The Study of Microbe–Host Two-Way Communication
Abstract
:1. The Host Immune System
2. Bacterial Response to the Host
3. The Example of Bacteria Kinases
4. Microbe–Host Crosstalk and Commensals
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boehm, T. Evolution of vertebrate immunity. Curr. Biol. 2012, 22, R722–R732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Innate and Adaptive Immune Systems. Institute for Quality and Efficiency in Health Care (IQWiG). Available online: https://www.ncbi.nlm.nih.gov/books/NBK279396/ (accessed on 15 December 2021).
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Receptors of the Innate Immune System. Immunobiology: The Immune System in Health and Disease 5th edition. 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK27129/ (accessed on 2 December 2021).
- Merle, N.S.; Noe, R.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement system part II: Role in immunity. Front. Immunol. 2015, 6, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thau, L.; Asuka, E.; Mahajan, K. Physiology, Opsonization; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: http://www.ncbi.nlm.nih.gov/books/NBK534215/ (accessed on 15 December 2021).
- Cozzone, A.J. Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J. Mol. Microbiol. Biotechnol. 2005, 9, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Gupta, M.; Pathak, M.; Gupta, N.; Koul, A.; Sarangi, S.; Baweja, R.; Singh, Y. Transcriptional control of the mycobacterial embCAB operon by PknH through a regulatory protein, embr, in vivo. J. Bacteriol. 2006, 188, 2936–2944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, H.M.; Durán, R.; Cerveñansky, C.; Bellinzoni, M.; Wehenkel, A.M.; Pritsch, O.; Obal, G.; Baumgartner, J.; Vialaret, J.; Johnsson, K.; et al. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol. Microbiol. 2008, 70, 1408–1423. [Google Scholar] [CrossRef] [PubMed]
- Odendall, C.; Rolhion, N.; Förster, A.; Poh, J.; Lamont, D.J.; Liu, M.; Freemont, P.S.; Catling, A.D.; Holden, D.W. The Salmonella Kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host Microbe 2012, 12, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Canova, M.J.; Baronian, G.; Brelle, S.; Cohen-Gonsaud, M.; Bischoff, M.; Molle, V. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation. Biochem. Biophys. Res. Commun. 2014, 447, 165–171. [Google Scholar] [CrossRef]
- Pagano, G.J.; Arsenault, R.J. Advances, challenges and tools in characterizing bacterial serine, threonine and tyrosine kinases and phosphorylation target sites. Expert Rev. Proteom. 2019, 16, 431–441. [Google Scholar] [CrossRef]
- Perry, F.; Johnson, C.; Aylward, B.; Arsenault, R.J. The differential phosphorylation-dependent signaling and glucose immunometabolic responses induced during infection by salmonella enteritidis and salmonella heidelberg in chicken macrophage-like cells. Microorganisms 2020, 8, 1041. [Google Scholar] [CrossRef]
- Poh, J.; Odendall, C.; Spanos, A.; Boyle, C.; Liu, M.; Freemont, P.; Holden, D.W. SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. Cell Microbiol. 2008, 10, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.L.; Raffatellu, M.; Bevins, C.L.; Adams, L.G.; Tükel, Ç.; Tsolis, R.M.; Bäumler, A.J. Life in the inflamed intestine, Salmonella style. Trends Microbiol. 2009, 17, 498–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loetscher, Y.; Wieser, A.; Lengefeld, J.; Kaiser, P.; Schubert, S.; Heikenwalder, M.; Hardt, W.D.; Stecher, B. Salmonella transiently reside in luminal neutrophils in the inflamed gut. PLoS ONE 2012, 7, e34812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luk, C.H.; Valenzuela, C.; Gil, M.; Swistak, L.; Bomme, P.; Chang, Y.Y.; Mallet, A.; Enninga, J. Salmonella enters a dormant state within human epithelial cells for persistent infection. PLoS Pathog. 2021, 17, e1009550. [Google Scholar] [CrossRef] [PubMed]
- Kogut, M.H.; Arsenault, R.J. A role for the non-canonical Wnt-β-catenin and TGF-β signaling pathways in the induction of tolerance during the establishment of a Salmonella enterica serovar enteritidis persistent cecal infection in chickens. Front. Vet. Sci. 2015, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Tran van Nhieu, G.; Arbibe, L. Genetic reprogramming of host cells by bacterial pathogens. F1000 Biol. Rep. 2009, 1, 80. [Google Scholar] [CrossRef] [Green Version]
- Bonne Køhler, J.; Jers, C.; Senissar, M.; Shi, L.; Derouiche, A.; Mijakovic, I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett. 2020, 594, 2339–2369. [Google Scholar] [CrossRef] [Green Version]
- Krebs, E.G.; Fischer, E.H. Phosphorylase activity of skeletal muscle extracts. J. Biol. Chem. 1955, 216, 113–120. [Google Scholar] [CrossRef]
- Krebs, E.G. The phosphorylation of proteins: A major mechanism for biological regulation. Biochem. Soc. Trans. 1985, 13, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J. 1995, 9, 576–596. [Google Scholar] [CrossRef]
- Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 2002, 4, E127–E130. [Google Scholar] [CrossRef]
- Lehrer, S.; Bloomer, W.D. Activity of pp6oc-src protein kinase in human breast cancer. Mt. Sinai J. Med. 1989, 56, 83–85. [Google Scholar] [PubMed]
- Shaw, A.S.; Kornev, A.P.; Hu, J.; Ahuja, L.G.; Taylor, S.S. Kinases and Pseudokinases: Lessons from RAF. Molecular and Cellular Biology. 2014. Available online: https://journals.asm.org/doi/abs/10.1128/MCB.00057-14 (accessed on 15 December 2021).
