.C.; Golubchik, T.; Batty, E.M.; Fung, R.; Larner-Svensson, H.; Votintseva, A.A.; Miller, R.R.; Godwin, H.; Knox, K.; Everitt, R.G.; et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc. Natl. Acad. Sci. USA 2012, 109, 4550–4555. [Google Scholar] [CrossRef] [PubMed]
- Corvaglia, A.-R.; van der Mee-Marquet, N.; François, P. The Staphylococcus aureus CC398 Lineage: An Evolution Driven by the Acquisition of Prophages and Other Mobile Genetic Elements. Genes 2021, 12, 1752. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, J.A. Genomic variation and evolution of Staphylococcus aureus. Int. J. Med. Microbiol. 2010, 300, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, C.J.; Su, L.H.; Hu, S.; Yu, J.; Chiu, C.H. Evolution and pathogenesis of Staphylococcus aureus: Lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 2008, 32, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Giulieri, S.G.; Guérillot, R.; Duchene, S.; Hachani, A.; Daniel, D.; Seemann, T.; Davis, J.S.; Tong, S.Y.; Young, B.C.; Wilson, D.J.; et al. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 2022, 11, e77195. [Google Scholar] [CrossRef] [PubMed]
- Laabei, M.; Uhlemann, A.-C.; Lowy, F.D.; Austin, E.D.; Yokoyama, M.; Ouadi, K.; Feil, E.; Thorpe, H.A.; Williams, B.; Perkins, M.; et al. Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of Staphylococcus aureus. PLoS Biol. 2015, 13, e1002229. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.R.; Sullivan, M.J.; Chacko, K.I.; Balasubramanian, D.; Pak, T.R.; Sause, W.E.; Kumar, K.; Sebra, R.; Deikus, G.; Attie, O.; et al. Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection. Infect. Immun. 2018, 86, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kwiecinski, J.M.; Horswill, A.R. Staphylococcus aureus bloodstream infections: Pathogenesis and regulatory mechanisms. Curr. Opin. Microbiol. 2020, 53, 51–60. [Google Scholar] [CrossRef]
- John, J. The treatment of resistant staphylococcal infections. F1000Research 2020, 9, F1000 Faculty Rev-150. [Google Scholar] [CrossRef]
- Diard, M.; Garcia, V.; Maier, L.; Remus-Emsermann, M.N.P.; Regoes, R.R.; Ackermann, M.; Hardt, W.-D. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 2013, 494, 353. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.L.; Hedge, J.; Wilson, D.J.; MacLean, R.C. Evolutionary Processes Driving the Rise and Fall of Staphylococcus aureus ST239, a Dominant Hybrid Pathogen. Mbio 2021, 12, e02168-21. [Google Scholar] [PubMed]
- Davis, C.E.; Anandan, J. The Evolution of R Factor—A Study of a Preantibiotic Community in Borneo. N. Engl. J. Med. 1970, 282, 117–122. [Google Scholar] [CrossRef]
- Doekes, H.M.; de Boer, R.J.; Hermsen, R. Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Comput. Biol. 2019, 15, e1007333. [Google Scholar] [CrossRef]
- Raymond, B.; West, S.; Griffin, A.; Bonsall, M.B. The dynamics of cooperative bacterial virulence in the field. Science 2012, 337, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Rumbaugh, K.P.; Diggle, S.P.; Watters, C.M.; Ross-Gillespie, A.; Griffin, A.S.; West, S.A. Quorum Sensing and the Social Evolution of Bacterial Virulence. Curr. Biol. 2009, 19, 341–345. [Google Scholar] [CrossRef]
- West, S.A.; Griffin, A.S.; Gardner, A.; Diggle, S.P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 2006, 4, 597–607. [Google Scholar] [CrossRef]
- Buckling, A.; Brockhurst, M.A. Kin selection and the evolution of virulence. Nat. Hered. 2008, 100, 484–488. [Google Scholar] [CrossRef]
- Cremer, J.; Melbinger, A.; Frey, E. Growth dynamics and the evolution of cooperation in microbial populations. Sci. Rep. 2012, 2, 281. [Google Scholar] [CrossRef]
- Andersen, S.B.; Marvig, R.L.; Molina, S.; Johansen, H.K.; Griffin, A.S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 10756–10761. [Google Scholar] [CrossRef]
- Schulze, A.; Mitterer, F.; Pombo, J.P.; Schild, S. Biofilms by bacterial human pathogens: Clinical relevance—Development, composition and regulation—Therapeutical strategies. Microb. Cell 2021, 8, 28–56. [Google Scholar] [CrossRef] [PubMed]
- West, S.A.; Diggle, S.P.; Buckling, A.; Gardner, A.; Griffin, A.S. The Social Lives of Microbes. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 53–77. [Google Scholar] [CrossRef]
- Matz, C.; Moreno, A.M.; Alhede, M.; Manefield, M.; Hauser, A.R.; Givskov, M.; Kjelleberg, S. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J. 2008, 2, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.F.; Collier, R.J. Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J. Biol. Chem. 1987, 262, 8707–8711. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Vaccines and Preventable Diseases. Available online: https://www.cdc.gov/vaccines/vpd/dtap-tdap-td/public/ (accessed on 26 March 2024).
- Williams, P.H.; Clarke, S.C. Why do microbes have toxins? J. Appl. Microbiol. 1998, 84, 1S–6S. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Feltrup, T.M.; Kukreja, R.V.; Patel, K.B.; Cai, S.; Singh, B.R. Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins 2019, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Rudkin, J.K.; McLoughlin, R.M.; Preston, A.; Massey, R.C. Bacterial toxins: Offensive, defensive, or something else altogether? PLoS Pathog. 2017, 13, e1006452. [Google Scholar] [CrossRef] [PubMed]
- do Vale, A.; Cabanes, D.; Sousa, S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front. Microbiol. 2016, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Haddad, J.E.; Jackson, M.P. Identification of the Shiga toxin A-subunit residues required for holotoxin assembly. J. Bacteriol. 1993, 175, 7652–7657. [Google Scholar] [CrossRef]
- Stavrinides, J.; McCann, H.C.; Guttman, D.S. Host–pathogen interplay and the evolution of bacterial effectors. Cell. Microbiol. 2008, 10, 285–292. [Google Scholar] [CrossRef]
- Casadevall, A. The Pathogenic Potential of a Microbe. mSphere 2017, 2, e00015-17. [Google Scholar] [CrossRef] [PubMed]
- Méthot, P.-O. Why do Parasites Harm Their Host? On the Origin and Legacy of Theobald Smith’s “Law of Declining Virulence”—1900–1980. Hist. Philos. Life Sci. 2012, 34, 561–601. [Google Scholar] [PubMed]
- Evans, A.S. Causation and Disease: The Henle-Koch Postulates Revisited. Yale J. Biol. Med. 1976, 49, 175–195. [Google Scholar] [PubMed]
- Wassenaar, T.M.; Gaastra, W. Bacterial virulence: Can we draw the line? FEMS Microbiol. Lett. 2001, 201, 1–7. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, L. The Scientific Attitude, Defending Science from Denial, Fraud, and Pseudoscience; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Taleb, N.N. The Black Swan; Random House: New York City, NY, USA, 2008. [Google Scholar]
- Alksne, L.E.; Projan, S.J. Bacterial virulence as a target for antimicrobial chemotherapy. Curr. Opin. Biotechnol. 2000, 11, 625–636. [Google Scholar] [CrossRef] [PubMed]
VF (Gene Designation) | VFDB Categorization a | Findings and Limitations | Reasoning Error b | Reference |
---|---|---|---|---|
Staphylococcus aureus | ||||
Beta hemolysin (hlb) | Membrane-acting exotoxin | Cytotoxic Sequence homology with sphingomyelinase | False premise Unwarranted extrapolation | [48] |
Delta hemolysin (hld) | Membrane-acting exotoxin | Cytotoxic Regulation of agr operon | False premise | [48] |