- Raju, S.; Shaw, A.S. What is the point of pseudokinases? eLife 2015, 4, e07771. [Google Scholar] [CrossRef] [PubMed]
- Rajakulendran, T.; Sicheri, F. Allosteric protein kinase regulation by pseudokinases: Insights from STRAD. Sci. Signal 2010, 3, pe8. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Anamika, K.; Srinivasan, N. A Framework for classification of prokaryotic protein kinases. PLoS ONE 2010, 5, e10608. [Google Scholar] [CrossRef]
- Lee, W.L.; Grimes, J.M.; Robinson, R.C. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Nat. Struct. Mol. Biol. 2015, 22, 248–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briken, V.; Porcelli, S.A.; Besra, G.S.; Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: From biogenesis to modulation of the immune response. Mol. Microbiol. 2004, 53, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Papavinasasundaram, K.G.; Chan, B.; Chung, J.-H.; Colston, M.J.; Davis, E.O.; Av-Gay, Y. Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J. Bacteriol. 2005, 187, 5751–5760. [Google Scholar] [CrossRef] [Green Version]
- Jadeau, F.; Bechet, E.; Cozzone, A.J.; Deléage, G.; Grangeasse, C.; Combet, C. Identification of the idiosyncratic bacterial protein tyrosine kinase (BY-kinase) family signature. Bioinformatics 2008, 24, 2427–2430. [Google Scholar] [CrossRef] [Green Version]
- Grangeasse, C.; Nessler, S.; Mijakovic, I. Bacterial tyrosine kinases: Evolution, biological function and structural insights. Philos. Trans. R. Soc. B. Biol. Sci. 2012, 367, 2640–2655. [Google Scholar] [CrossRef] [Green Version]
- Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer. 2018, 17, 48. [Google Scholar] [CrossRef]
- Oprea, T.I.; Bologa, C.G.; Brunak, S.; Campbell, A.; Gan, G.N.; Gaulton, A.; Gomez, S.M.; Guha, R.; Hersey, A.; Holmes, J.; et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 2018, 17, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov. 2021, 20, 551–569. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic. Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Belkaid, Y.; Hand, T. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Tomkovich, S.; Jobin, C. Microbiota and host immune responses: A love–hate relationship. Immunology 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hassenbach, M.; Albus, M. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema. Lancet 1998, 351, 1225–1232. [Google Scholar]
- Bach, J.-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 2002, 347, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Kuhn, C.; Feillet, H.; Bach, J.-F. The “hygiene hypothesis” for autoimmune and allergic diseases: An update. Clin. Exp. Immunol. 2010, 160, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Buckland, J. Behaviour of secretory IgA explained. Nat. Rev. Immunol. 2003, 3, 519. [Google Scholar] [CrossRef]
- Mantis, N.J.; Rol, N.; Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef]
- Favre, L.; Spertini, F.; Corthésy, B. Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses. J. Immunol. 2005, 175, 2793–2800. [Google Scholar] [CrossRef] [Green Version]
- Mathias, A.; Corthésy, B. Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin a is mediated by carbohydrates. J. Biol. Chem. 2011, 286, 17239–17247. [Google Scholar] [CrossRef] [Green Version]
- Craig, L.M.; Charles, O.E.; Robin, D.H.; Casey, T.W. Reciprocal Interactions of the Intestinal Microbiota and Immune System. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Emery, M.A.; Dimos, B.A.; Mydlarz, L.D. Cnidarian pattern recognition receptor repertoires reflect both phylogeny and life history traits. Front. Immunol. 2021, 12, 2430. [Google Scholar] [CrossRef]
- McFall-Ngai, M. Care for the community. Nature 2007, 445, 153. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perry, F.; Arsenault, R.J. The Study of Microbe–Host Two-Way Communication. Microorganisms 2022, 10, 408. https://doi.org/10.3390/microorganisms10020408
Perry F, Arsenault RJ. The Study of Microbe–Host Two-Way Communication. Microorganisms. 2022; 10(2):408. https://doi.org/10.3390/microorganisms10020408
Chicago/Turabian StylePerry, Famatta, and Ryan J. Arsenault. 2022. "The Study of Microbe–Host Two-Way Communication" Microorganisms 10, no. 2: 408. https://doi.org/10.3390/microorganisms10020408
APA StylePerry, F., & Arsenault, R. J. (2022). The Study of Microbe–Host Two-Way Communication. Microorganisms, 10(2), 408. https://doi.org/10.3390/microorganisms10020408