Panton-Valentine leukocidin (lukS-PV, lukF-PV) | Membrane-acting exotoxin | Cytotoxic Not produced by all strains | False premise Unwarranted extrapolation | [49,50,51,52] |
Phenol-soluble modulin-alpha peptides | Membrane-acting exotoxin (psmα1, psmα2, psmα3, psmα4) | Cytotoxic Limited host range in animal models | False premise Unwarranted extrapolation | [49,50] |
S. aureus binder of IgG (spa) | Immune modulation | Immunoglobulin binding Sequence homology with protein A | False premise Unwarranted extrapolation | [53] |
Nuclease (nuc) | Immune modulation | Digestion of neutrophil extracellular traps | False premise | [54] |
Fibrinogen-binding protein (fnbA, clfA) | Adherence | Hemagglutination, receptor binding Antiphagocytic activity | False premise | [55,56,57] |
Coagulase (coa) | Exoenzyme | Hemagglutination and antiphagocytic Immunization provided protection in mouse model | False premise Unwarranted extrapolation | [58,59] |
Staphylokinase (sak) | Exoenzyme | Hemagglutination and antiphagocytic Anticoagulant treatment provided protection in mouse model | False premise Unwarranted extrapolation | [59,60] |
Capsule (cap operons) | Immune modulation | Antiphagocytic Not produced by all strains | False premise Unwarranted extrapolation | [44,61,62] |
PIA/PNAG (icaADBC) | Immune modulation | Antiphagocytic biofilm component Not produced by all strains | False premise Unwarranted extrapolation | [44] |
Staphylococcal complement inhibitor (scn) | Immune modulation | Interference with complement | False premise | [57,63] |
Pseudomonas aeruginosa | ||||
LasB (lasB) | Effector delivery system | Immune evasion via modification of surface proteins | False premise | [64] |
Phospholipase C (plcH) | Exotoxin | Degradation of lung surfactant in murine cystic fibrosis model | False premise | [65] |
Exotoxin A (toxA) | Exotoxin | Antibody response during infection Functionally analogous to DTA c | Unwarranted extrapolation | [66,67] |
Exo S,T,U,Y (exoSTUY) | Effector delivery system | Functionally analogous to CyaA and EF d | Unwarranted extrapolation | [68,69,70] |
Lipase A (lipA) | Biofilm formation | Antiphagocytic biofilm component | False premise | [71] |
Alkaline protease (aprA) | Exoenzyme | Immune evasion via modification of surface proteins | False premise | [64] |
Type IV pili (pilA-D, F-I) | Adherence | Receptor binding in vitro | False premise | [72] |
Protease IV (prpL) | Exoenzyme | Immune evasion via degradation of immunoglobulin, complement, and interleukin 22 | False premise | [73,74] |
Pyocyanin (phz operons) | Nutritional/Metabolic factor | Environmental survival Suppresses immune response | False premise | [75] |
Pyoverdine/Pyochelin (pvd, pch operons) | Nutritional/Metabolic factor | Provides competitive advantage over Aspergillus in cystic fibrosis lung | False premise | [76,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, M.; Vineberg, S.; Theis, K.R. The Epistemology of Bacterial Virulence Factor Characterization. Microorganisms 2024, 12, 1272. https://doi.org/10.3390/microorganisms12071272
Jackson M, Vineberg S, Theis KR. The Epistemology of Bacterial Virulence Factor Characterization. Microorganisms. 2024; 12(7):1272. https://doi.org/10.3390/microorganisms12071272
Chicago/Turabian StyleJackson, Matthew, Susan Vineberg, and Kevin R. Theis. 2024. "The Epistemology of Bacterial Virulence Factor Characterization" Microorganisms 12, no. 7: 1272. https://doi.org/10.3390/microorganisms12071272
APA StyleJackson, M., Vineberg, S., & Theis, K. R. (2024). The Epistemology of Bacterial Virulence Factor Characterization. Microorganisms, 12(7), 1272. https://doi.org/10.3390/microorganisms12071272